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Abstract: Adenosine receptors are a subfamily of highly-conserved G-protein coupled receptors.
They are found in the membranes of various human cells and play many physiological functions.
Blood platelets express two (A2A and A2B) of the four known adenosine receptor subtypes (A1, A2A,
A2B, and A3). Agonization of these receptors results in an enhanced intracellular cAMP and the
inhibition of platelet activation and aggregation. Therefore, adenosine receptors A2A and A2B could
be targets for anti-platelet therapy, especially under circumstances when classic therapy based on
antagonizing the purinergic receptor P2Y12 is insufficient or problematic. Apart from adenosine,
there is a group of synthetic, selective, longer-lasting agonists of A2A and A2B receptors reported
in the literature. This group includes agonists with good selectivity for A2A or A2B receptors, as well
as non-selective compounds that activate more than one type of adenosine receptor. Chemically,
most A2A and A2B adenosine receptor agonists are adenosine analogues, with either adenine or ribose
substituted by single or multiple foreign substituents. However, a group of non-adenosine derivative
agonists has also been described. This review aims to systematically describe known agonists of A2A

and A2B receptors and review the available literature data on their effects on platelet function.
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1. Introduction

Activation of blood platelets plays a critical role in the pathogenesis of arterial thrombotic diseases,
such as coronary heart disease, myocardial infarction, and stroke, which are the primary cause
of mortality in developed countries. Therefore, anti-platelet therapy is one of the most important tools
in the treatment of arterial thrombotic disorders [1].

Platelets express two receptors for ADP: The P2Y1 receptor, which initiates platelet aggregation,
and the P2Y12 receptor, which enhances this process, finally leading to thrombus formation. In contrast
to the P2Y1 receptor, the P2Y12 receptor is almost exclusively expressed in the platelet plasma membrane.
Therefore, P2Y12 has become a major therapeutic target to prevent arterial thrombotic disorders instead
of adenosine receptors [2]. In general, the major clinically approved P2Y12 inhibitors include the
thienopyridine-class inhibitors (ticlopidine, clopidogrel, and prasugrel), the ATP analogue—cangrelor,
and the cyclo-pentyl-triazolo-pyrimidine (CPTP)—ticagrelor [2,3]. Thienopyridines are prodrugs
that are converted to short-living active metabolites; these irreversibly inactivate the receptor and
consequently inhibit ADP-induced platelet activation. Cangrelor is the first intravenous P2Y12

receptor inhibitor to reversibly block ADP signaling in a non-competitive manner. Ticagrelor is an
allosteric antagonist of P2Y12, acting directly via reversible binding to the P2Y12 receptor, which leads
to the non-competitive inhibition of ADP-induced P2Y12 activation and is used for the prevention
of thromboembolic events in patients with acute coronary syndromes [2–5]. As regards current
clinical practice, clopidogrel, prasugrel, and ticagrelor are the most frequently used oral platelet
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P2Y12 inhibitors; the use of ticlopidine has been abandoned. Clopidogrel is the only oral P2Y12

inhibitor recommended for the treatment of patients with stable coronary artery disease. Although all
three agents have an indication for use in acute coronary syndromes, current guidelines suggest the
preferential use of prasugrel and ticagrelor over clopidogrel because of their superior clinical benefits,
i.e., the improved efficacy, lowered individual variation in response, and less frequent and severe side
effects [6]. Cangrelor, in turn, as the recently approved, first P2Y12 inhibitor administered intravenously,
seems to be the most promising in percutaneous coronary interventions [7].

Although these anti-platelet agents are now commonly used as clinically approved drugs,
effective therapy of arterial thrombosis still presents a problem. For example, gastrointestinal bleeding
is a common adverse event observed in 5 to over 10% of patients treated with oral anti-platelet drugs.
Many of the patients with this complication require recurrent hospitalization [8]. Another severe and
relatively common side effect of anti-platelet therapy is a higher risk of intracranial and intracerebral
hemorrhage [9]. On the other hand, for some patients, the applied anti-platelet therapy appears
insufficient and does not prevent excessive clotting. This can be explained by the fact that anti-platelet
agents either interfere with only one out of several pathways of platelet activation or, even if they
block effectively a final common step of platelet aggregation, such as fibrinogen binding (blockers of
fibrinogen receptor), their use is associated with a risk of bleeding [3]. Another problem affecting the
efficiency of many anti-platelet drugs stems from the individual variability of the response to these
drugs resulting from both environmental and genetic factors, especially in case of prodrugs [10].
Altogether, there still is a need for the development of novel platelet inhibitors with better efficacy and
safety, or using a combined therapy based on various sets of currently-available agents.

