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Multiple imputation (MI) is a well-established method for dealing with missing data. MI is computationally intensive
when imputing missing covariates with high-dimensional outcome data (e.g., DNA methylation data in epigenome-
wide association studies (EWAS)), because every outcome variable must be included in the imputation model to
avoid biasing associations towards the null. Instead, EWAS analyses are reduced to only complete cases, limiting
statistical power and potentially causing bias. We used simulations to compare 5 MI methods for high-dimensional
data under 2 missingness mechanisms. All imputation methods had increased power over complete-case (C-C) analy-
ses. Imputing missing values separately for each variable was computationally inefficient, but dividing sites at random
into evenly sized bins improved efficiency and gave low bias.Methods imputing solely using subsets of sites identified by
theC-C analysis suffered from bias towards the null. However, if these subsetswere added into randombins of sites, this
bias was reduced. The optimal methods were applied to an EWASwithmissingness in covariates. All methods identified
additional sites over the C-C analysis, and many of these sites had been replicated in other studies. These methods are
also applicable to other high-dimensional data sets, including the rapidly expanding area of “-omics” studies.

Accessible Resource for Integrated Epigenomics Studies; Avon Longitudinal Study of Parents and Children;
epigenetic data; imputation; missing data

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; ARIES, Accessible Resource for Integrated
Epigenomics Studies; C-C, complete-case; EWAS, epigenome-wide association study(ies); IPW, inverse probability weighting;
MI, multiple imputation; MM, missingnessmechanism.

In medical research, we are increasingly dealing with
high-dimensional data sets detailing exposures, covariates,
and outcomes. This creates challenges for scaling up stan-
dard statistical methods—in terms of plausibility of underly-
ing assumptions, but also in terms of practicalities such as
computing time. An example of this is the use of multiple
imputation (MI) for dealing with missing data, where an
approach that is practicable for a data set with a small number
of variables (fitting an imputation model 100 times for each
variable and combining the results) may not be practicable
for a high-dimensional data set. Many methods for MI have
been explored (1–4), but few were designed to handle data
sets with over 500 covariates or in which the number of co-
variates is much larger than the number of cases (5–7). Addi-
tionally, though MI packages (e.g., mice in R (R Foundation
for Statistical Computing, Vienna, Austria) (8) and ice in

Stata (StataCorp LLC, College Station, Texas) (9)) exist,
these packages were not designed for efficiency with high-
dimensional data sets. Therefore, there is a need for new, effi-
cient methods with which to implement MI in high-dimensional
data sets withmissingness.

A commonly encountered high-dimensional problem is
that of epigenetic studies evaluating DNA methylation—a
reversible chemical modification of DNA whereby a methyl
group is added to a cytosine nucleotide. These studies measure
methylation at 480,000 or 850,000 CpG sites (per person stud-
ied), and a few recent studies have evaluated millions of CpG
sites, though with small sample sizes (10, 11). To investigate
hypotheses about the association of DNA methylation with a
specific phenotype, DNA methylation measurements across
the genome are tested for associations with the phenotype
(often called an epigenome-wide association study (EWAS))
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by repeatedly fitting a simple univariate model for each CpG
site—thus fitting 480,000 models in total.

Missingness in EWAS can occur in the methylation mea-
sures or the covariates. However, missingness in the methyl-
ation measures tends to be minimal and to relate to technical
issues of data generation. Missingness in the covariates, by
contrast, tends to have a much greater impact on the analysis,
causing decreased statistical power. Here we consider only
missingness in the covariates. Commonly, a complete-case
(C-C) analysis is used for an EWAS, where only cases with
complete data on the outcome and all covariates are ana-
lyzed. This will reduce the power of the analysis (in one
example, the number of cases included was reduced from
1,018 to 678 (12)) and be biased if the chance of being a
complete case is associated with the outcome, given the co-
variates in the model (2, 13–17). For example, if smokers
were less likely to attend a clinic at which samples were
taken for epigenetic analysis, and so were people with higher
body mass index, this would induce collider bias between
smoking and body mass index in a C-C analysis (18). This
would mean that in a C-C EWAS, smoking would tend to be
associated with all methylation sites that were affected by
body mass index and vice versa.

