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Abstract. This paper presents a comprehensive theory for the demographic analysis of populations in
which individuals are classified by both age and stage. The earliest demographic models were age classified.
Ecologists adopted methods developed by human demographers and used life tables to quantify survivor-
ship and fertility of cohorts and the growth rates and structures of populations. Later, motivated by studies
of plants and insects, matrix population models structured by size or stage were developed. The theory of
these models has been extended to cover all the aspects of age-classified demography and more. It is a nat-
ural development to consider populations classified by both age and stage. A steady trickle of results has
appeared since the 1960s, analyzing one or another aspect of age 9 stage-classified populations, in both
ecology and human demography. Here, we use the vec-permutation formulation of multistate matrix popu-
lation models to incorporate age- and stage-specific vital rates into demographic analysis. We present
cohort results for the life table functions (survivorship, mortality, and fertility), the dynamics of intra-
cohort selection, the statistics of longevity, the joint distribution of age and stage at death, and the statistics
of life disparity. Combining transitions and fertility yields a complete set of population dynamic results,
including population growth rates and structures, net reproductive rate, the statistics of lifetime reproduc-
tion, and measures of generation time. We present a complete analysis of a hypothetical model species,
inspired by poecilogonous marine invertebrates that produce two kinds of larval offspring. Given the joint
effects of age and stage, many familiar demographic results become multidimensional, so calculations of
marginal and mixture distributions are an important tool. From an age-classified point of view, stage
structure is a form of unobserved heterogeneity. From a stage-classified point of view, age structure is
unobserved heterogeneity. In an age 9 stage-classified model, variance in demographic outcomes can be
partitioned into contributions from both sources. Because these models are formulated as matrices, they
are amenable to a complete sensitivity analysis. As more detailed and longer longitudinal studies are devel-
oped, age 9 stage-classified demography will become more common and more important.

Key words: age-stage classification; elasticity; generation time; heterogeneity; Markov chain models; matrix pop-
ulation models; mortality; net reproductive rate; sensitivity; survivorship; vec-permutation matrix.

INTRODUCTION

As demographic data become more detailed, they reveal
more, and more diverse, differences among individuals. These
types of heterogeneity led to the development of increasingly
complicated demographic models. Demographic analysis in
ecology can be divided into three periods. The first, building
on the work of Lotka and many others, used age-classified
models and life table functions to compute survival, fertility,
life expectancy, intrinsic rates of increase, stable age distribu-
tions, and reproductive values. It became a fully developed
population theory by the mid-20th century (e.g., Lotka 1939,
Keyfitz 1968, Coale 1972). It was quickly adopted by popula-
tion biologists and ecologists, from the mortality studies of
Pearl and Miner (1935) and the comparative life table studies
of Deevey (1947) to the use of the Euler-Lotka equation to
calculate population growth rates (e.g., Birch 1948, Leslie
and Park 1949). Fisher (1930), Norton (1928), and

Charlesworth (1994), among others, applied age-classified
theory to evolutionary questions, and it became the basis of
evolutionary demography and life history theory (e.g., Cole
1954, Lewontin 1965, Hamilton 1966, Stearns 1992).
The second period saw the widespread adoption of stage-

classified methods based largely on matrix population mod-
els classified by stage (Lefkovitch 1965, Werner and Caswell
1977) where stage might refer to size, instar, developmental
stage, physiological condition, behavioral status, etc. Plant
ecologists were at the forefront of this development because
the modular construction and plastic growth of plants tend
to make age less suitable as a state variable in many cases.
Today, age-classified models are still more common among
animal models and stage-classified models more common
among plant models (Salguero-G�omez et al. 2015, 2016).
Stage-classified matrix models made it possible to com-

pute population growth rates and structures, sensitivity, and
elasticity analyses, and their extensions to periodic and
stochastic environments, as well as to develop sophisticated
treatments of nonlinear dynamics. This led eventually to a
fully developed theory of stage-classified demography in a
variety of mathematical frameworks (Nisbet and Gurney
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1982, Metz and Diekmann 1986, Tuljapurkar 1990, Tul-
japurkar and Caswell 1997, Easterling et al. 2000, Caswell
2001, Ellner et al. 2016).
Now, increasingly extensive and detailed individual data

are being collected and it is becoming apparent that combin-
ing age- and stage-classification is sometimes useful. This is
accompanied, in both ecology and human demography, by
an interest in incorporating more biological or social detail
into the analyses.
Our goal here is to present a comprehensive methodologi-

cal treatment of age 9 stage-classified matrix population
models. The methods will be presented in a way that can be
applied to any species, with any life cycle, described by any
pattern of transitions among any set of stages, with any type
of reproduction of any kind(s) of offspring. We will provide
a hypothetical example to suggest how a particular species
might be analyzed.

Explicit and implicit age dependence

As a first step, we recognize that age dependence may be
either implicit or explicit. Any stage-classified model pro-
duces implicit age-classified results because, even though
age has no effect on the vital rates, an individual still
becomes one unit older with the passage of one unit of
time. Age-specific results (e.g., life expectancy) computed
from such a model are implicit in the stage structure of the
life cycle. Methods based on absorbing Markov chains are
widely used to extract implicit age dependence from stage-
classified models (e.g., Feichtinger 1971, Cochran and
Ellner 1992, Caswell 2001, 2006, 2009, Steinsaltz and
Evans 2004, Tuljapurkar and Horvitz 2006, Horvitz and
Tuljapurkar 2008). These are not, however, age 9 stage-
classified models and the results do not reveal anything
about the interaction of age-specific and stage-specific
rates.
This paper addresses explicit age dependence, in which

individuals are classified by their age and stage, and the vital
rates depend on both variables. The literature on explicit
age 9 stage demography is scattered, with fragmentary
results appearing in the ecological and demographic litera-
tures. Goodman (1969) first introduced the matrix formula-
tion of age-stage models. Even before that, a continuous-
time age 9 size model written as a partial differential equa-
tion was presented by Sinko and Streifer (1967). Csetenyi
and Logofet (1989) and Logofet (2002, 2013) explored the
graph-theoretic implications of the block structure appear-
ing in age 9 stage models, in relation to the irreducibility
and primitivity of the resulting model. Recent papers (Cas-
well 2012, Caswell and Shyu 2012) have developed matrix
models and their sensitivity analysis, for both cohort proper-
ties and population growth rate, for age 9 stage-classified
models. These were used in an evolutionary analysis of the
selection gradients on senescence, as a function of age and
of stage, by Caswell and Salguero-G�omez (2013). Steiner
et al. (2012) explored some aspects of longevity and later
(Steiner et al. 2014) developed a powerful age 9 stage-clas-
sified analysis of the relation between generation time and
population growth rate, with applications to life history the-
ory (generation time will be considered here in the section
entitled Population dynamics: generation time).

Multiregional models are an important special case of
age 9 stage-classified models. They classify individuals by
age and spatial location, and were one of the earliest appli-
cations of matrix population models (Rogers 1968) and have
been extensively developed in human demography (e.g.,
Rogers 1975) and ecology (Lebreton 1996, 2005, Lebreton
et al. 2000). There is a rich literature in health demography
of multistate models (e.g., Willekens 2014) in which individ-
uals are classified by age and health status (see, e.g., Wu
et al. [2006] for colorectal cancer, Zhou et al. (2016) for
dementia, or Honeycutt et al. (2003) for diabetes). These
models focus on longevity and occupancy times in various
age-stage combinations, and include only the survival and
transition portion of the life cycle. Some epidemiological
models have combined age and infection status in nonlinear
matrix models that include the infection process (e.g., Kle-
pac and Caswell 2011, Metcalf et al. 2012).
Perhaps the human demographic usage closest in concep-

tual structure to ecological practice are multistate popula-
tion projections, which are used to forecast the short-term,
transient dynamics of populations under scenarios of chang-
ing mortality, fertility, and migration rates. The basic age-
specific projections are sometimes augmented by a stage
classification to examine the joint age 9 stage dynamics.
The flavor of these efforts is shown by studies on, e.g., the
interaction of age with citizenship status (S�anchez Gassen
2014), disability (Van der Gaag et al. 2015), or education
level (Loichinger 2015).
Ecological examples of explicit age 9 stage models are

not common. Law (1983) considered the theoretical problem
of age 9 stage models but presented only a hypothetical
example. De Roos (2008) analyzes a continuous-time model
in which age and stage can be combined. More empirical
studies can be found in, e.g., van Groenendael and Slim
(1988) and Zuidema et al. (2009).

Heterogeneity

The more closely one looks at individual organisms, the
more ways in which they appear to differ. The problem of
heterogeneity is to figure out how those differences affect
population dynamics. This is the essence of demography:
accounting for differences due to age, development, sex,
physiological condition, breeding status, etc. The analyses to
be presented here are a way to incorporate diverse types of
heterogeneity into demographic analysis.

Outline

The rest of the paper is organized as follows:

1. A systematic method for the construction of age 9 stage-
classified models.

2. The life table functions that define survivorship, mortal-
ity, and the age and stage at death of individuals, and
quantify intra-cohort selection.

3. The fertility functions that describe reproduction of indi-
viduals across the life cycle.

4. The statistics of longevity for cohorts, including life
expectancy and also measures of variability, state occu-
pancy times, and life disparity.
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5. Characteristics of population dynamics, including the
population growth rate, stable structure, reproductive
value, net reproductive rate, and measures of generation
time.

6. Sensitivity and elasticity analysis, showing a completely
general formula for the effects of changes in any parame-
ter[s] affecting any of the age-specific or stage-specific
rates on any quantity calculated from the model.

Table 1 is a list of all the demographic results that will be
presented, keyed to the equations in which they are derived.

Notation.—Matrices are denoted by uppercase boldface let-
ters (e.g., U), and vectors by lowercase boldface letters (e.g.,
n). Block-diagonal matrices are denoted by blackboard font
(e.g., U). Matrices and vectors associated with the full
age 9 stage model are denoted, e.g., ~U, ~n; these matrices are
block structured and contain entries for all combinations of
age classes and stages. The number of age classes is x and the
number of stages is s. The notation for matrices used in model
construction is tabulated for easy reference in Table 2.
The unit vector ei is a vector with a 1 in the ith entry and

zeros elsewhere. The unit matrix Eij is a matrix with a 1 in the
(i,j) entry and zeros elsewhere; the dimensions will be indicated
if not clear from the context. The dimensions of certain matri-
ces and vectors are denoted by subscripts; Is is an identity
matrix of order s and 1s is a s 9 1 vector of ones. When conve-
nient, MATLAB (MathWorks, Natick, MA, USA) notation
will be used to refer to rows and columns of matrices; thus X
(i,:) is the ith row and X(:,j) the jth column of X. The diagonal
matrix with x on the diagonal and zeros elsewhere is denoted
DðxÞ. The symbol ° denotes the Hadamard, or element-by-ele-
ment product; the symbol ⊗ denotes the Kronecker product.
The vec operator transforms a matrix to a vector by stacking
the columns on top of each other. The symbol ‖x‖ denotes the
1-norm of the vector x. The transpose of the matrix X is X⊤.
The matrix K is the vec-permutation matrix (Henderson and
Searle 1981); see Box 2. The mean and variance are denoted by
E(�) and V(�) respectively.