Adenosine is an important purine metabolite, serving not only as a component of nucleic acids
and the most important energy carrier in the cell—ATP—but also as a signaling molecule regulating
tissue function [11,12]. Adenosine receptors (AR) are present in membranes of many types of human
cells and play various physiological functions. Blood platelets express two (A2A and A2B) of the four
known adenosine receptor subtypes (A1, A2A, A2B, and A3). As regards platelet AR receptors, A2A is
characterized by the higher affinity to adenosine in comparison with A2A; furthermore, platelets have
a significantly lower density of A2B [13,14]. Activation of platelet AR results in an enhanced intracellular
cAMP level and consequently leads to the inhibition of platelet activation and aggregation [15,16].
Therefore, adenosine receptors A2A and A2B could be considered as targets for anti-platelet therapy,
especially under circumstances when classic therapy based on antagonizing the P2Y12 purinergic
receptor is insufficient or problematic.

The aim of this review is to systematically present current knowledge of the impact of synthetic,
selective, longer-lasting agonists of A2A and A2B receptors on platelet function inhibition, and evaluate
their potential as anti-platelet therapeutics.

2. The Classification, Distribution, and Signaling of Adenosine Receptors

Adenosine receptors (AR) represent a subfamily of highly-conserved G-protein coupled receptors.
They are found in membranes of various human cells and play a plethora of physiological functions.
Four AR subtypes are known: A1, A2A, A2B, and A3. The A1 and A3 receptors preferentially couple
to Gi protein to inhibit adenylate cyclase and, consequently, the production of cyclic AMP (cAMP).
The A2A and A2B subtypes stimulate the production of cAMP by coupling to Gs or Go protein [17];
they are therefore classified as adenylyl cyclase inhibiting (A1 and A3) or adenylyl cyclase activating
(A2A and A2B) [18].

AR subtypes are characterized by high resemblance in terms of amino acid sequence: The human
A1 and A3 ARs are identical in 49%, whereas human A2A and A2B AR sequences are identical in 59%.
In general, an AR molecule consists of a single polypeptide chain that transverses the membrane from
the extracellular side, beginning at the N terminus and forming seven transmembrane helices [15].
AR receptors are commonly expressed in many tissues and cells types; however, the distribution
of subtypes is highly tissue-specific (Table 1).



Int. J. Mol. Sci. 2019, 20, 5475 3 of 18

Table 1. Adenosine receptors (AR) receptor distribution and expression in different tissue types.

Receptor Subtype High Expression Intermediary Expression Low Expression

A1 [19] brain (cortex, hippocampus,
cerebellum); spinal cord;
adrenal gland; atria; eyes

brain (excluding cortex,
hippocampus, and cerebellum);
skeletal muscles; adipose tissue;
liver; kidneys

lungs; pancreas

A2A [20] blood platelets; leukocytes;
spleen; thymus

heart; lungs; blood vessels;
peripheral nerves

brain

A2B [21–23] cecum; bladder lungs; blood vessels;
mast cells; eyes

brain; adipose tissue; blood
platelets; adrenal gland; kidneys

A3 [19] testis; mast cells brain (hippocampus, cerebellum) brain (excluding hippocampus
and cerebellum); heart;
thyroid; adrenal gland; spleen;
liver; kidneys

Adenosine receptors play multiple functions. A2A receptor agonization is known to cause coronary
artery vasodilatation, decreased dopaminergic activity in central nervous system, and inhibition
of central neuron excitation, whereas A2B receptor activation may cause bronchospasm [12,24–26].
Therefore, all adenosine receptor ligands should be used only with the utmost caution [11], despite some
having already been approved for human use (one of them—regadenoson—is discussed further in this
article). An interesting insight into adenosine receptor overstimulation may be gained from the study
of adenosine deaminase deficiency—a rare, autosomal metabolic disorder that causes severe combined
immunodeficiency [27]. In this syndrome, platelet dysfunction has been described, as well as severe
thrombocytopenia [28,29]. It is, however, important to remember that there is no exact parallel between
patients with this syndrome and an anti-platelet therapy with the use of AR agonists. The dose
of synthetic adenosine agonist equivalent to adenosine would be much lower and, most importantly,
it would be applied in adults.

