ANTIOXIDANTS & REDOX SIGNALING

Volume 29, Number 9, 2018 -
Mary Ann Liebert, Inc.

DOI: 10.1089/ars.2017.7293

Discoveries
Forum REvVIEW ARTICLE

The Many Faces of Long Noncoding RNAs in Cancer

Xue Wu? Oana M. Tudoran,® George A. Calin®* and Mircea Ivan'?

Abstract

Significance: The emerging connections between an increasing number of long noncoding RNAs (IncRNAs)
and oncogenic hallmarks provide a new twist to tumor complexity.

Recent Advances: In the present review, we highlight specific IncRNAs that have been studied in relation to
tumorigenesis, either as participants in the neoplastic process or as markers of pathway activity or drug
response. These transcripts are typically deregulated by oncogenic or tumor-suppressing signals or respond to
microenvironmental conditions such as hypoxia.

Critical Issues: Among these transcripts are IncRNAs sufficiently divergent between mouse and human ge-
nomes that may contribute to biological differences between species.

Future Directions: From a translational standpoint, knowledge about primate-specific IncRNAs may help
explain the reason behind the failure to reproduce the results from mouse cancer models in human cell-based

systems. Antioxid. Redox Signal. 29, 922-935.
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Introduction

SINCE THE DECLARATION of War on Cancer in 1971, in-
creased efforts have been focused on characterizing the
cellular and molecular changes associated with tumor pro-
gression and therapeutic response. Six key hallmarks have been
highlighted to describe the mechanisms through which tumor
cells proliferate, invade, and metastasize (39), and new
emerging hallmarks are added as knowledge advances (40).
Nevertheless, despite the progress in understanding the genetic
programming of tumor cells, the overall decrease in mortality
remains relatively modest. A major reason for therapeutic
failure is tumor heterogeneity: advanced tumors being in fact a
collection of dynamic subpopulations with different mutation
spectra and vulnerabilities. Second, increasingly detailed mo-
lecular dissection of tumor-driving signals has revealed addi-
tional layers of complexity, with special attention being drawn
by the expanding world of noncoding RNAs.

Over the past two decades, these cellular RNAs that trans-
lated into proteins have been gradually implicated in virtually

all physiological, developmental, and disease processes, in-
cluding cancer (6, 9, 25, 29, 57, 62). According to the classic
dogma, RNA transcripts simply served as templates for protein
synthesis (22), which led to decades of protein-centered re-
search. However, successive waves of discovery identified
multiple categories of functional noncoding transcripts, be-
ginning with heterogeneous nuclear RNAs (45, 113), followed
by introns (4, 5, 20), small nuclear RNAs (37, 38, 63, 81, 102),
microRNAs (miRNAs) (61), and long noncoding RNAs
(IncRNAs) (10). While the study of miRNAs dominated the
first decade of the noncoding RNA revolution, in recent years,
IncRNAs—generically defined as noncoding transcripts lon-
ger than 200 ribonucleotides—have moved to center stage.
The completion of human genome project and the parallel
progress in RNA sequencing technology have been instru-
mental for identification of thousands of IncRNA transcripts
(14, 17, 55, 97). In the latest Human GENCODE release
(version 26, October 2016, GRCh38, Ensembl 88), 15,787
genes originating 27,720 RNA locus transcripts are identified
as IncRNA genes. While the genome size tends to increase
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during metazoan evolution toward increasingly complex life
forms, the number of protein coding genes has remained
relatively steady (105). In contrast, the number of noncoding
elements, including IncRNAs, appears to have increased
dramatically. As the term IncRNA is a generic designation
based on size, additional classifications are required when
dissecting their biological roles. A popular categorization is
based on their genomic contexts (Fig. 1): (i) promoter-
associated IncRNAs (Fig. 1a) (e.g., promoter of CDKNIA
antisense DNA damage-activated RNA); (ii) enhancer-
associated IncRNAs (Fig. 1b) (e.g., Evf2); (iii) natural anti-
sense transcripts (NATs, Fig. 1c) (e.g., hypoxia-inducible
factor 1 alpha antisense 2 [HIFIA-AS2]); (iv) gene body-
associated (sense) IncRNAs (Fig.1d) (e.g., CCAAT/
enhancer binding protein alpha - ecCEBPA); and (v) long
intergenic ncRNAs (lincRNAs, Fig. le) (e.g., HOX tran-
script antisense RNA [HOTAIR], metastasis-associated
lung adenocarcinoma transcript 1 [MALATI]) (8, 101).