MI can be used to minimize bias and inefficiency in the
presence of incomplete data. MI works by specifying predic-
tion models for each variable with missingness (3). In order
to avoid bias towards the null, these models need to include
all variables in the analysis model (see simulation in Web
Appendix 1, Web Tables 1 and 2, and Web Figures 1 and 2,
available at https://academic.oup.com/aje), plus any auxiliary
variables (16, 19). For an EWAS, this would mean imputing
the missing covariate data using all CpG sites, which would be
computationally intensive, and would require additional meth-
ods if the number of CpG sites (typically ≥480,000) was
greater than the number of cases (typically, at most, a few
thousand).

Here we used simulations and an applied example to
explore different methods for imputing missing values of
covariates. Initially we used the computationally intensive
method of imputing using each CpG site in turn. We ex-
tended this method by using groups of CpG sites together
to impute data on the missing variable, reducing the compu-
tational time. These groups were entirely randomly selected
or were designed to include some systematically selected
CpG sites—in this instance, using CpGs determined to be
associated with the missing variable (building on work by
Wu et al. (20)). We compared the imputation methods with
regard to their standard error, bias, and computation time.
Our conclusions are also useful for researchers analyzing
other high-dimensional data sets, including the rapidly ex-
panding area of “-omics” studies.

METHODS

Simulation study

We used a publicly available data set describing DNA meth-
ylation at 482,739 CpG sites obtained using the Infinium human
methylation 450k array (Infinium HumanMethylation450
BeadChip kit; Illumina, Inc., San Diego, California) (21) for

464 persons (22), downloaded from the National Center for
Biotechnology Information’s Gene Expression Omnibus
(23). Data on age, sex, and smoking status (never, former, or
current smoker) were provided for every individual. Methyl-
ation measures were standardized for each CpG.

Covariates in this data set had no missing data; therefore,
missingness for smoking status was induced using 2 miss-
ingness mechanisms (MMs): 1) MM1—missing with proba-
bility 75% for males aged 57 years or over; and 2) MM2—
missing with probability 50% for males aged 57 years or
over and with probability 12.5% for all remaining persons.
These were both missing-at-random scenarios, where miss-
ingness depended on the completely observed covariates age
and sex, so that both a C-C analysis and MI including these
variables as covariates would be unbiased. The percentages
used ensured a comparable proportion of missingness for
both mechanisms.

Imputationmethods

All imputation models included the covariates age and
sex; smoking was imputed using the “polyreg” method in
mice, which uses polytomous logistic regression. We gener-
ated 100 sets of imputed data for each imputation. Use of
100 imputations is very conservative—recent literature has
suggested that the number of imputations should be equiva-
lent to the percentage of missing data (a linear rule (24, 25))
or that the number is better approximated by a quadratic rule
(26). Five imputation methods were used (described below
and in Table 1).

Separate CpG sites. For each CpG site in turn, smoking
status was imputed using age, sex, and methylation measure
at that site. The 100 imputed data sets for each site were
pooled for the EWAS for each site, using standard MI meth-
ods to obtain standard errors for the coefficients (27).

Random bins of fixed size. CpG sites were divided into
bins of fixed size. Smoking status was imputed for each bin
using age, sex, and methylation measure at all of the sites in
the bin. The 100 imputed data sets per bin were pooled for
the EWAS analyses for CpG sites in that bin (27). Two bin
sizes were used—150 and 45—reflecting approximate 3:1
and 10:1 ratios of cases (i.e., individuals) to variables, respec-
tively (28, 29), and resulting in 3,219 and 10,728 bins, respec-
tively (Table 1).

The random-bins method is a compromise between using
every CpG in a single bin for the imputation and imputing
using single CpGs in turn (the first method described above).
Both are computationally intensive, with the former also
having more variables than cases, meaning that computa-
tions using the imputation model would not run without
additional methods. Randomly assigning the CpGs into bins
maximizes the information being used for each imputation
while also improving the calculation time. Other studies have
also used bins to overcome the problem of many covariates
(that of Yin et al. (30) being one example).

Using associated CpG sites—naive method. One MI
procedure was carried out, imputing missing data on smoking
status from age, sex, and methylation measures for the set of
CpG sites that were significantly associated with smoking in
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the C-C analysis. The 100 imputed data sets were pooled for
the EWAS for all CpG sites (27).