CONSTRUCTING AGE 9 STAGE MODELS

The population vector

Each individual is jointly classified by its age and its stage;
the population composition at any time can be written as

N ¼
n11 � � � n1x
..
. ..

.

ns1 � � � ns;x

0
B@

1
CA (1)

where rows correspond to stages (1, . . ., s) and columns to
age classes (1, . . ., x). The population vector ~n is obtained
from N as

~n ¼ vecN ð2Þ

¼

n11

..

.

ns1

..

.

n1x

..

.

nsx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð3Þ

In ~n, stages are grouped within age classes. The vector can
be transformed so that age classes are grouped within stages,

TABLE 1. Age 9 stage-classified demographic analysis.

Notation Equation

Model construction
Population vector ~N 3
Forbidden age-stage
combinations

Ui, Fi 8, 9

Block-diagonal matrices U, F, D, H 10
Age 9 stage-classified projection
matrices

~U, ~F, ~A 11–13

Life table functions
Survivorship vector[s] ‘(x), L 17, 46
Survivorship of mixed cohort ‘(x | p) 19
Mortality rate vector l(x) 22
Mortality rate of mixed cohort l(x | p) 23
Intra-cohort selection
Joint age 9 stage ~mðxj~n0Þ 25
Marginal stage ~mstageðxj~n0Þ 26
Marginal age ~mageðxj~n0Þ 27

Fertility
Fertility matrix Fx

Weighted fertility vector fweighted(x) 29
Mixed fertility vector fmixed(x) 30
Weighted and mixed fertility
vector

f(x) 32

Longevity statistics
Fundamental matrix ~N 34
Moments and variance of
longevity

~gi, Vð~gÞ 35–37

Decomposition of variance in
longevity

Vwithin, Vbetween 43, 45

Distribution of age and stage at death
Joint age 9 stage distribution ~B 50
Marginal age distribution Bage 51
Marginal stage distribution Bstage 52

Life disparity, years of life lost ~gy 57
Population dynamics
Population projection ~nðtþ 1Þ ¼ ~A~nðtÞ 60
Stable population structure
Marginal age structure ~wage 61
Marginal stage structure ~wstage 62

Reproductive value v 63
Net reproductive rate R0 67
Mean lifetime reproduction
Next generation matrix R11 73
Weighted lifetime reproduction rweighted 75
Mixed lifetime reproduction rmixed 76
Total lifetime reproduction q 77

Cohort generation time Γ 88
Sensitivity analysis
Sensitivity of output ξ to
parameters h

dξ/dh⊤ 89

Note: Results are shown for model construction, life table func-
tions, longevity statistics, and population dynamics, with equa-
tion numbers in which the results are presented.

562 HAL CASWELL ET AL. Ecological Monographs
Vol. 88, No. 4

C
O
N
C
E
P
TS

&
S
YN

TH
E
S
IS



vec N>
� �

¼ Ks;xvecN (4)

where Ks,x is the vec permutation matrix (Magnus and Neu-
decker 1979, Henderson and Searle 1981). This transforma-
tion is essential to the analysis of the model, as will be seen
below. An explicit formula for Ks,x is given in Box 2. All
results can be obtained using this arrangement, by properly
reformulating the relevant matrices.

Age- and stage-specific demography

The influence of age and stage on the vital rates is cap-
tured in four sets of matrices:

1. Matrices Uj, for j ¼ 1; . . .;x (dimension s 9 s). These
matrices contain stage transitions, including mortality, of liv-
ing individuals in each age class. Because the entries of the
Uj refer to stages, and each matrix corresponds to an age
class, the set includes arbitrarily complicated interactions of
age and stage in determining mortality and transitions.

2. Matrices Fj, for j ¼ 1; . . .;x (dimension s 9 s). These
matrices contain fertilities, describing the stage-specific
per capita production of new individuals by reproduc-
tion, for individuals in each age class. Because the entries
of the Fj refer to stages, and each matrix corresponds to
an age class, the set includes arbitrarily complicated
interactions of age and stage in determining fertility.

3. Matrices Di, for i ¼ 1; . . .; s (dimension x 9 x). These
matrices contain age transitions for individuals in each
stage.

4. Matrices Hi, for i ¼ 1; . . .; s (dimension x 9 x). These
matrices assign newly produced offspring, of parents in
stage i, to an initial age class (usually the first).

The matrices Uj and Fj correspond to the familiar decom-
position of a projection matrix A into components due to
transitions and survival of extant individuals (U) and due to
fertility (F)

A ¼ U þ F: (5)

Now, however, the matrices are defined for each of the x
age classes. This flexible formulation permits age to influ-
ence any of the stage-specific vital rates, in any way,
described in either parametric or nonparametric terms. Sim-
ilarly, it permits stages to influence age-specific rates in any
way.
The matrix Fj describes reproduction by all stages in age

class j. An age 9 stage model must account for the possibil-
ity that multiple types of offspring may be produced (e.g. a
plant may produce seedlings of different sizes). In the special
case where all offspring are of the same stage, Fj will have
positive entries in only one row, usually chosen to be the
first.
The matrices Uj and Fj move individuals among stages,

account for survival, and create new offspring of various
stages, at rates that depend on the current age. Following
these processes, individuals must be allocated to their next
age class. The matrices Di advance surviving individuals
from one age class to the next; the simplest such model
contains ones on the subdiagonal and the x, x corner; e.g.,
(for x = 3)

Di ¼
0 0 0
1 0 0
0 1 1

0
@

1
A i ¼ 1; . . .; s: (6)

The x, x entry converts the final age class into an open-
ended category. Setting it to 0 would kill all individuals at
age x.
As written in Eq. 6, advancement in age involves no

deaths; all mortality is included in the Uj. This need not be
the case. If desired, an additional age-specific mortality haz-
ard, affecting stage i could be incorporated by replacing the
ones in Di by survival probabilities <1. Such mortality can
always be incorporated into the Uj, so we will not explore its
incorporation into the Di here.

TABLE 2. Matrices used in constructing the age 9 stage-classified projection matrix, where x denotes the number of age classes and s the
number of stages.

Symbol Expression Size Description

Matrix describing the full population
~A ~U þ ~F sx � sx Age 9 stage population projection matrix

Matrices describing transitions and survival of
existing individuals
~U K>

DKU sx � sx Age 9 stage transition and survival matrix
U

Px
j¼1ðEjj �UjÞ sx � sx Block diagonal age 9 stage transition matrix

D
Ps

i¼1ðEii �DiÞ sx � sx Block diagonal age transition matrix
Uj Uj s � s Stage transition matrix for age class j
Di Di x � x Age transition matrix for stage i

Matrices describing reproduction
~F K>

HKF sx � sx Age 9 stage fertility matrix
F

Px
j¼1ðEjj � FjÞ sx � sx Block diagonal fertility matrix

H
Ps

i¼1ðEii �HiÞ sx � sx Block diagonal age assignment matrix
Fj Fj s � s Fertility matrix for age class j
Hi Hi x � x Age assignment matrix for offspring of stage i

Note: The index i denotes stages, i ¼ 1; . . .; s; the index j denotes age classes, j ¼ 1; . . .;x.
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The matrix Hi allocates the newborn individuals, regard-
less of the age of their parent, into age class 1. Thus (e.g., for
x ¼ 3)

Hi ¼
1 1 1
0 0 0
0 0 0

0
@

1
A i ¼ 1; . . .; s: (7)

Impossible age 9 stage combinations.—An operational deci-
sion is required to deal with “impossible” age-stage combi-
nations. For example, if stages are size classes, perhaps large
individuals never occur in young age classes, and small indi-
viduals never occur in old age classes. In such cases, we set
the rows and columns of the Uj corresponding to these
impossible combinations to 0

Box 1. Creating marginals and mixtures

The Kronecker product expressions for computing marginals (e.g., Eqs. 26 and 27) and mixtures [e.g., equation (19)] may
appear confusing at first sight. There is a simple trick to deriving them, which we will reveal here. It relies on the properties of
the vec operator and on Roth’s theorem that, for any matrices X, Y and Z,

vecðXYZÞ ¼ ðZ> � XÞvec Y

(Roth 1934). In this paper, we have agreed to organize ~n by grouping stages within age classes; that is, by applying the vec
operator to the array N in Eq. 1, in which stages appear as rows and ages as columns

N ¼
n11 � � � n1x
..
. ..

.

ns1 � � � ns;x

0
B@

1
CA:

Matrices (e.g., ~U, ~N) and vectors (e.g., ~w, ~v) inherit the same block structure.
Any linear combination of rows of N (i.e., combinations of stages) can be written as a matrix R, and any linear combination
columns of N (i.e., of ages) can be written as a matrix C, and applied to N as

RNC:

Applying the vec operator to this gives

ðC> � RÞvecN :

Thus (C⊤ ⊗ R) operating on the rows of any age 9 stage block-structured matrix or vector captures the operations
implied by R and C operating on N ,
e.g., adding all stages to get a marginal age structure

R ¼ 1>s
C ¼ Ix

�
¼) ðIx � 1>s Þ vecN x � 1

e.g., adding all ages to get a marginal stage distribution

R ¼ Is
C ¼ 1x

�
¼) ð1>x � IsÞ vecN s� 1

e.g., a mixture, defined by a vector ps, all of age class 1

R ¼ p>s
C ¼ e1

�
¼) ðe>1 � p>s ÞvecN 1 � 1:

These matrices operate on arrays with the structure of vecN ; i.e., on the rows of an object in which columns have stages
arranged within ages. To operate on columns, for example on the columns of the fundamental matrix ~N, the arrays must be
transposed (the transpose of a Kronecker product is the product of the transposes). Thus the mixture in Eq. A.7 applied to the
columns of ~N would be

ðvecNÞ>ðe1 � psÞ:
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stage i and age j is impossible ¼) Ujð:; iÞ ¼ 0
Ujði; :Þ ¼ 0

�
(8)

Because no offspring can be produced by a parent of an
impossible age-stage combination

stage i and age j is impossible ¼) Fjð:; iÞ ¼ 0
Fjði; :Þ ¼ 0

�
(9)

The age 9 stage-classified projection matrices

To construct the age 9 stage model using the vec-permu-
tation matrix formulation, we first construct block diagonal
matrices U, F, D, and H, which contain the matrices Uj, Fj,
Di, and Hi, respectively, on the diagonal. That is

U ¼
Xx
j¼1

ðEjj �UjÞ ¼
U1 � � � 0
..
. . .