As it has been already mentioned, blood platelets express two subtypes of AR receptors (A2A and
A2B); however, the expression (the number of receptor copies in the plasma membrane) of the two
receptor types has not been established. A2A receptor is believed to be expressed on platelets in higher
density as compared to A2A [18]. Only one study has estimated the gene expression profile for A2A and
A2B in human platelets. This report demonstrated comparable mRNA expression levels for A2A and A2B

AR [22], but no further evidence exists regarding protein levels present on the platelet surface. Moreover,
two studies [30,31] have not been able to quantify A2A AR in platelet proteome, while have easily
identified, for example, P2Y12 receptor, expressed on healthy platelets in around 450–1000 copies [32].

A2A AR was identified as an important receptor on platelets and a mediator of adenosine
inhibition of platelet aggregation [33]. This is achieved through inhibition of mobilization of internal
calcium stores and influx of external calcium, both associated with activation of adenylate cyclase
and increase of cAMP concentration [34]. Cyclic nucleotides are also strong inhibitors of the release
of calcium ions into the cytosol, which underpins many events in platelet activation. In addition
to inhibiting platelet aggregation in human blood, the activation of A2A AR by specific agonists leads
to a reduction in P-selectin expression on the platelet cell surface, as a result of thromboxane A2 or
ADP stimulation [15].

Phenotypically, counts of blood cell populations, including platelets, were found to be similar in A2A

AR knock-out mice and with wild-type mice [20]. In this knock-out model, the rate of ADP-induced
platelet aggregation differed in both the genetic variants following the treatment with nonselective AR
agonist, 5′-N-ethyl-carboxamidoadenosine (NECA). NECA administration led to inhibition of platelet
aggregation in wild-type mice, but demonstrated no effect in A2A AR-null mice [35].

The role of A2B AR in platelets remains disputable. It was proposed that this AR subtype activates
signal transduction pathways other than adenylate cyclase [36]. It was also proposed, based on
a mouse knock-out study, that A2B AR is upregulated under stress in vivo, and plays a significant
role in regulating ADP receptor expression [23]. The same study also found that agonization of this
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receptor inhibits agonist-induced platelet aggregation, but it should be noted that no specific agonist
was used: A combination of a non-selective agonist and A2A receptor inhibitor was applied.

The half-life of adenosine in circulation is extremely short (approximately 1 s), due to the action
of enzymes like adenosine deaminase, which convert it to inosine, or adenosine kinase, which phosphorylates
it to 5′-AMP, or due to uptake by nucleoside transporters [33]. Therefore, close study and pharmacological
potential of ARs can be facilitated only by finding longer-lasting synthetic agonists and antagonists.

3. Adenosine Receptor Agonists—Structure, Chemical Properties, and Known Effects
on Platelet Function

The purpose of synthesizing novel AR agonists is to achieve longer-lasting agonization and selectivity
between receptor subtypes without compromising high affinity of binding to the receptor. This is
accomplished, with varying success, either by introducing additional substituents to the molecule
of adenosine in the hope of improving a receptor-ligand binding, or by utilizing molecules of other
chemical structure. A nomenclature and the chemical structure of AR agonists is presented in Table 2.

Table 2. Nomenclature and chemical structure of AR agonists.

Name Other Names IUPAC Name Structure

2-chloroadenosine 2-Chloro Adenosine, Cl-Ado,
2 ClAdo, 2-CADO

(2R,3R,4S,5R)-2-(6-amino-
2-chloropurin-9-yl)-5- (hydroxymethyl)
oxolane-3,4-diol
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Table 2. Cont.
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Table 2. Cont.

Name Other Names IUPAC Name Structure
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pyridin-2-yl]sulfanylacetamide
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the 2-position, usually with (thio)ethers, secondary amines, and alkynes, as well as at the N6-position.
The latter substitutions appear to increase affinity to the A2A receptor subtype [37]. Below, we present
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2-chloroadanosine

2-chloroadenosine is one of the first characterized AR agonists, first described in 1964 [38,39].
Conducted studies were predominantly concentrated on its effect on platelets, from the pioneering
research into activation signaling [40,41], including recognition of AR subtypes [42], through examination
of platelet disorders [43,44], to investigations of 2-chloroadenosine antiaggregatory effects [45].