Using associated CpG sites—Wu method. A forward-
stepwise selection model was used to select a final set of CpG
sites to be included in the imputation model, from the top 100
associated CpG sites identified from the C-C analysis (using
the Bayesian Information Criterion, as in Wu et al. (20)). One
MI procedure was carried out, imputing missing data on smok-
ing status from age, sex, and methylation measures at all of the
selected CpG sites. The 100 imputed data sets were pooled for
the EWAS for all CpG sites (27).

Random bins of fixed size always including associated
CpG sites—Wubins. The random binning andWumethods
were combined such that the set of CpG sites selected by the
Wu method was included in every bin alongside randomly
selected sites. Smoking status was imputed for each bin using
age, sex, and methylation measure at all sites in the bin.
The 100 imputed data sets for the bin were pooled for the
EWAS for CpG sites in that bin (27). As before, 2 bin sizes
were used—150 and 45 (including the selected sites and
the random sites), resulting in 3,353 and 12,378 bins, re-
spectively (Table 1).

Ten data sets with missingness were generated for each
of the 2 MMs and were used to perform 10 repeats of each
imputation method for each mechanism. Only 10 repeats were
performed because imputation and regression in such a high-
dimensional data set were slow and computationally intensive.

With only 10 repeats, conclusionsmay be distorted by sampling
variability. To confirm conclusions, we reduced the data set to
2,000 CpG sites (removing 480,739 sites) (see Web Appendix
2) and performed 1,000 repeats.

All imputation and analyses were performed on the Uni-
versity of Bristol’s high-performance computer. Imputation
and result pooling were performed with the mice and survey
packages in R (31), using Rubin’s rules (15, 27).

The “complete data set” is the data set without missing-
ness, and the EWAS on these data gave the “truth”: 298 CpG
sites associated with (current and former) smoking. The best-
performing method should have a high true-positive rate (the
percentage of “true” sites correctly identified as significant
by the method) and a low false-positive rate (the percentage
of sites identified as significant by the method which were not
“true” sites). Low computing timewould also be advantageous.
These performance measures were reported for each method,
alongside the bias in the coefficients as compared with the
“truth.”

Epigenome-wide association studies

A linear regression analysis was used, relating age, sex,
and smoking status to the methylation measure at each CpG
site (an EWAS):

CpG ~ age + sex + smoking.

Table 1. Characteristics and Performance of Different Imputation Methods Used to Impute Smoking Status FromEpigenetic Dataa

Imputation Method

Characteristics of Method Characteristics of Results

No. of
Imputation
Procedures

ImputationModel True
Positives

False
Positives Bias Speed

(1= Fastest)

Complete-case 0 N/A Poor Very good Unbiasedb 1

Separate CpG sites 482,739 Smoking ~ single CpG site + age +
sex

Good Good Unbiased 8

Random bins (3:1) 3,219c For each bin: smoking ~ 150 CpG
sites + age + sex

Good Poor Unbiased 6

Random bins (10:1) 10,728c For each bin: smoking ~ 45 CpG
sites + age + sex

Good Good Unbiased 4

Naivemethod 1 Smoking ~ C-C CpG sites + age +
sex

Good Poor Biased towards the null for
non–C-CCpG sites

3

Wumethod 1 Smoking ~ selected CpG sites +
age + sex

Good Good Biased towards the null for
nonselected CpG sites

2

Wu bins (3:1) 3,353c,d For each bin: smoking ~ 150 CpG
sites (includingWu-selected CpG
sites) + age + sex

Good Poor Unbiased 7

Wu bins (10:1) 12,378c,d For each bin: smoking ~ 45 CpG
sites (includingWu-selected CpG
sites) + age + sex

Good Good Unbiased 5

Abbreviations: C-C, complete-case; N/A, not applicable.
a This table provides details on the imputation methods described in the text and their results for the simulations only.NCpG is the number of CpG

sites included in the analysis (NCpG= 482,739).
b Methods classified as “unbiased” in this table are only unbiased if the imputation model is correct and data are missing at random.
c This is approximatelyNCpG/bin size.
d Recall that the bins for the “Wu bins” method always contain the subset of CpG sites selected in the forward-stepwise selection process, so

there are slightly more bins for the “Wubins”method than for the “random bins”method, in order to accommodate the extra sites.
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Note that this model is deliberately simplistic and does not adjust
for any other covariates (such as batch effects or other confound-
ers relevant to smoking), since the imputation methods are the
focus of this simulation study.