From a cancer perspective, the ever-increasing number of
connections between IncRNAs and oncogenic hallmarks
adds a new twist to tumor complexity. IncRNAs tend to be
less conserved during evolution and their expression exhibits
higher tissue specificity compared with PCGs. Therefore,
detailed knowledge about cancer-associated IncRNAs may
explain some differences between neoplastic cells derived
from different tissues or different species.

Despite the fundamental difference with respect to protein
coding ability, IncRNAs exhibit important similarities with
PCGs, including chromatin marks at their promoters or en-
hancers (35). Furthermore, IncRNA genes are also transcribed
by RNA polymerase II, spliced at canonical splicing sites, and
some undergo polyadenylation (93). Similarly to coding genes,
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IncRNAs are regulated, positively and negatively, by com-
plexes of transcription factors, coregulators and corepressors,
from proximal promoters or enhancers. It is predictable
therefore that transcription factors that drive proliferation and
survival programs in normal or tumor cells also engage
IncRNAs that regulate specific aspects of tumor biology.

In addition to cell-autonomous regulatory mechanisms, the
tumor microenvironment has a significant impact in shaping
the IncRNA landscape. The combination of stress factors,
including oxygen and nutrient depletion, favors the selection
of populations with increased ability to survive by rewiring
their molecular networks, including metabolism, apoptotic
responses, and proliferative programs. As discussed below,
it is predictable that tumor microenvironment-regulated
IncRNAs should impact this set of basic cell responses.

How can a ribonucleotide stretch affect the survival and
proliferation of a neoplastic cell? IncRNAs have been shown to
regulate gene expression at multiple levels (epigenetic, tran-
scriptional, and post-transcriptional) through interaction with
other biomolecules, such as proteins, regulatory DNA regions,
and miRNAs (Fig. 2). Subcellular localization appears to be a
major determinant for IncRNA interactions and therefore func-
tions. In particular, nuclear IncRNAs modulate gene expression
in cis or trans by interacting with transcriptional coregulators
and chromatin remodeling complexes. As shown by Rinn and
colleagues, ~20% IncRNAs associate with the polycomb re-
pressive complex 2 (PRC2), a multicomponent histone me-
thyltransferase required for epigenetic silencing (56). A classic
example is provided by HOTAIR, shown to reprogram PRC2
and LSD1-CoREST (lysine-specific demethylase 1 and REST
corepressor 1 complex) occupancy within the homeobox D
cluster (34, 108). Subsequent studies, however, indicated
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FIG. 1. IncRNA classifica-
tion. Based on genomic con-
text, IncRNA can be classi-
fied into five categories: (a)
promoter-associated IncRNAs,
(b) enhancer-associated Inc-
RNAs, (¢) natural antisense
transcript, (d) gene body-
associated IncRNAs, and (e)
intergenic IncRNAs. IncRNA,
long noncoding RNA.
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that the IncRNA-based PRC2 guiding model needs to be re-
vised (23, 54). Furthermore, Portoso et al.’s recent results
suggest that HOTAIR-PRC?2 interactions are dispensable for
HOTAIR-mediated transcriptional silencing (90).

A significant proportion of IncRNAs are thought to act in
cis by enhancing or, conversely, repressing the expression of
nearby genes (89). How exactly these IncRNAs perform these
functions remains a debated topic. Some of these noncoding
transcripts may reorganize the local architecture of chromatin
and stoichiometry of transcriptional complexes by specific
RNA-protein interactions. Recently, however, Engreitz et al.
(26) provided a surprising twist to the function of IncRNAs.
Their results indicate that (at least in some cases) the IncRNA
transcript itself is not critical for the regulation of a neigh-
boring gene as long as there is active transcription of this
noncoding locus. In other words, the sequence and interac-
tions of the noncoding RNA product take a backseat to the
actual process that generates it. Based on the large number
of IncRNAs and the enormous diversity of contexts in which
they function, it seems reasonable to assume that these
mechanisms are not mutually exclusive.