IC50 of 2-chloroadenosine for human platelets was established at 1.6 µM (CI95% 0.61–4.4)
(by photometric method in PRP (platelet rich plasma) with ADP), while its EC50 was found to be 1.7 µM
in adenylate cyclase assay using human platelet membranes (CI95% 1.5–2.0) [46]. For aggregation
in whole blood, IC50 was later measured to be 2.3 µM [47]. 2-chloroadenosine is a non-selective AR
agonist, with high affinity, especially to A1 and A2 AR classes [48,49]. Nowadays, it is employed
in numerous research areas as a stable adenosine analogue [50–53]. Its advantage over the adenosine
arises from the fact that 2-chloroadenosine has a longer half-time and exerts more potent activating
effect on AR (A2A receptor biding affinity Ki = 180 nM), being only minimally different chemically [54].
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Regadenoson

Regadenoson is also commonly denoted as CVT-3146 and known under its trade names Lexiscan
or Rapiscan. It is a selective A2A AR agonist of low affinity (Ki = 1095 nM). It also binds to A1

receptor subtype (Ki > 16,460 nM), but has much higher affinity constants in the case of A2B and
A3 receptor classes [55]. It was approved by the Food and Drug Administration (FDA) in 2008
for diagnostic purposes in radionuclide myocardial perfusion imaging, manufactured by Astellas
Pharma and marketed by GE Healthcare. It is administered intravenously in bolus as a 0.08 mg/mL
solution. Regadenoson rapidly increases coronary blood flow to over twice the baseline value in 30 s
and decreases to below twice the baseline value in 10 min, and is removed from the human body
(58% through renal excretion) within two hours [56] (clinical studies: NCT01019486 (RABIT1D) and
NCT00881218). The influence of regadenoson on platelet aggregation has not been reported in literature
so far. However, our unpublished results (manuscript currently under review) have confirmed that
regadenoson has an anti-platelet effect—in whole blood aggregation, the obtained maximal inhibition
value was of 38.1 ± 3.2%, and IC50 of 1.2 µM.

Binodenoson

Binodenoson is another AR agonist currently approved for human use. It was firstly reported
in the literature in 1996 under the name WRC-0470 as a short-acting A2A agonist [57], then a year later,
it was presented as a potential imaging tool [58]. Subsequently, it was tested specifically for induction
of pharmacological stress as an adjunct to myocardial perfusion imaging. Its pharmacokinetics and
safety profile were tested in clinical trials [59–61]. Binodenoson has successfully completed two phase
III clinical trials (identifiers NCT00944294 and NCT00944970) and is currently used as a single bolus
injection prior to myocardial perfusion imaging.

It is characterized with good selectivity for A2A AR receptor over other AR receptors, and good
binding affinity (Ki = 270 nM) [62]. Despite being well characterized concerning general safety, no data
concerning platelets or its potential anti-platelet effect are available.

PSB Family

PSB-0777 was developed in PharmaCenter Bonn, and described in 2011 as a potential
anti-inflammatory agent for a treatment of inflammatory bowel disease [63]. Despite it being a polar
and water-soluble substance, it is not absorbable when administered per os, but suitable for parenteral
application only. It was determined to be a full A2A agonist, of high affinity (Ki = 44.4 nM) and high
selectivity (over 225-fold) over other ARs. The compound exhibits affinity for both human and rat A2A.
In cAMP accumulation assay using CHO cells expressing the A2A receptor, EC50 was established at
117 nM. PSB-0777 was successfully utilized as an A2A receptor agonist in a study concerning activation
of brown adipose tissue [64]. It has yet to be investigated in the context of blood platelets.

A recent study reported the anti-platelet effects of three other recently-synthesized compounds
from this family: PSB-15826, PSB-12404, and PSB-16301 [65–68]. PSB-15826 was found to be the most
potent agonist out of these three compounds, characterized by IC50 values of 0.32 ± 0.05 µM for
inhibition of platelet aggregation, 0.062 ± 0.2 µM for inhibition of platelet activation, and 0.24 ± 0.01 µM
for cAMP production, making it a stronger anti-platelet agent than adenosine. PSB-16301 has also
effectively reduced ADP-induced platelet aggregation with relatively low IC50 of 5.5 ± 0.2 µM, as well
as PSB-12404, though at higher concentration: IC50 of 66.8 ± 0.07 µM [68]. Other members of this family
were also described in the literature. They are either very weak AR agonists, or even AR inhibitors.