A Bonferroni correction was used to identify those CpG
sites associated with (current or former) smoking with P <
0.05/NCpG, where NCpG is the number of CpG sites.

The EWAS was performed on the complete data set
(i.e., 464 cases with information on smoking, age, and sex
and DNA methylation measures at 482,739 sites) to obtain
a set of results representing “the truth”: the 298 CpG sites
associated with smoking when there was no missingness.
Additionally, C-C EWAS were performed for each data set
with missingness (i.e., using only those cases with com-
plete data).

Application to an EWAS of smoking in pregnancy

We applied the imputation methods to data from the Avon
Longitudinal Study of Parents and Children (ALSPAC) to illus-
trate their use with real missing data across multiple covariates.
ALSPAC initially recruited 14,541 pregnant women resident
in Avon, United Kingdom, with expected delivery dates of
April 1, 1991–December 31, 1992 (32, 33); follow-up increased
this to 15,247 pregnancies. Detailed follow-up of the mothers
and children has provided a rich set of self-reported data,
linked medical records, and data collected at health clinics.
The study website contains details on all of the data that are
available through a fully searchable data dictionary (34). Eth-
ical approval for the study was obtained from the ALSPAC
Ethics and Law Committee and local research ethics commit-
tees. In a substudy, Accessible Resource for Integrated Epige-
nomics Studies (ARIES), investigators selected approximately
1,000 mother-child pairs and profiled DNA methylation from
samples collected at multiple time points in both mother and
child (35).

DNA methylation was measured from blood collected at
the ALSPAC Focus on Mothers clinic (974 cases). An EWAS
explored the relationship between maternal smoking status and
DNAmethylation, including the following confounders believed
to be associated with smoking and DNAmethylation: age of the
mother (at birth of the child), parity, maternal educational level,
housing tenure, and social class; batch effects were also included.
Data collected around the time of the child’s birth have fewer
than 5% missing values for persons in ARIES; however, here
information on maternal smoking status was obtained from
a later questionnaire (around 18 years after the birth of the
ALSPAC child), intentionally producing high missingness
(34.6%) (Web Table 3).

Threemethods (random bins,Wu, andWu bins) were applied
to the ARIES data set to impute missing data for all variables.
A bin size of 95 was used (10:1 ratio of cases to variables).
These methods were chosen because they performed well in
the simulations. Offspring birth weight, maternal alcohol intake
during pregnancy, and maternal smoking reported at 18 weeks
of pregnancy were also used in the imputation model but not in
the EWAS. The EWAS results following imputationwere com-
pared with a C-C analysis and with a review of other smoking
EWAS (36).

RESULTS

Simulation study

The individuals in the simulation data set were 70.5% male,
with a mean age of 55.4 years (median, 56 years); 38.6% were
nonsmokers, 56.7% were former smokers, and the remaining
4.7% were current smokers (Web Appendix 3, Web Table 4)
(22). The MMs (MM1 and MM2; see Methods section) pro-
duced approximately 22% missingness for smoking status
(Web Table 4). As intended, missingness varied by age and
sex (see example in Web Figure 3).

For every imputation method, we report the true-positive
(percentage of “true” sites correctly identified as significant
by the method) and false-positive (percentage of sites identi-
fied as significant by the method which were not “true” sites)
rates, the mean standard errors across β coefficients for the CpG
sites (for former smokers), and computational time (Table 2,
Figure 1, Web Table 5). Because of the way we designed the
study, the C-C, separate CpGs, random bins, and Wu bins
methods should be unbiased (as compared with the EWAS
on the data set with no missingness) (Web Tables 6 and 7,
Web Figures 4 and 5). The mean standard error for the separate
CpGs method was not that much smaller than that for the C-C
method, indicating minimal improvement. However, the mean
standard error decreased as more information was added to the
imputation model—see, for example, the decrease in standard
error from small bins (10:1) to large bins (3:1).