. ..
.

0 � � � Ux

0
B@

1
CA (10)

with similar construction for the others. The block diagonal
matrices are all of dimension sx 9 sx.
The age 9 stage-classified projection matrices are defined

in terms of the block-diagonal matrices as

~U ¼ K>
DKU (11)

~F ¼ K>
HKF (12)

~A ¼ ~U þ ~F (13)

where K ¼ Ks;x is the vec-permutation matrix. From right to
left in Eq. 11, the matrixU first moves individuals among stages
within their age classes. The vec-permutation matrix K rear-
ranges age classes within stages, the matrix D advances individu-
als to the next age class, and the matrix K⊤ returns the vector to
its original arrangement. In Eq. 12, the matrix F produces new
offspring, then K rearranges age classes within stages, and the
matrixH assigns all newborn individuals to the first age class.
A little manipulation of these matrices reveals that ~A has

a block-Leslie form (e.g., for x ¼ 3)

~A ¼
F1 F2 F3

U1 0 0
0 U2 U3

0
@

1
A (14)

where the 0 matrices are of dimension s 9 s. The formula-
tion of ~n in Eq. 3, in which stages are grouped within age
classes, leads to this familiar structure (e.g., Goodman 1969,
Feeney 1970, Lebreton 1996). The formulation of ~n with age
classes grouped within stages, where ~n ¼ vecðN>Þ, rear-
ranges the blocks in Eq. 14 (e.g., Rogers 1968, Cohen 1982;
see Caswell 2001: Section 4.3).
The systematic construction of ~A by the vec-permutation

matrix algorithm in Eqs. 11 and 12 is enormously beneficial.
The biological content of the model, and hence the data col-
lection and data analysis effort, comes from assembling the
demographic information in the Uj and Fj. Of the s2x2

entries of ~A, at most only 2s2x entries contain demographic

information. The expressions for ~U and ~F isolate these com-
ponents and make it more efficient to conduct analyses,
especially sensitivity analyses.
In a later section (A model species example), we develop a

hypothetical example to demonstrate the calculations, for a life
cycle including two types of larvae and two types of adults.

LIFE TABLE FUNCTIONS

The classical life table functions are the survivorship ‘(x),
the mortality rate l(x), and the distribution of age at death
b(x), where x represents age. Together, these functions are a
time-honored way to characterize age-specific demography,
longevity, and life histories (e.g., Pearl and Miner 1935,
Dublin and Lotka 1937, Deevey 1947, Slobodkin 1961,
Hutchinson 1978). As is well known, any one of them suf-
fices to calculate any of the others.
In this section, we derive the life table functions for

age 9 stage-classified models. The extra dimension of stage
classification adds a rich set of additional life table perspec-
tives. In an age-classified model, for example, survival to
some age x either happens or it does not; if it does, it follows
a defined pathway of ages 1, . . ., x. In an age 9 stage-classi-
fied model, survival to a given age can take place via a poten-
tially infinite set of developmental pathways through the
combinations of ages and life history stages. Each pathway
has its own probability of occurrence, and the life table func-
tions must integrate over all those pathways and probabilities.
In addition, if there are multiple types of offspring, a cohort
may start off with a mixture of different stages at birth, which
will affect the survival and mortality results. Fortunately, the
matrix formulation makes these calculations possible.

Survivorship and mortality

Survivorship ‘(x) is the probability that an individual sur-
vives from age 0 to age x,

‘ðxÞ ¼ Pðsurvival from age 0 to age xÞ 1 � 1: (15)

In an age-classified model, ‘(x) is calculated by projecting
an initial age 0 cohort of size 1; the resulting values give the
proportion of the cohort surviving.
In an age 9 stage-classified model, a survivorship vector

is obtained by projecting a cohort using ~U

~‘ðxÞ ¼ ð1>sx ~UxÞ> x ¼ 0; 1; . . . (16)

The survivorship vector ~‘ðxÞ, of dimension sx � 1, inherits
the block age-stage structure of ~U; its entries give the proba-
bility of survival to age x of an individual starting in every
age-stage combination. We extract the vector of survivorship
starting from the first age class by

‘ðxÞ ¼ ðe>1 � IsÞ~‘ðxÞ s � 1 (17)

where e1 is a unit vector of length x with 1 in the first posi-
tion and zeros elsewhere. The ith entry of ‘ðxÞ gives the sur-
vivorship to age x of an individual starting life in stage i,
accounting for the joint effects of age and stage on survival,
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integrating over all age-stage developmental pathways
between birth and age x.
If the cohort begins as a mixture of stages specified by a

mixing distribution p, the resulting survivorship function is

‘ðxjpÞ ¼ p>s ‘ðxÞ ð18Þ
¼ e>1 ðxÞ � p>
� �

~‘ðxÞ 1 � 1: ð19Þ

Note that our convention (Eq. 8) that transitions involv-
ing impossible age-stage combinations are set to 0 implies
that ‘iðxÞ ¼ 0 if stage i does not occur among the types of
offspring.
In age-classified models, the mortality rate, or hazard

function, l(x) is defined by the relationship

‘ðxþ 1Þ ¼ ‘ðxÞe�lðxÞ; (20)

so that

lðxÞ ¼ � log
‘ðxþ 1Þ
‘ðxÞ : (21)

That is, mortality rates are given by the slope (with the sign
reversed) of the log of the survivorship function.
In the age 9 stage-classified model, using the vector ‘ðxÞ

in Eq. 17, we obtain a vector of mortality rates as a function
of birth stage as

lðxÞ ¼ � log D½‘ðxÞ��1‘ðxþ 1Þ
h i

s � 1 (22)

where ‘ðxÞ is given by Eq. 17 and the log function is applied
elementwise. The mortality schedule for birth stage i, li(x) is
undefined if stage i and age class 1 is an impossible combi-
nation.
The apparent mortality schedule (i.e., what would appear

to an observer ignorant of the mixed composition of the
cohort) for a mixed cohort with mixing distribution p, is

lðxjpsÞ ¼ � log
‘ðxþ 1jpÞ
‘ðxjpÞ

� 	
(23)

where ‘(x | p) is given by (19). This schedule is “apparent”
because it results from the mixture of different initial stages;
no individual actually experiences l(x | p). Eqs. 22 and 23
provide mortality schedules resulting from the full age-stage
dynamics; l(x) and l(x | p) capture the full complexity of
age- and stage-specific development. We will return briefly
to the survivorship function, and present an alternative
method of computation, in the section entitled The funda-
mental matrix and longevity.

Intra-cohort selection.—In an age-classified model, as a
cohort ages, it shrinks as individuals die. In an age 9 stage-
classified model, a cohort shrinks and its stage composition
changes. Stages with higher mortality rates and/or shorter
stage durations decrease in relative frequency due to intra-
cohort selection.
To analyze intra-cohort selection, define an initial cohort

~n0 and project it forward by

~nðxÞ ¼ ~Ux~n0: (24)

The projected cohort vector ~nðxÞ gives the complete joint
distribution of abundance by age and stage at age x, depen-
dent on the initial cohort ~n0. Normalizing ~nðxÞ to sum to 1
gives the joint age-stage frequency distribution,

~mðxj~n0Þ ¼ ~nðxÞ
k~nðxÞk (25)

from which the marginal age and stage distributions can be
calculated as:

mstageðxj~n0Þ ¼ ð1>x � IsÞ~mðxj~n0Þ (26)

mageðxj~n0Þ ¼ ðIx � 1>s Þ~mðxj~n0Þ (27)

The general approach to the computation of such mixture
and marginal quantities is outlined in Box 1. In general,
~mðxÞ will converge, as x increases, to the right eigenvector
corresponding to the dominant eigenvalue of ~U (Horvitz
and Tuljapurkar 2008).

Box 2. Computing the vec-permutation matrix

The vec-permutation matrix (Magnus and Neudecker 1979, Henderson and Searle 1981) connects the vec operator and the
matrix transpose. If X is a m � n matrix, then

vec X> ¼ Km;nvecX:

The matrix can be calculated as

Km;n ¼
Xm
i¼1

Xn
j¼1

ðEij � E>
ij Þ

where Eij is a matrix, of dimension m � n, with a 1 in the (i,j) entry and zeros elsewhere.
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The choice of ~n0 depends on the question of interest. By
definition, a cohort consists of individuals of the same age,
which we can take as age class 1. Define p0 as the distribu-
tion of stages within this age class. Then

~n0 ¼ ðe>1 � IsÞp0 (28)

where e1 is a vector of length x with a 1 in the first entry
and zeros elsewhere. If the goal is to analyze a cohort all
members of which start in stage j, then p0 is a unit vector
of length s with a 1 in the jth location and zeros else-
where.

The fertility function.—In an age-classified model, the (sca-
lar) fertility function f(x) gives the mean number of off-
spring produced, per unit time, by a parent aged x. In an
age 9 stage-classified model the fertility matrices Fx, for
x ¼ 1; . . .;x, are the multivariate analogue of f(x). The (i,
j) entry of Fx is the expected number of offspring of type i
produced, per unit time, by a parent of type j and age
class x.
The fertility matrix Fx can be simplified to obtain three

different age-specific fertility measures.

1. Weighted offspring production. Multiple offspring types,
when they exist, are combined into a weighted sum, with
weights defined by, e.g., body size, parental investment,
reproductive value, etc. Let c be such a vector of weights
(s 9 1). The vector of weighted fertility at age x is

fweightedðxÞ ¼ ðc>FxÞ> s � 1: (29)

The jth entry of fweighted(x) is the weighted mean number
of offspring produced by a parent of stage j at age x.

2. Mixed offspring production. The vector giving the off-
spring, of all types, produced at age x by a mixture of
stages given by a mixing distribution p(x), is

fmixedðxÞ ¼ FxpðxÞ s � 1: (30)

One source for p(x) is the stage structure of a cohort of
individuals of age x. Given an initial cohort composition
~n0 containing only individuals in age class 1, the appro-
priate mixture is

pðxÞ ¼ mstageðxj~n0Þ (31)

given by Eq. 26. The jth entry of fmixed(x) is the number
of type j offspring produced per individual in a mixed
cohort at age x, with a specified composition.