There are no data available on the cytotoxicity of this group of compounds; however, success in
identifying multiple members of this family with anti-platelet properties suggests a high chance for
finding an analogue with good safety profile.
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MRE0094

MRE0094 is also known and marketed under names Sonedenoson and 2-[2-(4-chlorophenyl)
ethoxy]adenosine. It is 39,000-fold more selective for adenosine A2 receptors than adenosine A1

receptors, with Ki for A2 AR subtype established at 490 nM [69]. It was successfully utilized as an A2A

selective compound in cell signaling research focused on varying topics [70–72], but most promising
investigations concentrated on its use in promoting wound healing [73,74]. In early 2000, it was being
developed by King Pharmaceuticals with hopes of becoming a novel topical drug.

MRE0094 was tested in two Phase II clinical trials concerning wound healing in chronic,
neuropathic, diabetic foot ulcers, both of them sponsored by Pfizer. The first trial (ClinicalTrials.gov
Identifier: NCT00312364) was completed in 2006; however, no results are available. The second study
(ClinicalTrials.gov Identifier: NCT00318214) has been terminated due to poor enrolment of participants.
According to King Pharmaceuticals, MRE0094 did not show expected improvement over selected
reference for the clinical endpoints. MRE0094 has not been examined for its anti-platelet activity
to date.

CV1808

CV1808 is also sometimes denoted as 2-phenylaminoadenosine. It is one of the first characterized
AR agonists that was utilized in studies aiming to define AR subclasses [75–77]. CV1808 is a non-selective
agonist, with Ki values of 560–1100 nM for A1, and 190 nM for A2A [78]. It was later reported that A2B

Ki is similarly low to that of A2A AR subtype [79].
CV1808 is being used in various investigations, mainly concerning cardiovascular and immune

research areas [80–84]. CV1808 has yet to be tested for its anti-platelet properties.

AMP597

AMP597 was first described by Smits et al. in 1998 as a novel cardioprotective A1/A2 agonist [85].
It has high affinity for the A1 (Ki = 2 nM) and A2A (Ki = 56 nM) receptor subtypes [86] and was
later determined to be an A2B agonist as well, based on the observation of its ability to induce
phosphorylation of extracellular signal-regulated kinase and its protection against infarction in rabbit
heart reperfusion studies [87]. It could be regarded, therefore, as a potent but non-selective AR agonist.

It has not been extensively studied; although it has been the subject of cardiac protection studies,
a lack of publications since 2010 suggests that this line of research has been abandoned, despite the
fact that it was undergoing clinical phase II studies in patients suffering acute myocardial infarction
in 2000 [86]. Its effect on platelets remains unknown.

3.1.2. Adenosine Derivatives with Substituents at C1′ to C5′ Positions

NECA

5’-N-ethylcarboxamidoadenosine, commonly abbreviated as NECA, was first described in 1977 as
a vasodilator, and then as a platelet function inhibitor in the 1980s [88]. NECA was employed in early
radioligand studies to characterize AR platelet receptors, and was established to bind to two distinct
binding sides at submicromolar concentrations [89,90].

NECA IC50 for platelet aggregation in human material was established at 0.36 µM (CI95%
0.35–0.38 µM) [91]. Ki for human AR subtypes were set at 560 nM (480–650 nM) for A1, 620 nM
(300–1300 nM) for A2A, and 6.2 nM (5.1–7.5 nM) for A3, showing a lack of selectivity between A2A and A1

receptor subtypes [92]. However, it was described as a suitable A2B agonist, with IC50 of 3.1 µM (cAMP
production in CHO cells) [93].

NECA has no current medical applications and has never been a subject of clinical testing. It is
most commonly used in basic, platelet and vascular, and neurological research.
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3.1.3. Compounds with Substituents at C1 to C8 and C1′ to C5′ Positions

CGS 21680

CGS 21,680 is one of the earliest synthesized adenosine analogue AR agonists. It was primarily
used to elucidate the AR subclass division into A2A and A2B [76,94]. It is a strong, full agonist, selective
towards A2A (Ki A2A = 27 nM, Ki A2B is over1000 nM) [95]. It is probably the most commonly-employed
AR A2A agonist; it is used through a variety of research, especially in neurological studies. However,
it has not been a subject of any clinical trials.