The CC analysis had low statistical power for both miss-
ingness mechanisms (MM1 and MM2). Results for MM2
were similar to those of MM1, though fewer associated CpG
sites were found for most methods, giving correspondingly
lower true-positive and lower false-positive rates than for MM1
(Table 2). The separate CpGs method was computationally
intensive, and it correctly identified only 63.2% of the sites
that were associated with smoking in the complete data set (the
true positives), with 40.5% of sites being false positives for
MM1. The random binning methods were much faster than
the separate CpG method. Larger bins (3:1 ratio) did not per-
form as well as smaller bins (10:1 ratio), which for MM1 had a
high true-positive rate (64.4%) and a lower false-positive rate
(46.1%). The naive method identified a large number of asso-
ciated CpG sites and achieved the highest true-positive rate of
all methods (72.4%), but 65.1% of all associated sites were
false positives. Associations were biased towards the null for
all of the “true” sites which were not identified as significant in
the C-C analysis (and therefore not used in the imputation pro-
cedure) (Table 3, Web Table 8). Where the associations were
strong, there was less evidence of bias (Web Figures 6 and 7,
Web Table 9).

The Wu method had a relatively low false-positive rate
(37.3%) but did not perform quite as well as the random bin-
ning methods (61.7% true-positive rate) (Table 4, Web Ta-
bles 9 and 10, Web Figures 6 and 7). The additional forward-
stepwise selection process meant that a much smaller number
of sites (<10) were used in the imputation step. The Wu bins
method produced results very similar to those of the random
bins method, with the smaller bins (10:1) achieving a higher
true-positive rate and a lower false-positive rate than the
larger bins (3:1).
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Table 2. Performance of Different ImputationMethods for Imputing Smoking Status, Assessed by Comparing the EWAS on the Resulting Data SetsWith an EWAS on the Complete Dataa

Imputation
Method

MM1 MM2
Time

Relative to
Separate

CpG
Method

Associated CpG Sites
Mean SE of β
Coefficients

(SD)

Associated CpGSites
Mean SE of β
Coefficients

(SD)
Total No.
of Sites

No. in
Complete
Data Set

% of
Complete
Data Set

No. Not in
Complete
Data Set

% of Total
Found

Total No.
of Sites

No. in
Complete
Data Set

% of
Complete
Data Set

No. Not in
Complete
Data Set

% of Total
Found

Complete datab 298.0 0.0953 (0.0081) 298.0 0.0953 (0.0081)

Complete-case 169.7 139.3 46.7 30.4 16.7 0.1073 (0.0099) 147.1 122.5 41.1 24.6 13.6 0.1069 (0.0099) 0.002

Separate CpG
sites

330.0 188.3 63.2 141.7 40.5 0.1052 (0.0093) 282.8 169.9 57.0 112.9 34.1 0.1049 (0.0093) 1.000

Random bins
(3:1)

537.2 189.6 63.6 347.6 63.5 0.0997 (0.0086) 482.2 170.5 57.2 311.7 58.8 0.0985 (0.0085) 0.517

Random bins
(10:1)

373.6 192.0 64.4 181.6 46.1 0.1031 (0.0090) 326.3 176.6 59.3 149.7 38.9 0.1028 (0.0090) 0.339

Naivemethod 863.3 215.8 72.4 647.5 65.1 0.0984 (0.0084) 433.9 180.1 60.4 253.8 45.2 0.0974 (0.0083) 0.069

Wumethod 312.0 183.8 61.7 128.2 37.3 0.1002 (0.0087) 290.4 170.8 57.3 119.6 28.2 0.1001 (0.0087) 0.059

Wu bins (3:1) 516.7 196.9 66.1 319.8 59.9 0.0984 (0.0084) 432.6 175.2 58.8 257.4 53.4 0.0972 (0.0083) 0.527

Wu bins (10:1) 410.2 202.2 67.9 208.0 48.2 0.0996 (0.0086) 349.2 187.1 62.8 162.1 38.3 0.0995 (0.0086) 0.412

Abbreviations: EWAS, epigenome-wide association study; MM, missingnessmechanism; SD, standard deviation; SE, standard error.
a The table shows the number of CpG sites associated with former or current smoking that were identified as significant in the regression analysis for each method, for both MMs. We report

the number of these sites which were also significant in the EWAS on the complete data set (presented with the percentage, i.e., the true-positive rate) and the number of those which were not
significant in the EWAS on the complete data set (presented with the percentage of those found to be significant which were “incorrect,” i.e., the false-positive rate). The mean and SD of the
SEs (for the coefficients for the association of each CpG site with being a former or current smoker) are reported for each method. Note that this is the mean value across repeats of the mean
and SD of the SEs within each repeat. Recall that the analysis on the complete data and C-C analysis did not require any imputation, making their computation time very low. Relative times are
calculated from computation times averaged over example runs for MM1 and MM2; raw times are provided inWeb Table 5. The table shows the results of the 10 repeats on the full (unreduced)
data set.
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Results for MM2 were similar to those of MM1, though
fewer associated CpG sites were found for most methods,
producing correspondingly lower true- and false-positive rates
(Table 2).