3. Mixed and weighted offspring production. The scalar fer-
tility function, giving the weighted number of offspring
produced by a mixed cohort at age x, is

f ðxÞ ¼ c>FxpðxÞ 1 � 1: (32)

If only one type of offspring exists, and if stages do not
differ in their fertility, f(x) reduces to the familiar age-
specific fertility function.

The functions Fx, fweighted(x), fmixed(x), and f(x) capture
different aspects of the (possibly complicated) age- and
stage-dependence of reproduction.

COHORT DYNAMICS: LONGEVITY STATISTICS

Longevity is the age at death of an individual. Statistics of
longevity are frequently used to summarize mortality sched-
ules. The most familiar such statistic is the life expectancy,
or mean age at death. Measures of variation (the variance,
standard deviation, coefficient of variation, and life discrep-
ancy) provide information on stochastic variation in longev-
ity among individuals. For example, many human
populations have recently exhibited declines in variance in
longevity, accompanying increases in life expectancy (e.g.,
Edwards and Tuljapurkar 2005, Tuljapurkar and Edwards
2011, Vaupel et al. 2011, Van Raalte and Caswell 2013,
Engelman et al. 2014).
In age 9 stage-classified models, longevity depends on

how mortality varies over age and among stages, and we
now turn to the calculation of these statistics.

The fundamental matrix and longevity

Longevity statistics are obtained by treating ~U as the tran-
sient matrix of an age 9 stage-classified absorbing Markov
chain (Feichtinger 1971, Caswell 2001, 2006, 2009, 2013). If
the states are numbered so that the transient (alive) states
precede the absorbing (dead) states, the transition matrix for
such a chain can be written

~P ¼ ~U 0
~M I

� 	
(33)

where ~M is a matrix of transition probabilities from tran-
sient to absorbing states. We will consider ~M in detail in the
section entitled Age and stage at death.
The fundamental matrix for the chain is

~N ¼ ðIsx � ~UÞ�1: (34)

The matrix ~N inherits the block structure of ~U, with stages
arranged within age classes. The (i,j) element of ~N is the
expected time spent in transient state i by an individual starting
in transient state j (see Caswell 2006, 2009, 2013 for the higher
moments and variances), where i and j range over all combina-
tions of age and stage.
Longevity is measured by the time to eventual absorption

in one of the states representing death. Well known results
from Markov chain theory (Iosifescu 1980: Theorem 3.2)
give the vectors of the mean and the second moments of
time to absorption, which satisfy

~g>1 ¼ 1>sx ~N (35)

~g>2 ¼ ~g>1 ð2~N� IsxÞ: (36)

The entries of ~g1, of dimension sx 9 1, give the life expec-
tancy of individuals of each age-stage combination. The
entries are arranged as in ~n, with stages within age classes.
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The vector ~g2 contains the second moments of longevity, so
the vector of variances of longevity is

Vð~gÞ ¼ ~g2 � ð~g1 � ~g1Þ: (37)

This vector contains the variances in remaining longevity
among individuals of every possible age-stage combination,
reflecting stochasticity in advancement through age classes
and transitions among stages. This variance can be decom-
posed into contributions within and between stages (cf. Har-
temink et al. 2017), as we show in the next section.

Partitioning the variance in longevity.—In a cohort at age x,
individuals will vary in longevity for two reasons: the
stochasticity inherent in aging and transitions, and the
heterogeneity inherent in the stage distribution at age x. To
analyze the variance in remaining longevity at age x, define
the vector g(x), of dimension s � 1, whose ith entry gives
the remaining longevity of individuals of stage i at age x,
and the scalar g(x) that gives the remaining longevity of an
individual of age x in a mixed cohort. Extract the mean and
variance of remaining longevity in age class x as

E½gðxÞ� ¼ ðe>x ðxÞ � IsÞEð~gÞ (38)

V ½gðxÞ� ¼ ðe>x ðxÞ � IsÞVð~gÞ (39)

where ex(x) is a unit vector of length x with 1 in the xth
position and zeros elsewhere, E( � ) is the mean and V( � ) is
the variance.
Let p(x), of dimension s 9 1 be the mixing distribution of

stages at age x. This could be obtained as the vector mstage(x)
in Eq. 26. Then the mean longevity of age class x, treated as
a mixture of stages, is

EpðxÞðgðxÞÞ ¼ p>ðxÞE½gðxÞ� (40)

and the variance is partitioned into a component due to
stochasticity within a given stage and a component due to
heterogeneity among the stages,

V ½gðxÞ� ¼ Vwithin½gðxÞ� þ Vbetween½gðxÞ� (41)

where the within-group variance is the expectation over p(x)
of the variances,

Vwithin½gðxÞ� ¼ EpðxÞ V ½gðxÞ�ð Þ ð42Þ
¼ p>ðxÞV gðxÞ½ � ð43Þ

The between-group variance is the variance over p(x) of the
means,

Vbetween½gðxÞ� ¼ VpðxÞ E½gðxÞ�ð Þ ð44Þ
¼ p>ðxÞ E½gðxÞ� � E½gðxÞ�ð Þ
� p>ðxÞE½gðxÞ�� �2 ð45Þ

This variance decomposition is well-known in probability
theory (R�enyi 1970: Chapter 5.6, Theorem 1), forms the
basis of the analysis of variance in statistics (e.g.

Kempthorne 1957), and is a familiar tool in the analysis of
mixture models (Fr€uhwirth-Schnatter 2006). It is a valuable
tool in quantifying the relative contributions of heterogene-
ity and individual stochasticity to the variance in demo-
graphic outcomes (e.g. Caswell 2009, Edwards 2011,
Hartemink et al. 2017, Jenouvrier et al. 2018, Hartemink
and Caswell 2018). It is a natural tool for the analysis of
age 9 stage-classified models, because the incorporation
of stage-dependence is a natural way to include the effects of
heterogeneity in age-specific parameters.

1. Beyond longevity.—The Expressions 43 and 45 require
only the expressions for the mean and the variance of g, for
each stage at each age of interest. Although we have
described it in terms of variance in longevity, it can be
applied to any quantity for which those quantities are avail-
able. For example, a stage-classified calculation has applied
the analysis to age at first reproduction and lifetime
reproductive output (Jenouvrier et al. 2018). The extension
to age 9 stage-classified models will, in some cases, require
an extension of occupancy time theory (Roth and Cas-
well 2018), in other cases the variance terms are directly
available.

2. Survivorship revisited.—The fundamental matrix ~N pro-
vides an alternative way to compute survivorship, dependent
on the stage of the individual at birth (Keyfitz and Caswell
2005). Starting with ~N, we first aggregate the rows by sum-
ming stages within age classes; the result gives the mean
number of visits to each age class. But an age class can be
visited at most once, so the mean number of visits equals the
probability of ever visiting that age class, which is the sur-
vivorship. The column block corresponding to starting age
class 1 contains the survivorship of each stage at that initial
age; this is

L ¼ ðIx � 1>s Þ~Nðe1 � IsÞ; x � s (46)

The matrix L, of dimension x � s, contains as columns the
survivorship functions for each stage. The survivorship for a
mixture of initial stages, specified by a mixing distribution
vector ps, is given by

‘ðxjpÞ ¼ Lps

¼ ðIx � 1>s Þ~Nðe1 � pÞ : (47)

Age and stage at death

In classical age-structured life tables, the probability dis-
tribution of age at death is bðxÞ ¼ ‘ðxÞ � ‘ðxþ 1Þ. In
age 9 stage-classified analysis, there is a joint distribution
of age and stage at death, for an individual of any initial
age-stage combination. To obtain this joint distribution, we
construct a mortality matrix ~M in the absorbing Markov
chain (Eq. 33) such that the absorbing states are defined by
the combination of age and stage at death. To do so, define
qi as the vector of stage-specific mortality probabilities for
age class i, obtained from Ui as

q>i ¼ 1>s � 1>s Ui: (48)

568 HAL CASWELL ET AL. Ecological Monographs
Vol. 88, No. 4

C
O
N
C
E
P
TS

&
S
YN

TH
E
S
IS



Then the mortality matrix ~M is

~M ¼
Xx
i¼1

Eii �DðqiÞ; sx � sx (49)

inheriting the block structure of ~U.
As a simple extension of the result for age- or stage-classi-

fied models (Caswell 2001, 2009, 2012) all the joint distribu-
tions of age and stage at death are contained in the matrix

~B ¼ ~M~N sx � sx: (50)

Each column of ~B contains the joint distribution of age and
stage at death for an individual in one of the possible age-
stage categories.
Marginalizing by summing stages within age classes, or

age classes within stages, gives the marginal age and stage
distributions as the columns of the matrices

Bage ¼ ðIx � 1>s Þ~B x � sx (51)

Bstage ¼ ð1>x � IsÞ~B s � sx: (52)

The distributions resulting from a mixed cohort, with mix-
ture distribution psx are

~bðpÞ ¼ ~Bpsx sx � 1 (53)

bageðpÞ ¼ Bagepsx x � 1 (54)

bstageðpÞ ¼ Bstagepsx s � 1: (55)

As this collection of results makes clear, the combination of age
and stage dependence of all the vital rates creates rich opportu-
nities to examine the distributions of age and stage at death.

Life disparity: years of life lost

An important application of ~B is to the calculation of the
life disparity, or the mean number of life years lost to mor-
tality, an index introduced by Vaupel and Canudas Romo
(2003). In an age-classified model, an individual that dies at
age x, which happens with probability b(x), loses some
remaining years of life that would have been available had
the individual not, in fact, died. The lost years of life are
unknown, but their expectation is the remaining life expec-
tancy at age x. Thus the expectation of the life lost due to
mortality is obtained by integrating over all ages at death

ey ¼
Z 1

0
eðxÞbðxÞdx (56)

where e(x) is remaining life expectancy at age x.
The mean life lost plays another role: it is a measure of

the variation in age at death called life disparity. If all indi-
viduals were to die at the same age, say x*, then b(x) would
be a delta function at x* and e(x*) would be 0, and (Eq. 56)
would give ey ¼ 0. As a measure of variability in longevity,
e† is highly correlated with the standard deviation of

longevity and other measures of variation. Vaupel et al.
(2011) analyzed patterns of e† across countries in relation to
life expectancy as a way to analyze premature death.
In an age 9 stage-classified model, we define a vector

~gy ¼ ð~g>1 ~BÞ> sx � 1: (57)

The vector ~g1 contains the expected remaining longevity of
every age-stage combination; the columns of ~B contain the
probabilities of death at each age-stage combination. Thus
the vector ~gy contains the expected life lost due to mortality,
for individuals of every age and stage combination. These
age 9 stage-specific expectations can be combined accord-
ing to a mixing distribution p (dimension sx � 1) as

gyðpÞ ¼ p>~gy: (58)

The result gyðpÞ is a scalar, the mean life lost due to mortal-
ity in a cohort composed of age-stage combinations in pro-
portions given by p.