Its effect on platelets has been already established. Early studies reported IC50 0.82 µM
(CI95% 0.6–1.1) for human platelet aggregation, as measured by turbidimetry, and EC50

0.083 ± 0.005 µM for stimulation of adenylate cyclase in human platelets [91]. Subsequently, CGS 21,680
has been used for further platelet research, including, but not limited to, studies on the association
between depression and platelet signaling dysregulation [96], species-dependent platelet function [97],
and neutrophil involvement and signaling in thrombosis [98].

HE-NECA

Another AR agonist extensively employed in a variety of research areas is the A2A selective
agonist HE-NECA, which was derived from non-selective AR agonist NECA. It has good selectivity
between A2 and A1 receptor subclasses, but only slight selectivity between A2 and A3 subclasses
(Ki A2 = 130 nM; Ki A2 = 2.2 nM; Ki A3 = 24 nM) [99]. It was reported as an anti-platelet agent
in 1994 [99], when its anti-aggregatory potency was estimated as three-fold stronger in comparison
to NECA. The anti-platelet activity of HE-NECA was confirmed in an in vivo study in rabbits, in which
the drug was administered at a dose of 10 µg/kg: Platelet accumulation in pulmonary microcirculation
was found to fall by over 50% after challenge with ADP [100]. HE-NECA was also used in a Borea
group study investigating the influence of caffeine (AR inhibitor) on platelet function. In this study,
HE-NECA was found to increase cAMP levels with an EC50 of 59 ± 3 nM, and inhibit ADP-induced
human platelet aggregation (measured by turbidimetric method) with an IC50 of 90 ± 6 nM [101,102].
Recently, HE-NECA was also used in work focused on a quantification of different imaging approaches
to experiments carried out under flow conditions, where 10 µM HE-NECA was found to inhibit clot
formation under flow in whole blood by 82%, based on the volumes of aggregates recorded by confocal
microscopy [103].

HE-NECA is also employed in other research disciplines, including renal function investigation [104],
and neurological [105,106] and immunological [107] research.

UK-432094

This AR agonist is usually known as UK-432,094 in the literature, but notations UK-432094 or
UK432094 are also in use. UK-432,094 was tested by PFIZER in a phase II clinical trial (ClinicalTrials.gov
Identifier: NCT00430300) as an inhalation agent for severe chronic obstructive pulmonary disease;
however, the trial was terminated due to low treatment effectiveness. UK-432094 is a selective A2A

agonist (Ki of 4.75 nM) [108], with reported EC50 as low as 5.4 ±1.8 nM (cAMP level evaluation
in CHO cells stably expressing human A2A and A2B receptors) [109]. Its anti-platelet effect has
been recently assessed using multiple electric aggregometry in whole blood. Using this technique,
IC50 was found to be below 1 µM, with an inhibition rate of 40% at this concentration. The agonist
had an ability to practically abolish aggregation at higher concentrations (79% inhibition at 100 µM),
while demonstrating no cytotoxic effect on platelets [110].

UK-432,094 has been prevalently used in basic research of the receptor–ligand binding mechanisms,
providing insights into A2A receptor structure [108], binding sight dynamics and agonist efficacy [111–113],
and receptor interactions with other molecules [114].
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3.2. Non-Adenosine Compounds

Apart from compounds based on the adenosine molecule modified chemically by introducing
various substituents, AR agonists could also be found among substances of different chemical structure.
The examples of such the AR agonists are given below.

3.2.1. BAY 60-6583

BAY 60-6583 was patented in 2001 as a highly-selective A2B agonist (Ki A2A is over10000 nM, Ki
A2B = 3–10 nM). Since then, it has been used in various research areas, including in vitro and in vivo
immunological [115], cardiological [116,117], and oncological [118,119] research, lung disease and
damage control studies [120,121], as well as the therapy of renal nephropathy [122]. So far, it is the only
selective A2B agonist in wide use. It has been reported to be a subject of pre-clinical studies to treat
coronary artery disease and atherosclerosis [123], but it has not been registered for clinical trials.

The anti-platelet effects of BAY 60-6583 have not been studied in humans; however, Bot et al.
report no decrease in aggregation (as measured by turbidimetry) or any change in platelet surface
activation markers after treatment with BAY 60-6583 (50 µg/day) in ApoE−/− mice [124].