Results for eachmethod for the 1,000 repeats were very sim-
ilar to those for the 10 repeats on the full (unreduced) data set
and confirmed that the imputation methods involving random
binning performed best (Web Table 11, Web Figure 8). Use of
1,000 repeats showed fewer false positives in all of the imputa-
tion methods—that is, a lower rate of type 1 errors (Web
Table 11). This was particularly true for the random binning
methods, which also identified a higher number of true positives
(Web Table 11). The C-C, separate CpGs, and random binning
methods were unbiased in comparison with the EWAS on the
data set with no missingness (Web Tables 12 and 13), but the
naive and Wu methods showed bias towards the null for sites
not selected for the imputation model—though bias was less
obvious since the reduced set of CpGs were deliberately chosen
for their strong associations (Web Tables 14–16, Web Figures 9
and 10).

Application to an EWAS of smoking

The C-C analysis identified 18 CpG sites associated with
smoking in the ARIES data set. More associations were identi-
fied when smoking status was imputed: The random binning
method identified 36, the Wu method identified 29, and the Wu
bins method identified 46 (Table 5, Web Table 17). There was a
large amount of overlap in the associated CpG sites identified by
the 4methods (Web Table 18), and 62% of all sites identified by
at least 1 method were identified in a previous meta-analysis

(36) (Table 5, Web Table 19, Web Figure 11). In that meta-
analysis, Joehanes et al. (36) examined former smokers versus
never smokers and restricted the sites to those that were differen-
tially methylated in current smokers versus never smokers. Note
that themeta-analysis was not a gold standard but was an indica-
tion of sites found to be related to smoking in other studies. As
with the simulation study, the C-C andWumethods both tended
to identify only the strongest associations—they detected fewer
significant results, and those results tended to be those with the
strongest associations.

DISCUSSION

Using MI to reduce the impact of missing phenotype data
can improve the statistical power of EWAS. However, if the
MI is carried out naively, bias can result. In our simulation
study, the improvement in power and detection of associated
sites varied among the MI methods proposed—the optimal
methods included using random binning to reduce the number
of imputations while keeping bias low. Completely random
bins were simpler to implement than those including a subset of
CpG sites selected using the Wu method, and they performed
just as well in our example. However, if some CpG sites are
very strongly related to exposures or covariates, there may be
benefits from including them in all imputation bins. The stan-
dard error was slightly reduced if larger bins were used, though
larger bins also increased the number of falsely identified CpG
sites. We have provided R code for the random bins and Wu
bins methods in a GitHub repository (37).

The random binning method used a 3:1 or 10:1 ratio of in-
dividuals to variables. These ratios are generally accepted
(28, 29), though the absolute limit for an imputation model is
defined by the number of complete cases in the data set. The
naive method resulted in over 150 CpG sites being selected
for the imputation model. In the Tsaprouni et al. (22) data set
(464 individuals), 150 sites (variables) would be at the limit
of the 3:1 ratio of individuals to variables, and this ratio may
also be restrictive in other situations. Working at this upper
limit may lead to overfitting or models’ failing to fit. In a
study that analyzed optimal bin sizes for imputation, though
with far fewer variables, Yin et al. (30) found that increasing
the bin size improved the imputation quality. However, there
is evidence that very large bins (i.e., including many variables
in the imputation model) can bias estimates towards the null
when imputing an exposure (14), especially when the number
of complete cases is small. Imputing for individual sites is
effectively creating bins of size 1, and including all sites in a
single imputation model (not performed here) is at the other
end of the scale (1 bin of ≥480,000 sites), with our bin sizes
in the middle. The binning procedure is thus a careful balance
between overfitting, bias, and computing time.