POPULATION DYNAMICS: GROWTH AND STRUCTURE

We turn now from probabilistic outcomes for individuals
within cohorts to the dynamics of populations. Population
dynamics are the outcome of survival, development, and fer-
tility throughout the life cycle. The first two are accounted
for by ~U; the third is accounted for by ~F. The basic projec-
tion of population dynamics is

~nðtþ 1Þ ¼ ð~U þ ~FÞ~nðtÞ ð59Þ
¼ ~A~nðtÞ ð60Þ

with specified initial population ~nð0Þ ¼ ~n0.

Stable population theory and demographic ergodicity

If ~A is time-invariant, we expect the population to con-
verge, from any non-negative and non-zero initial population,
to exponential growth at a rate k given by the dominant
eigenvalue of ~A, and a structure proportional to the corre-
sponding right eigenvector ~w. The reproductive value vector
will be given by the corresponding left eigenvector ~v of ~A.
When normalized to sum to 1, the vector ~w gives the joint

age 9 stage distribution in the stable population. The mar-
ginal stable age and stage distributions are given by

wage ¼ ðIx � 1>s Þ~w (61)

wstage ¼ ð1>x � IsÞ~w: (62)

The reproductive value vector ~v is not a probability distri-
bution; instead, the entries of ~v give the asymptotic relative
sizes of populations initialized with a single individual of the
corresponding age-stage combination. The reproductive
value of a mixture of ages and stages is

vðpÞ ¼ p>~v (63)

where p is the mixing distribution.
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Ergodicity.—Our expectation of ergodic behavior (the con-
vergence to exponential growth and a stable structure from
any initial condition) may be disappointed, because ~A may
not be irreducible (a matrix is irreducible if there exists a
pathway from every state to every other state). The Perron-
Frobenius theorem guarantees that the state space of a redu-
cible matrix can be decomposed into subspaces, each of
which leads to different asymptotic behavior (see Csetenyi
and Logofet 1989, Caswell 2001: Section 4.5, Stott et al.
2010, Caswell 2012: Appendix B). For example, life cycles
with post-reproductive age classes are reducible and the
behavior of such a population depends on whether the initial
population contains only post-reproductive individuals
(eventual extinction) or contains some reproductive individ-
uals (potential population growth).
The i-state space of an age 9 stage-classified model will

certainly be reducible if it contains some impossible combina-
tions, which appear as rows and columns of zeros in ~A (see
Eqs. 8 and 9). These states cannot be reached from, nor do
they lead to, any other states; hence ~A is reducible. However,
if we make the eminently reasonable decision not to start with
a population composed solely of impossible individuals, these
states will have no effect on eventual dynamics.
It is more challenging to deal with reducibility generated

by the complicated pathways through the life cycle produced
by the interaction of age-specific and stage-specific pro-
cesses. Stochastic ergodic theorems may provide some guid-
ance (Cohen 1982). Ergodicity can, in any specific case, be
determined using the patterns of zero and non-zero entries
of the reproductive value vector ~v (Caswell 2012). If ~v has
positive entries for all non-impossible states, then popula-
tion dynamics converge to k and ~w from any initial condi-
tion not restricted to impossible states. If ~v has zero entries
for some non-impossible states, then an initial condition
restricted to those states would not converge to ~w, but rather
to the distribution given by a different eigenvector. This pos-
sibility can easily be checked for any specified matrix.

Net reproductive rate.—The familiar net reproductive rate in
age-classified models,

R0 ¼
Z 1

0
‘ðxÞmðxÞdx (64)

serves three functions (Caswell 2009): it is the mean number
of (usually female) offspring produced over a lifetime, it is
the per-generation growth rate of the population, and it is
an indicator function that distinguishes population growth
(R0 > 1) from population decline (R0 < 1). Cushing and
Zhou (1994) generalized this concept to stage-classified
models by showing that

R0 ¼ max eigðRÞ (65)

where R is the next-generation matrix,

R ¼ FN: (66)

If F contains only a single type of offspring, then Eq. 65
satisfies all three functions of the net reproductive rate. But

if multiple types of offspring exist, then R0 defined by
Eq. 65 satisfies the last two (per-generation growth rate
and growth indicator function), but it is not the mean life-
time number of offspring. Indeed, if multiple types of off-
spring exist, there is no single “number of offspring” to
calculate.
The Cushing-Zhou result (Eq. 65) applies equally to

age 9 stage-classified models, so

R0 ¼ max eigð~RÞ (67)

where ~R ¼ ~F~N. However, taking advantage of the structure
of the population vector, we can carry the analysis further.
Let Fij and Nij denote the age blocks in ~F and ~N, respectively.
For example, for x ¼ 3,

~F ¼
F11 F12 F13

0 0 0
0 0 0

0
@

1
A ~N ¼

N11 N12 N13

N21 N22 N23

N31 N32 N33

0
@

1
A: (68)

Then

~R ¼

Px
i¼1 F1iNi1

Px
i¼1 F1iNi2

Px
i¼1 F1iNi3

0 0 0

0 0 0

0
B@

1
CA ð69Þ

¼
R11 R12 R13

0 0 0

0 0 0

0
B@

1
CA: ð70Þ

The matrix ~R is block upper-triangular, and hence its domi-
nant eigenvalue is

R0 ¼ max eigðR11Þ: (71)

The matrix R11 is of dimension s � s; its (i,j) entry is

R11ði; jÞ ¼ Eðlifetime stage i offspringjstarting in stage jÞ:
(72)

It can be extracted easily from ~R as

R11 ¼ Z ~R Z> (73)

where

Z ¼ Isj0s�ðx�1Þs
� �

(74)

The remaining lifetime reproductive output at age class j
is obtained by applying the following analyses to the block
R1j.

Mean lifetime reproduction.—As was the case for stage-clas-
sified models, if there exists only a single stage of offspring,
then R0 calculated from the Cushing-Zhou theorem also
gives the mean lifetime reproduction. However, when there
are multiple offspring stages, the matrix R11 contains infor-
mation on the production of all these types of offspring. Just
as we did for the age-specific fertility function in Eqs. 29–32,
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we can aggregate lifetime reproductive output in several
ways.

1. Weighted mean lifetime reproduction. Let cs be a vector
of weights, of dimension s � 1. Then

rweighted ¼ ðc>R11Þ> (75)

The vector rweighted is a weighted combination of the rows
of R11, and c, a vector whose entries assign weights to the
different types of offspring. The ith entry of rweighted gives
the mean weighted lifetime reproduction by an individual
starting life in stage i.

2. Lifetime reproduction of a mixed cohort. A cohort start-
ing as a mixture specified by a mixing distribution p will
have a lifetime reproductive output of

rmixed ¼ R11p (76)

This vector is a weighted combination of the columns of
R11; its ith entry is the mean lifetime production of type i
offspring by the mixed cohort.

3. Mixed and weighted lifetime reproduction. A scalar mea-
sure of mean lifetime reproduction is given by

q ¼ c>R11p: (77)

In the special case where only a single type of offspring is
produced, q ¼ R0. But in general, lifetime offspring pro-
duction in age-stage models is a more diverse and
nuanced concept than R0. Note that much more informa-
tion about lifetime reproductive output, including vari-
ances, higher moments, and sensitivity analysis can be
obtained using Markov chains with rewards (Caswell
2011, van Daalen and Caswell 2015, 2017). The applica-
tion of these methods to age 9 stage-classified models
will be explored elsewhere.

POPULATION DYNAMICS: GENERATION TIME

Generation time, which is defined in several ways, is an
important demographic measure of the time scale on which
a population operates (Gaillard et al. 2005, Lebreton 2005,
Steiner et al. 2014). In conservation standards established
by the International Union for the Conservation of Nature,
population decline measured in units of generation time
helps establish the threat level for a species.
Three measures of generation time are in common use in

age-classified demography (Coale 1972, Caswell 2001): the
growth rate generation time, which is the time required to
grow by a factor of R0,

T ¼ logR0

log k
(78)

the cohort generation time, which is the mean age of the
production of offspring by an individual,

C ¼
R
xmðxÞ‘ðxÞdxR
mðxÞ‘ðxÞdx (79)

and the stable age generation time, which is the mean age of
the parents of the offspring produced in a population at the
stable age distribution c(x),

A ¼
R
xmðxÞcðxÞdxR
mðxÞcðxÞdx : (80)

Of these three, the cohort generation time is the most appro-
priate as a measure of the time scale on which a life history
operates, because it is explicitly calculated as a property of
an individual over its lifetime. The cohort generation time is
denoted as l by Coale (1972), but that symbol is also used
for the mortality rate. It is not unusual for such notational
conflicts to arise when discussing demographic calculations
that span a variety of indices or processes.
Three complications arise in extending the familiar calcula-

tions for age-classified demography to age 9 stage models:
(1) Multiple kinds of offspring may be produced, following
different age schedules, and thus each appearing to have a dif-
ferent generation time; (2) Individuals that start life in differ-
ent offspring stages may survive, mature, and reproduce
differently, and hence have different generation times; (3)
Unlike age-classified models, in which a cohort is always of a
fixed age, a cohort may start life as a mixture of stages.
The cohort generation time for stage-classified models was

derived in (Caswell 2009: Appendix A.5). What follows is the
extension to age 9 stage-classified models, in which both age
and stage trajectories must be taken into account.
Begin with a cohort ~n0 (dimension sx 9 1); being a

cohort, it contains only age class 1 individuals, but may have
any initial stage distribution. Normalize the cohort so that
k~n0k ¼ 1. The survivors of this cohort at age x are

~nðxÞ ¼ ~Ux~n0 (81)

and the offspring, in the first age class, produced by these
survivors are

/ðxÞ ¼ ðe>1 � IsÞ~F~Ux~n0 s � 1 (82)

where e1 is a unit vector of length x. Summing this quantity
over all ages gives the vector of total lifetime reproduction,

/life ¼
X1
x¼0

/ðxÞ ð83Þ

¼ ðe>1 � IsÞ~F
X1
x¼0

~Ux~n0 ð84Þ

¼ ðe>1 � IsÞ~F~N~n0: ð85Þ

The mean age of the production of the offspring over the
lifetime is proportional to

X1
x¼0

x/lifeðxÞ ¼ ðe>1 � IsÞ~F
X1
x¼0

x~Ux~n0: (86)

But X1
x¼0

x~Ux ¼ ~N~U~N: (87)
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The proportionality constant is required to make the entries
of /life sum to 1 as probability distributions; with this nor-
malization the vector of cohort generation times, for each
starting stage of offspring, is

C ¼ Dð/lifeÞ�1ðe>1 � IsÞ~F~N~U~N~n0 s � 1: (88)

The ith entry of Γ is the mean age of production of offspring
of type i by a cohort of individuals with initial stage distribu-
tion ~n0, and accounting for all stage transitions tha occur as
the individuals age. Entries of Γ corresponding to stages that
never appear as offspring will be undefined (0/0) in Eq. 88;
they should be set equal to 0.