3.2.2. LUF5834 and LUF5835

A series of non-adenosine compounds were synthesized in 2004 as an attempt to generate an
A2B AR subtype selective agonist [125]. LUF5834—2-amino4-(4-hydroxyphenyl)-6-(1H-imidazol-2-
ylmethylsulfanyl)pyridine-3,5-dicarbonitrile was described as a partial agonist (EC50 of 12 nM
for A2B receptor) slightly selective between A2A and A2B (Ki of 28 ± 4 nM and 12 ± 2 nM,
respectively) or A1 receptor subtypes, but selective over the A3 subtype. Its analogue, LUF5835
(2-amino4-(3-hydroxyphenyl)-6-(1H-imidazol-2-ylmethylsulfanyl)pyridine-3,5-dicarbonitrile) is a full
A2B agonist with EC50 of 10 nM, with a similar selectivity profile. It was later reported that LUF5834
binds to a different receptor site of A2A AR as compared to adenosine-based agonists, suggesting a
distinct binding site for this class of agonists on AR receptors [126].

Both of these compounds have yet to be thoroughly characterized in literature (however, they both
have been used in cardiac research [127,128]), and have not been proposed as anti-platelet agents.

4. Dual Therapy

Anti-platelet therapy is an obvious solution for the treatment and management of arterial
thrombosis dependent on blood platelet hyperactivity, often resulting in cardiovascular disease and
stroke—the leading causes of morbidity and mortality in developed countries. Several therapeutic
options are currently available; however, the problem of efficient and safe therapy remains unsolved,
and there is still a demand for novel platelet inhibitors and new therapeutic options.

In clinical practice, efficient anti-platelet treatment is often hindered by reduced sensitivity to many
anti-platelet agents. High dosages of anti-platelet drugs, while preventing excessive clotting, frequently
also lead to bleeding incidents and moderate to severe side effects. To avoid higher drug doses,
combined therapy based on the administration of two or more drugs acting on different platelet
activation pathways is often used as an alternative. An example of such an approach currently used
in clinical practice is the combined administration of acetylsalicylic acid (an inhibitor of thromboxane
A2 formation) and clopidogrel (an inhibitor of the P2Y12 receptor). The P2Y12 receptor is the main
therapeutic target in anti-platelet therapy, targeted at the ADP-dependent activation pathway [2].
Its agonization enhances the process of platelet aggregation initiated through the P2Y1 receptor.
Unfortunately, such treatment is still beset by the problem of resistance, especially among patients
with type 2 diabetes, i.e., a group at higher risk of thromboembolic events [129–131].

Our research group has recently proposed a novel approach based on the simultaneous application
of two anti-platelet agents, a P2Y12 antagonist and an AR agonist, which has been found to deepen the
action of P2Y12 antagonist [110]. Based on this report, we believe that adenosine receptor agonists could
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significantly enhance the anti-platelet effect of P2Y12 antagonists, despite possessing different selectivity
profiles and anti-platelet activities. A strategy focused on a purinergic pathway and involving low-dose
inhibition of classical (P2Y12) purinergic ADP receptors with the simultaneous activation of adenosine
receptors may present a novel, promising approach to prevent thrombotic events, and should be
further investigated.

5. Conclusions

Adenosine receptor agonists have been shown to have anti-platelet effect; however, not all of them
are of the same magnitude, with some even presenting no discernible impact on aggregation. It is
difficult to unambiguously give a simple answer as to whether this group of compounds stands a fair
chance of becoming anti-platelet drugs in the foreseeable future. Too few known AR agonists have
been evaluated specifically for modulation of platelet function, and as this topic was studied in the
1980s, some of the data require replication and confirmation using modern methodology. However a
few AR agonists, like NECA, HE-NECA, CGS 21680, 2-chloroadenosine, and recently, PSB-15826,
were confirmed to have platelet inhibiting properties, and the concept of employing them in preventing
thrombus formation is re-emerging. More studies of different AR agonists focused specifically on
anti-platelet properties are needed, as predictions based on physicochemical properties prove to be
unreliable [68]; however, currently-available data suggests that such attempts should be focused on
A2A AR agonists, as agonization of A2B AR has not been reliably reported to impact platelet aggregation
or activation.

The use of AR agonists as anti-platelet medication appears feasible following further research
focused explicitly on this goal, especially when applied in combination with other anti-platelet
agents, to identify therapies demonstrating effective antithrombotic properties without risking severe
side effects.
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