CpG sites could be divided into bins based on their gene
assignment or distance between base pairs. These methods
were considered but not used (Web Appendix 2) because of
the wide variety of bin sizes and the risk of collinearity.
There are other variable selection methods for MI on high-
dimensional data (e.g., a random forest method (38)), but,
like the variable selection methods evaluated here (the Wu
and naive methods), these will suffer from bias towards the
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Figure 1. True-positive and false-positive percentages of CpG sites
identified by different imputation methods in 10 repeats on the full (un-
reduced) data set. Values are listed in Table 2. Black symbols are for
missingness mechanism 1, and gray symbols are for missingness
mechanism 2.
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Table 3. Detailed Analysis of the Performance of the NaiveMethod for Imputing Smoking Status, Assessed by Comparing the EWAS on the Resulting Data SetsWith an EWAS on the
Complete Dataa

MMand Scenario

CpGSites Identified as Significant in C-CAnalysis CpGSites Identified as Significant in Analysis on the
Complete Data andNot in C-CAnalysis All Other CpGSites

Positive Negative Positive Negative Positive Negative

Mean β
(SE)

MeanBias
(SD)

Mean β
(SE)

MeanBias
(SD)

Mean β
(SE)

MeanBias
(SD)

Mean β
(SE)

MeanBias
(SD)

Mean β
(SE)

MeanBias
(SD)

Mean β
(SE)

Mean Bias
(SD)

MM1b

No. of CpG sites 63.2 106.5 85.0 73.7 235,482.8 246,927.8

Complete data
(“truth”)

0.5641
(0.09207)

−0.5962
(0.09115)

0.5261
(0.09249)

−0.5239
(0.09252)

0.1479
(0.09473)

−0.1468
(0.09578)

Naive method 0.6187
(0.09473)

0.0546
(0.0541)

−0.6400
(0.09405)

−0.0438
(0.0603)

0.5187
(0.09602)

−0.0074
(0.0505)

−0.5150
(0.09609)

0.0089
(0.0530)

0.1625
(0.09782)

0.0147
(0.0568)

−0.1611
(0.09892)

−0.0143
(0.0559)

MM2c

No. of CpG sites 54.2 92.9 91.7 83.8 235,485.1 246,931.3

Complete data
(“truth”)

0.5562
(0.09214)

−0.6010
(0.09091)

0.5301
(0.09242)

−0.5287
(0.09252)

0.1479
(0.09473)

−0.1468
(0.09578)

Naive method 0.5722
(0.09424)

0.0160
(0.0530)

−0.6136
(0.09338)

−0.0126
(0.0586)

0.4983
(0.09517)

−0.0318
(0.0479)

−0.4978
(0.09529)

0.0309
(0.0498)

0.1465
(0.09686)

−0.0013
(0.0481)

−0.1466
(0.09794)

0.0002
(0.0485)

Abbreviations: C-C, complete-case; EWAS, epigenome-wide association study; MM, missingness mechanism; SD, standard deviation; SE, standard error.
a Average β coefficient (with average SE) and average bias (with SD) for former smokers specifically for the naive method as compared with the EWAS on the complete data set (n = 263). The table

shows the results of 10 repeats on the full (unreduced) data set. CpG sites were divided into 3 groups: 1) sites identified as significant in the C-C analysis; 2) sites identified as significant in the complete
data set and not in the C-C analysis; and 3) all other sites. We divided the β coefficients into positive (>0) and negative (<0) coefficients according to their value in the EWAS on the complete data set. Web
Table 8 shows the equivalent results for current smokers (n = 22).

b Missing with probability 75% for males aged 57 years or over.
c Missing with probability 50% for males aged 57 years or over and with probability 12.5% for all remaining persons.
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Table 4. Detailed Analysis of the Performance of theWuMethod for Imputing Smoking Status, Assessed by Comparing the EWAS on the Resulting Data SetsWith an EWAS on the
Complete Dataa

MMand Scenario

CpGSites Selected FromC-C Analysis CpGSites Identified as Significant in Analysis on the
Complete Data andNot Selected All Other CpGSites

Positive Negative Positive Negative Positive Negative

Mean β
(SE)

Mean Bias
(SD)

Mean β
(SE)

MeanBias
(SD)

Mean β
(SE)

Mean Bias
(SD)

Mean β
(SE)

Mean Bias
(SD)

Mean β
(SE)

MeanBias
(SD)

Mean β
(SE)

Mean Bias
(SD)