SENSITIVITYANALYSIS OFAGE 9 STAGE-CLASSIFIED MODELS

In this paper, each step in the construction and analy-
sis of the age 9 stage-classified model has been written
in terms of matrix operations. This is not only for nota-
tional, analytical, and computational efficiency. It also
makes possible the systematic calculation of the sensitiv-
ity of any output to changes in any set of parameters,
using matrix calculus. Some previous studies have
applied matrix calculus to vec-permutation models that
are similar or equivalent to age 9 stage-classified models,
including stage-classified epidemics (Klepac and Caswell
2011), spatial models (Strasser et al. 2012), the sensitivity
of population growth rate in age-stage models (Caswell
2012, Caswell and Shyu 2012, Caswell and Salguero-
G�omez 2013), and the effects of age and frailty (Roth
and Caswell 2016). These results can be extended to a
general sensitivity analysis of age 9 stage-classified mod-
els; details will be presented elsewhere.
Let ξ be any output variable (see Table 1), scalar- or vec-

tor-valued, calculated from ~A, and let h be a vector of
parameters that affect any of the Ui and/or Fi. In matrix cal-
culus notation, the sensitivity of ξ to h is

dn

dh>
¼ dn

dvec> ~A

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1

"
dvec~U
dvec>U

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2

�
Xx
i¼1

dvecU
dvec>Ui

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

3

dvecUi

dh>

� 	
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

4

þ dvec~F
dvec>F

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2

�
Xx
i¼1

dvecF
dvec>Fi

� 	
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

3

dvecFi

dh>

� 	
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

5

#
(89)

Each of the numbered terms in (Eq. 89) has its own function.

Term 1

Expresses the dependence of the outcome variable ξ on
the matrix ~A or its components ~F and ~U. this matrix is
obtained by differentiating ξ with respect to ~U and ~F.

For example, if n ¼ k, then Term 1 is the familiar deriva-
tive of k to the entries of the matrix ~A,

dk

dvec> ~A
¼ w> � v>: (90)

But suppose instead that interest focuses on the net
reproductive rate, as defined by Eq. 67, and let y and x be
the right and left eigenvectors of ~R corresponding to R0,
scaled so that y>x ¼ 1. Then n ¼ R0, and Term 1 is the
derivative of the net reproductive rate with respect to ~A,
which is

dR0

dvec> ~A
¼ dR0

dvec> ~R
dvec~R

dvec> ~A
ð91Þ

¼ dR0

dvec> ~R
dvec~R

dvec>~F
þ dvec~R

dvec~N

dvec~N

dvec> ~U

 !
ð92Þ

¼ ðy>�x>Þ ~N>� Isx
� � þ Isx� ~F

� �
~N>� ~N
� �� � ð93Þ

¼ y>�x>
� �

~N>� Isx
� �þ ~N>� ~R

� �� � ð94Þ

(extending calculations from Caswell [2009] to the age 9

stage case).
The point of these two examples is that Term 1 is the only

part of the sensitivity calculation that depends on what the
dependent variable may be (k, R0, or anything else).

Term 2

These are constant matrices, depending only on the vec-
permutation matrix K the age transition matrix D and the
age assignment matrix H. Since ~U and ~F are given by
Eqs. 11 and 12, the two derivatives in Term 2 are

dvec~U
dvec>U

¼ Isx � K>
DK

� �
(95)

dvec~F
dvec>F

¼ Isx � K>
HK

� �
: (96)

Notice that these matrices are independent of the dependent
variable or on the identity of the parameters h.

Term 3

These are the derivatives of the block diagonal matrices U
and F to their diagonal entries Ui and Fi. As such they
depend only on the arrangement of the matrices on the diag-
onal. A new way to obtain these derivatives is based on
Eqs. 14 and 15 of Caswell and van Daalen (2016). Define
the matrices Pi and Qi, of dimension xs � s and s � xs,
respectively,

Pi ¼
0sði�1Þ�s

Is
0sðx�iÞ�s

0
@

1
A Qi ¼ 0s�ði�1Þs Is 0s�ðx�iÞs

� �
: (97)
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Then

dvecU
dvecUi

¼ dvecF
dvecFi

¼ Q>
i � Pi: (98)

Again, note that this term is independent of the dependent
variable and the parameters being perturbed.

Terms 4 and 5

These terms contain the biologically interesting part of
the calculation, because it is at this point that we find
the dependence of the transition and survival matrices Ui

and the fertility matrices Fi on the parameter vector h.
This is the point where the age-stage specific processes
of survival, growth, development, reproduction, etc. are
determined.
The possibilities are limited only by imagination. As an

example, suppose that interest focuses on a parameter that
imposes a multiplicative perturbation on the stage-specific
survival probabilities at a specified age or ages. We can write

Ui ¼ GiRi (99)

where Σi is a diagonal matrix with a vector of survival prob-
abilities r on the diagonal and Gi is a matrix of transition
probabilities conditional on survival. From this expression,
it can be shown that

dvecUi

dr>i
¼ Is �Gið ÞD vec Isð Þ Is � 1sð Þ: (100)

Now incorporate the parameter vector by writing
ri ¼ r̂i � h, where r̂i is the baseline vector of stage-specific
survival probabilities at age class i. Then

dvecUi

dh>
¼ dvecUi

dr>i

dri
dh>

ð101Þ

¼ dvecUi

dr>i
Dðr̂iÞ: ð102Þ

Because this perturbation is hypothesized to affect only sur-
vival, the derivatives of Fi to h in Eq. 89 are all zero.
This calculation is an arbitrary example. The reader can

no doubt think up possible applications (e.g., h might
describe harvest or bycatch impacts that reduce the survival
probability of certain stages of a threatened species, or it
might reflect allocation of resources to survival, with an
associated cost in fertility, . . .).
The causal pathways from a parameter vector h to some

demographic outcome ξ can be enormously complex in an
age 9 stage-classified model. The great value of the vec-
permutation formulation is that all these pathways are
taken into account, and that attention can focus on the
effects of parameters on the age 9 stage-specific vital
rates in terms 4 and 5, and on the way that the outcome is
computed from the age 9 stage matrix ~A in term 1. The
connection between these two, for any outcome for any

species described by any set of stages, is given by the series
of constant, and easily computable, matrices in terms 2
and 3.

A MODEL SPECIES EXAMPLE

Here, we construct and analyze an age 9 stage-classified
matrix model for a hypothetical model species, inspired by
(although not identical to) poecilogonous marine inverte-
brates (Levin et al. 1987, Krug 2007, Knott and McHugh
2012). These are species that produce two dramatically dif-
ferent types of larval offspring. One type, so-called plank-
totrophic larvae, feed during the larval stage and receive
only a small parental investment. The other type, lecitho-
trophic larvae, do not feed, and rely on a large parental
investment in the form of a yolk reserve. Lecithotrophic lar-
vae are more costly to produce and are produced in lower
numbers than are planktotrophic larvae. However, lecitho-
trophic larvae have a higher survival probability than their
planktotrophic siblings, an advantage that persists into
post-larval life (Levin et al. 1987).
Our model species has four stages: large and small juve-

niles, and adults that began life as either large or small juve-
niles. We will refer to these as large and small adults,
although large-born and small-born might be more
accurate. MATLAB code for the calculations is available as an
Supporting information.

The age 9 stage-classified model

The life cycle of our model species contains small and
large juveniles and small and large adults. Stage-specific
demography is defined in terms of survival probability r,
maturation probability (conditional on survival) c, and fer-
tility f. Each of these parameters is a function of both stage
and age. The resulting life cycle graph is shown in Fig. 1; the
model parameters are described in Table 3. The life cycle
graph describes the stages; age dependence enters by making
the survival, maturation, and fertility parameters in the
graph into functions of age as well as stage.

FIG. 1. Life cycle graph for the example species. The nodes rep-
resent the four stages: small juvenile (JS), large juvenile (JL), small
adult (AS) and large adult (AL). The arrows represent survival, mat-
uration, and reproduction. The per-time-step probabilities of sur-
vival (rJS, rJL, rAS, rAL) and maturation (cS, cL) and the per-
time-step production of new individuals (fSS, fSL, fLS, fLL) all
depend on age, x.
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Life history description.—Because the two types of offspring
differ in the resources allocated to them by the parent, off-
spring type has consequences throughout the life cycle. Both
juvenile and adult survival probability are lower for small
individuals (Fig. 2a and b). Small juveniles also begin to
mature later than large ones and their maximum maturation
probability is lower (Fig. 2c).
Small individuals are less costly to produce, so they are

produced at a higher rate, by both small and large adults.
We have incorporated a certain heritability of type, which
results in large adults producing relatively more large juve-
niles and small adults producing relatively more small juve-
niles (Fig. 2d and e).

Matrix construction

We construct the age 9 stage model from the stage transi-
tion matrices Ux, the reproduction matrices Fx, the age transi-
tion matrix D and the age assignment matrix H. The life cycle
contains s = 4 stages (stage 1, small juveniles; 2, large juve-
niles; 3, small adults; and 4, large adults), and we consider
x = 50 age classes.
The matrix Ux describes the transition and survival prob-

abilities for individuals in age class x,

Ux ¼
rSJð1�cSÞ 0 0 0

0 rLJð1�cLÞ 0 0
rSJcS 0 rSA 0
0 rLJcL 0 rLA

0
BB@

1
CCAðxÞ; x¼ 1;���;50:

(103)

The s 9 s matrices Fx describe the stage-specific per capita
production of new individuals by reproduction, for individu-
als in age class x,

Fx ¼
0 0 fSS fLS
0 0 fSL fLL
0 0 0 0
0 0 0 0

0
BB@

1
CCAðxÞ; x ¼ 1; � � � ; 50: (104)

The first and second rows of Fx describe per capita produc-
tion of small and large juveniles, respectively.
The x � x matrix Di advances the age class of surviv-

ing individuals in stage i. All of the Di are identical, given
by Eq. 6. The x � x matrices Hi that assign newborn
individuals to the first age class are all identical, given by
Eq. 7. The matrices U;F, D, and H are created by putting
Ui, Fi, Di, and Hi on the diagonals, as in Eq. 10. Each of
these matrices is of dimension sx � sx, which for our
model is 200 � 200 . Finally, the age 9 stage-classified
projection matrices ~U, ~F, and ~A are constructed following
Eqs. 11–13.