MM1b

No. of CpG sitesc 1.4 6.2 134.9 156.5 235,494.7 246,945.3

Complete data (“truth”) 0.6112
(0.0907)

−0.7925
(0.0857)

0.5465
(0.09223)

−0.5666
(0.09173)

0.1479
(0.09473)

−0.1469
(0.09578)

Wumethod 0.6616
(0.09551)

0.0504
(0.0272)

−0.8456
(0.08873)

−0.0531
(0.0357)

0.5411
(0.09744)

−0.0054
(0.0441)

−0.5743
(0.09622)

−0.0077
(0.0408)

0.1606
(0.09961)

0.0127
(0.0471)

−0.1591
(0.1008)

−0.0122
(0.0462)

MM2d

No. of CpG sitesc 1.8 6.2 134.4 156.3 235,494.8 246,945.5

Complete data (“truth”) 0.5735
(0.09118)

−0.7211
(0.08725)

0.5465
(0.09222)

−0.5690
(0.09166)

0.1479
(0.09473)

−0.1469
(0.09578)

Wumethod 0.6313
(0.09471)

0.0578
(0.0513)

−0.7522
(0.09058)

−0.0311
(0.0424)

0.5362
(0.09736)

−0.0103
(0.0482)

−0.5648
(0.09632)

0.0042
(0.0423)

0.1559
(0.09948)

0.0080
(0.0461)

−0.1552
(0.1007)

−0.0083
(0.0461)

Abbreviations: C-C, complete-case; EWAS, epigenome-wide association study; MM, missingness mechanism; SD, standard deviation; SE, standard error.
a Average β coefficient (with average SE) and average bias (with SD) for former smokers specifically for theWumethod as compared with the EWAS on the complete data set (n = 263). The table shows

the results of 10 repeats on the full (unreduced) data set. CpG sites were divided into 3 groups: 1) sites selected by means of the Bayesian Information Criterion from those identified as significant in the C-C
analysis; 2) sites identified as significant in the EWAS on the complete data set which were not selected by the Bayesian Information Criterion; and 3) all other sites.We divided the β coefficients into positive
(>0) and negative (<0) coefficients according to their value in the EWAS on the complete data set. Web Table 10 shows the equivalent results for current smokers (n = 22).

b Missing with probability 75% for males aged 57 years or over.
c Average number of CpG sites in that group, across the 10 repeats.
d Missing with probability 50% for males aged 57 years or over and with probability 12.5% for all remaining persons.
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null for sites that are not included in the imputation model.
As the illustrative simulation showed (WebAppendix 1), where
an association is strongest there will be less evidence of bias,
and where an association is weakest the standard errors will be
very large, making it hard to distinguish bias from noise. This
helps explain why the bias observed here when using the Wu
and naive methods was small in comparison with the standard
errors.

Inverse probability weighting (IPW) could be used to correct
the bias resulting from C-C analyses, by weighting to make the
set of complete cases representative (39). In theory, a high number
of covariates should not be an issue for IPW; however, it does
rely on being able to define a model for missingness accurately.
Two IPW methods were implemented (Web Appendix 2).
Although IPWwas computationally efficient, both IPWmethods
performed poorly, with large standard errors, in comparison with
other methods (Web Tables 7, 8, and 20; Web Figures 4 and 5).
In agreement with our results, in general, IPW is unbiased but
less efficient thanMI (39).

Our EWAS was not equivalent to that of Tsaprouni et al.
(22), who adjusted for additional confounders and excluded
some probes. The simulation on the Tsaprouni data set was
used to illustrate the methods and was deliberately simple,
with only 2 covariates used in the MMs and EWAS. In real-
ity, missingness may be a consequence of many covariates,
which should all be included in the imputation model. If there
were more auxiliary variables giving information on missing
smoking status, it is likely that imputation would be improved
by including them (i.e., the imputed estimates would have
smaller standard errors). However, as more covariates were
used (many of which had missingness), the imputation pro-
cess became slower.

All imputation methods reduced the standard errors and
therefore increased detection of associated CpG sites over the
C-C analysis. Imputation should be considered whenever miss-
ing covariate data limit the sample size for a high-dimensional
data set. Such analyses should explore sensitivity to the key

assumptions: that the data are missing at random and the impu-
tation model has been correctly specified.
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