Population growth and structure

It is convenient to begin with analyses of population
growth, because the stable population structure will provide
a family of mixing distributions that will be used several
times in the cohort analyses to follow.

Stable population structure.—Using the parameters defined
by Fig. 2, the population growth rate given by the dominant
eigenvalue of ~A is k ¼ 1:0083. The joint distribution of age
and stage in the stable population is contained in the corre-
sponding eigenvector ~w, normalized to sum to 1. Fig. 3
shows the joint distribution of age and stage and the mar-
ginal age distribution wage and stage distribution wstage, cal-
culated from Eqs. 61 and 62.
The joint distribution of age and stage in the stable popu-

lation is dominated by young and small individuals
(Fig. 3a). Adults (small and large) appear only at later ages.
The marginal age distribution decays rapidly with age; most
individuals are younger than 10. The marginal stage distri-
bution is dominated by small juveniles (~60%). Large juve-
niles are much scarcer (~15%). Large adults, however, are
more common (~20%) than small adults (~5%).
Even with only four stages, the interaction between age

and stage in the stable population is complicated. The condi-
tional stage distribution within each age class is shown in
Fig. 3d. Up until an age of about 10, the population is dom-
inated by small juveniles, but at later ages, it is dominated
by large adults. The pattern results from the differences in
survival probability and development time between large
and small juveniles and adults.

A mixing distribution for cohort initiation.—Cohort dynam-
ics begin with a group of newborn individuals, all in the first
age class, but in possibly different stages. Calculations of
survivorship, longevity, reproduction, and the age and stage
at death need the stage distribution of the cohort as a mix-
ing distribution. The mixing distribution p (dimension
s 9 1) is obtained by extracting the entries of ~w correspond-
ing to age class 1 and normalizing so that the resulting vec-
tor sums to 1

p ¼ ðe>1 � IsÞ~w
ðe1 � 1>s Þ~w

ð105Þ

¼ 0:85 0:15 0 0ð Þ> ð106Þ

TABLE 3. Model parameters used in the life cycle graph in Fig. 1.

Notation Description

Per-time step survival
probability
rJS(j) small juvenile
rJL(j) large juvenile
rAS(j) small adult
rAL(j) large adult

Per-time step maturation
probability
cS(j) small juvenile
cL(j) large juvenile

Per-time step production
fSS(j) of small juveniles by small adults
fSL(j) of large juveniles by small adults
fLS(j) of small juveniles by large adults
fLL(j) of large juveniles by large adults

Note: The index j refers to the age class of the individual; for
reproduction it refers to the age class of the parents.
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where e1 is a unit vector of length x. Thus about 85% of the
new offspring in the stable population are small.

Reproductive value.—Reproductive value is given by the left
eigenvector ~v of ~A (dimension sx � 1). It is a relative mea-
sure of contribution to future population size, customarily
scaled relative to that of a newborn individual. In our model

species, there are two such types, so Fig. 4 shows reproduc-
tive value scaled relative to that of a small juvenile.
The survival and maturation advantages of large juveniles

relative to small juveniles translate into a dramatic increase
in reproductive value. Juvenile reproductive value increases
with age, as individuals get closer to maturation. After mat-
uration, large adults have a reproductive advantage.
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FIG. 2. The age 9 stage-specific life history parameters for the example species.
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Cohort analyses

Survivorship.—The stage-specific survivorship vector ‘ðxÞ
is calculated by projecting a cohort with Eq. 17 and

counting the proportion of survivors. Because our model
species has two possible initial stages, small and large juve-
niles, the vector ‘ðxÞ has only two non-zero entries. Fig. 5
shows the survivorship of small and large individuals. Sur-
vivorship declines rapidly at young ages, when individuals
are subject to the high mortality rates of the juvenile stages,
and then declines more slowly after maturation. Large indi-
viduals have a dramatic survivorship advantage. The sur-
vivorship of a mixed cohort, starting with a mixing
distribution p calculated from the stable structure in
Eq. 106, lies between the survivorship curves for small and
large individuals, but much closer to that of small individu-
als. This reflects the dominance of the mixing distribution
by small juveniles.

Longevity.—The remaining life expectancy (mean remaining
longevity at a given age) of every stage is given by the vector
~g1, of dimension sx � 1, calculated from the fundamental
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matrix using Eq. 35 (Fig. 5c). Life expectancy of juveniles
increases with age as they approach maturity, after which
they will experience higher survival probability. The life
expectancy of the adult stages decreases smoothly with age.
The variance in longevity, calculated using Eq. 37,

decreases with age for large juveniles, but shows a peak just
before the end of maturation, at which point individuals
either die very soon, or mature and probably survive for
quite some time, hence the large variance (Fig. 5c). Small
juveniles show a similar peak in variance. For adults, vari-
ance decreases steadily with age.
The mean and variance of longevity for a mixed cohort

are calculated using Eqs. 40 and 41 and the mixing distribu-
tion vector p1 given by Eq. 106. The resulting mean and
variance in longevity, at birth, are shown in Table 4.
When the variance in longevity of the mixed cohort is

decomposed into that due to heterogeneity among stages
and that due to stochasticity within stages, using Eqs. 43
and 45, the variance due to stochasticity was 35.2 and the
variance due to heterogeneity was 17.2. Thus the percentage

of the variance attributable to the heterogeneity among
stages is 32.8%.

Fertility.—The entries of Fx in Eq. 104 give the mean
production of each type of offspring by parents of each type,
at each age, as shown in Fig. 2d and e. We summarize
this information with the fertility indices defined in
Eqs. 29–32.
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FIG. 5. Properties of the example species. (a) Survivorship ‘(x) for small and large individuals, and for a mixed cohort with proportions
given by the mixing distribution p. (b) Remaining life expectancy as a function of age for each of the four stages. (c) Variance in remaining
longevity as a function of age for each of the four stages.

TABLE 4. Mean and variance in longevity, and decomposition into
contributions within and between stages at birth.

Outcome Small-born Large-born Mixed %

Mean longevity 4.8 16.4 6.6
Variance in longevity 20.8 115.4 52.3
Variance between 17.2 32.8
Variance within 35.2 67.2

Note: Mixing distribution defined by the reproductive output of
the stable population.
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As an example of a weighted fertility schedule, we suppose
that a large offspring is 10 times as costly as a small one, so
we set

c ¼ 1 10 0 0 >
� �

: (107)

The resulting fertility schedule fweighted is shown in Fig. 6a.
The mixed fertility schedule, given by Eq. 30 is shown in
Fig. 6b. And, finally, the weighted and mixed schedule from
Eq. 32 is shown in Fig. 6c.

R0 and lifetime reproductive output.—The matrix R11

containing mean lifetime reproduction for our model
species is

0:334 4:656 0 0
0:014 1:087 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA: (108)

A large juvenile will, as a result of the combined age- and
stage-specific life history characteristics of the model

species, produce many more offspring (by a 14-fold differ-
ence for small offspring and a 78-fold difference for large
offspring). The net reproductive rate, calculated as the domi-
nant eigenvalue of R11, is

R0 ¼ 1:166: (109)

Suppose that we simply want to count total numbers of
offspring produced. Then we use a weighting vector c ¼ 1s,
and obtain

rweighted ¼ 0:35 5:74 0 0ð Þ>: (110)

We see that, in terms of lifetime number of offspring, large
individuals have a 16-fold advantage over small individuals.
To compute the lifetime reproduction of a mixed cohort,

we use the mixing distribution p calculated from the stable
population in Eq. (106), to obtain

rmixed ¼ 0:99 0:18 0 0ð Þ>: (111)

Combining this particular choice of weighting and mix-
ing, we obtain the mean lifetime reproduction, by a
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mixed cohort, and counting total offspring of both types,
as

q ¼ 1:167: (112)

The analysis of an age 9 stage-classified model untangles
the interacting effects of age- and stage-specific parameters.
Even in a simple model species, large-born individuals have
a higher survivorship than small-born individuals, and their
earlier maturation increases their survival advantage
because they can escape juvenile mortality sooner. The two
stages have very different lifetime reproductive output, not
simply as a result of differences in production (Fig. 2d and
e), but as an interacting effect of juvenile survival, adult sur-
vival, and maturation. Our model example also demon-
strates how the composition of a population will influence
the demographic calculations. Mixed cohorts and popula-
tions and different choices of weighting vectors determine
how a mixed population will perform in terms of survival,
reproduction and population growth. These mixture calcula-
tions make possible the analysis of heterogeneity in initial
population structure, and in the structure that develops as
cohorts age within a population.

DISCUSSION

Our goal in this paper has been the development of a
systematic methodology, of wide applicability, for the
analysis of age 9 stage-classified matrix population
models.

Themes

Several themes have appeared repeatedly. Because the
state space of an age 9 stage-classified model is two-dimen-
sional, results that are familar as scalars in age-classified or
stage-classified models now become vectors or matrices. The
operations of marginalization and mixing thus play a critical
role.
Consider any demographic quantity calculated from an

age 9 stage-classified model. If this quantity is a joint func-
tion of age and stage (e.g., the age and stage at death), then
the marginal distributions (age at death and stage at death)
are obtained as in Eqs. 51 and 52. If, on the other hand, a
quantity is conditional on the age and stage of an individual
(e.g., mean longevity), then the properties of this quantity
for a heterogeneous cohort of individuals in different stages
is calculated as a mixture, as in Eqs. 40 and 41. Using the
total variance theorem, the variance in this quantity is parti-
tioned into components due to stochasticity and to the
heterogeneity created by the mixture, as in Eqs. 43 and 45.
Any age 9 stage-classified analysis should keep these con-
cepts in mind.
Another theme that appears throughout our methodology

is the interaction of age 9 stage-dependence across three
levels: the level of the individual (as in the life table func-
tions), the level of the cohort (as in calculations of life expec-
tancy and lifetime reproduction), and the level of the
population. Although these levels are implicit in both popu-
lation ecology and human demography, they appear explic-
itly here as a part of the methodology.

Variance is a recurring theme here. There is an increasing
appreciation of the importance of variance created by
stochastic differences between individuals (individual
stochasticity). The inclusion of variance calculations in the
approach here makes possible the decomposition of vari-
ances into components due to demographic differences (i.e.,
heterogeneity) among stages and ages, and to stochastic fac-
tors within stages.

Estimation and data

It is no surprise that age 9 stage-classified models require
an extra dimension of data: age-specific rates at every stage,
stage-specific rates at every age. Such detailed data are rare
(but see van Groenendael and Slim 1988) but we believe they
will become more common as the importance of long-term
individual data is recognized (Clutton-Brock and Sheldon
2010). The appropriate estimation procedures will, as
always, depend on the properties of the species, the possibili-
ties for monitoring, logistical difficulties, and available sta-
tistical methods. For that reason, we make no assumptions
about how the stages are chosen or how the matrices Ui and
Fi are estimated.
That being said, the generality of the method suggests

some promising directions for future investigation. For
example, multistate capture–recapture methods (Lebreton
et al. 2009) are designed to estimate survival and transition
probabilities from imperfect capture histories. In human
demography and biomedical survival analysis, multistate
event history methods are used to estimate age- and stage-
specific rates of mortality (Andersen and Keiding 2015), but
the data are often less fragmentary than in capture–recap-
ture analysis. Possible connections between these approaches
might help to estimate parameters for age 9 stage-classified
models.
In this context, for the special case of stages defined by

continuous traits, integral projection models (IPMs) are
essentially statisically sophisticated tools for estimating
high-dimensional matrices. An IPM requires kernel func-
tions for growth, survival, and fertility. If these kernels were
estimated separately for age classes 1, . . ., x, the resulting
model would be analogous to those considered here (Ellner
et al. 2016: Chapter 6). The fertility kernel are special cases
of the set of Fi, and the growth and survival kernels special
cases of the Ui, when partitioned into Gi and Σi as in Eq. 99.
When discretized for analysis, the set of IPMs would provide
a set of matrices to which our methods can be applied. Note,
however, that stages need not be defined by discretization of
continuous variables.

Data requirements

Estimating stage-specific survival, transitions, and fertil-
ity is challenging. Obtaining these estimates as a function
of age is even more so. However, we have made no
assumptions about how the Ui and Fi vary with age, so
even partial age dependence can be incorporated. Perhaps
fertility varies with age but survival does not (or cannot
be estimated). Or perhaps age dependence can be detected
only over sets of age classes (survival and transitions
described for age classes 1, 2–5, and >5, while fertility is
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described for age classes 1–5, 6–10, and >10). The end
result in any of these cases is a set of matrices Ui and Fi,
some of which are identical, but the analyses apply with-
out any additional calculations.
In the limit, our method can be applied when U and F do

not vary with age at all, in order to explore what would hap-
pen if age-dependent effects were introduced (e.g., Caswell
and Salguero-G�omez 2013).

Applications

Age 9 stage-classified matrix models are, in the end,
matrix models. As such, they can be applied in the same way
as age-classified or stage-classified models, to, inter alia,
conservation of threatened species, control of pests, ecotoxi-
cology, and epidemiology. These applications will require a
model that specifies a management-relevant outcome from a
management-relevant demographic structure. That might be
a simple juvenile–adult model (as in our artificial species) or
it might focus on the details of a particular species in a par-
ticular place at a particular time. In the latter case, one
builds a model based on data from that place and time and
applies the relevant methods to analyze it.
If both age and stage are significant components of the

i-state (which is the rationale for constructing an
age 9 stage-classified model in the first place), then appli-
cations will sometimes be well served by including the
additional information. (But not necessarily. There is no
reason to expect that the most complicated model is the
most useful for any specific application.) Having a
methodology for age 9 stage models that parallels that
for age- and stage-classified models will facilitate model
selection for applications.

Heterogeneity

The role of heterogeneity in population dynamics is a
problem of increasing interest (e.g. Vindenes et al. 2008,
Steiner and Tuljapurkar 2012, Caswell 2014, Vindenes and
Langangen 2015, Cam et al. 2016). From the perspective of
an age-classified model, stage structure is a form of unob-
served heterogeneity. It distorts age-specific outcomes
because of intra-cohort selection (Vaupel et al. 1979, Vaupel
and Yashin 1983). It is an additional source of variance
among individuals in demographic fate above and beyond
that generated by the age schedules of fertility and mortality.
From the perspective of a stage-classified model, age is a
form of unobserved heterogeneity. It distorts the dynamics
of stage structures and stage durations, particularly in
short-term transient responses. It can also increase variance
above that created just by the outcome of stage-specific
processes.
The age 9 stage-classified methodology presented here,

especially the variance decomposition analysis, can con-
tribute to the analysis of heterogeneity, because it makes it
possible to directly measure the consequences of any form
of heterogeneity that can be incorporated in the model, for
any outcome for which a variance is available. This includes,
but is not limited to, the incorporation of latent, unobserved
factors such as frailty (Caswell 2014, Hartemink et al. 2017,
Jenouvrier et al. 2018, Hartemink and Caswell 2018).

Age, stage, and phenotype: incorporating heritability

The models analyzed here include stages of both parents
and offspring, and so it is natural to wonder if somehow the
relation of parent to offspring, and the associated concept
of heritability, could be incorporating. There are three ways
in which the methods could be extended to include pheno-
types and heritability. Two of these correspond to the mod-
els of Coulson et al. (2010); the third is new.

1. Let stages represent phenotype categories. Then Fi would
become a map from parent phenotype to offspring phe-
notype, for parents of age class i, encapsulating the
notion of heritability. The matrix Ui would become a
phenotype transition and survival matrix for age class i;
its structure would depend on whether phenotype traits
do or do not change over an individual lifetime. The
result would be an age 9 phenotype model.

2. Replace age classes with phenotype classes. This would
lead to a stage 9 phenotype model. The matricesUi would
describe the survival and stage transitions of individuals in
phenotype class i. The Fi would describe the production of
offspring of all stages by individuals of all stages in pheno-
type class i. In the age 9 stage model, the matrix Hi is a
map from parent age to offspring age. It has the trivial
form of Eq. 7 because all newborn individuals start life in
age class 1, regardless of the age of their parent. In the
stage 9 phenotype model, Hi would become a parent-off-
spring phenotype map, encapsulating the heritability of the
phenotypic trait. Perfect heritability would imply that
Hi ¼ I. In the complete absence of heritability, all col-
umns ofHi would contain an identical probability vector.
In this model, the matrices Di would no longer describe
age transitions, but would be replaced by phenotype
transition matrices. Careful thought would be required
to distinguish stages, or more generally i-states, from
phenotypic traits (e.g., body size might be a stage, while
body size at birth, or the coefficients in a growth equa-
tion, would be phenotypic traits). See Chevin (2015) for
related discussion.

3. Age 9 stage 9 phenotype. The third possibility would
be to incorporate phenotype as a third istate dimension,
creating a fully age 9 stage 9 phenotype-classified
model. The projection matrix for such a model, of
dimension wsp (where p is the number of phenotype
classes) is obtained from a three-dimensional array of
matrices by a multigenerational generalization of the vec
operator. Such models are called hyperstate matrix mod-
els; their construction and analysis is presented in Roth
and Caswell (2016).

The development of age 9 phenotype, phenotype 9

stage, and especially age 9 stage 9 phenotype models is an
open research problem.

Extensions of age 9 stage-classified demography

The approach outlined here suggests extensions of the
models; here we mention a few of these.
The construction of ~n from the array N yields a popula-

tion vector in which stages are grouped within age classes.
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This gives a sort of priority to stage-specific processes, treat-
ing age as a secondary characteristic. The alternative, treat-
ing age as primary and stage as a secondary kind of
heterogeneity, would be obtained by transposing N and cre-
ating a population vector, call it ~n0, given by

~n0 ¼ vecN> ¼ Ks;x~n: (113)

The dynamics of ~n0 are given by a projection matrix

~A0 ¼ Ks;xð~U þ ~FÞK>
s;x: (114)

Then all the results in this paper can be extended to this
alternative arrangement by transforming the matrices as in
Eq. 114. In doing so, the block-Leslie structure of ~A in
Eq. 14, in which stage matrices are arranged in the pattern
of an age-classified matrix is replaced by a structure with
age-classified matrices arranged in the pattern of the stage
transitions.
Yet another intersting extension is to models structured

by stage and age within a stage. Stage-classified models lead
to geometrically distributed occupancy times. But if some
time must elapse before an individual can advance to the
next stage, some internal structure must be imposed to
keep track of how long the individual has been in the stage;
see Birt et al. (2009) for a recent presentation. These mod-
els are related to the age 9 stage-classified models consid-
ered here, and it will be valuable to connect the two
approaches.
We have presented methods here for linear, time-invariant

models, but one value of our approach is that it permits
direct extension to more sophisticated models. The popula-
tion dynamics in Eq. 60 are an ordinary matrix population
model, with the projection matrix ~A written as the sum of ~U
and ~F. Incorporating density dependence would result in
a nonlinear model in which ~A would be a function of ~nðtÞ.
The possible combinations of age- and stage-specific density
effects make it a daunting prospect to constuct such models.
However, the methodology here builds the projection

matrices from the block-diagonal matrices like Eq. 10, each
of which incorporates one of the sets of processes determin-
ing the dynamics (stage development, age transitions, fertil-
ity, and age assignment for newborn individuals). Even
more, the block-diagonal matrices in turn are composed of
well-defined matrices Ui and Fi describing the processes
operating on each age-stage combination. It is at the level of
these component matrices that the density effects or time
variation actually operate, and the formulation presented
here makes those matrices directly accessible for analysis.
Something like this has been approached for a stage-classi-
fied epidemic model by Klepac and Caswell (2011).
Stability analysis, reactivity analysis, and sensitivity analysis

of nonlinear age 9 stage-classified models will then be
approachable via extensions, similar to those in Eq. 89, of the
matrix calculus approaches developed for nonlinear age- and
stage-classified models (Caswell 2008, Verdy and Caswell 2008).
Our methodology invites similar extensions to time-vary-

ing and stochastic environments, by making it easily possible
to explore the effects of stochasticity in age- and stage-speci-
fic survival, transitions, and fertility. The same applies to

spatial structure. However, adding location to the model will
require increasing the dimensionality of the i-state space
(just as did the addition of phenotype discussed above). The
population vector for an age 9 stage-classified model is
obtained by applying the vec operator to the two-dimen-
sional matrix N in Eq. 1. The population vector for the
age 9 stage 9 location model is obtained by applying a
multidimensional version of the vec operator to the three-
dimensional analogue of Eq. 1. Such arrays are called
hypermatices, and the higher-dimensional models referred
to as hyperstate matrix models; their construction and anal-
ysis are detailed in Roth and Caswell (2016). It should come
as absolutely no surprise that adding additional dimensions
to the i-state space requires increasing amounts of addi-
tional data, but the framework presented here makes it pos-
sible, in principle, to do so. This list can be extended. We
invite the reader to do so.
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