A puzzling characteristic of IncRNAs is that most of them
exhibit very low expression in a particular cell context, in-
cluding tumors. Many are often considered transcriptional
noise and tend to be discounted by arbitrarily set expression
cutoff. For IncRNAs, however, low expression should not
automatically be viewed as lack of significance as they may
achieve biologically meaningful concentrations in specific
subcellular compartments; for example, the physical looping
mediated by a specific IncRNA bringing together an enhancer
and a promoter (66, 89). Supporting evidence has been
presented linking IncRNAs to the three-dimensional or-
ganization of the nucleus, such as paraspeckle formation or
multichromosomal structure (21, 36). These highly specific
and localized interactions may support therefore the com-
patibility between low expression and tissue specificity (84).
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FIG. 2. IncRNA functions.
A diverse range of mecha-
nisms have been described for
IncRNA regulation of their
targets depending on their sub-
cellular localization: assembly
and recruitment of chromatin-
modifying complexes to their
DNA targets in cis; some
IncRNAs act as RNA decoys,
tethering transcription factors
away from their DNA targets
by directly binding to them as
target mimics; and guiding
of the physical looping that
occurs between enhancers and
targeted promoters (enhancer
IncRNAs). Many IncRNAs
bind to various protein partners
to regulate RNA splicing, deg-
radation, and translation; others
act as microRNA target site
decoys. miRNA, microRNA.

miRNA sequester

At the post-transcriptional level, IncRNAs have been shown
to be involved in virtually all steps of RNA metabolism, in-
cluding stability, processing, and decay. The upregulation of
natural antisense (NAT) type of IncRNAs often affects gene
expression on the opposite strand by generating RNA duplexes,
either by transcript stabilization or degradation via RNA in-
terference. Several other effects such as alternative splicing
IncRNA-mediated RNA processing have been described as
well as an mRNA degradation process called Staufen-mediated
decay, which involves IncRNAs binding to the 3’'UTR of
Staufen-targeted genes (58, 59). Furthermore, IncRNAs can
also directly bind proteins, mostly transcription factors, to dis-
rupt their interaction with targeted DNA or other proteins (49).

We will now apply the interactions and functions sum-
marized to the specific case of tumors and highlight how
IncRNAs can be integrated in the network of classic neo-
plastic determinants.

Tumor Microenvironment and IncRNAs;
the Effect of Hypoxia

It is estimated that more than half of solid tumors contain
hypoxic regions (75) (11, 110) that represent sources of cells
with aggressive phenotype and high resistance to therapy (42,
94, 98, 99). The imbalance between high oxygen consumption
of fast proliferating tumor cells and impaired oxygen delivery
due to abnormalities in tumor vasculature (30) triggers signaling
pathways that regulate tumor cell survival, angiogenesis,
metastasis, immune response, and metabolic reprogramming.

Hypoxia-mediated cellular response is primarily driven
through the HIF pathway, a complex regulatory network,
with multiple feedbacks and checkpoint signaling loops. HIF
transcription factors are heterodimers comprising two
subunits: an oxygen-sensitive o-subunit (hypoxia-inducible
factor 1 alpha [HIF-1a], HIF-2«, and HIF-3«) and a con-
stitutively expressed f3-subunit (HIF-15/ARNT, HIF-2//
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FIG. 3. Examples of hypoxia-regulated IncRNAs. IncRNAs can be regulated by hypoxia through direct or indirect manner. Some
IncRNAs, such as NEATI, MALATI, and HINCUT-1, etc. have been identified as direct HIF targets. HIF is also involved in
upregulation of H19, but most likely via an indirect signaling through SP1. Hypoxia-mediated epigenetic alterations also play
important roles in the expression of some hypoxia-responsive IncRNAs such as lncRNA WTI and LET. DNMT1, DNA methyl-
transferase 1; EMT, epithelial-to-mesenchymal transition; H/9, imprinted maternally expressed IncRNA; HIF, hypoxia-inducible
factor; HINCUT-1, hypoxia-induced noncoding ultraconserved transcript 1; LET, low expression in tumor; MALATI, metastasis-
associated lung adenocarcinoma transcript 1; NBR2, neighbor of the BRCA1 gene 2; NEAT 1, nuclear paraspeckle assembly transcript
1; TET2, tet methylcytosine dioxygenase 2; WT1, Wilms’ tumor 1.

ARNT2). While HIF-15/ARNT is ubiquitously expressed,
HIF-25/ARNT?2 is mainly localized in neural tissue and
kidney. Three prolyl hydroxylases, EGLN 1-3/PHD 1-3,
hydroxylate two proline residues of HIF-o (12, 27, 51), thus
favoring the binding of von Hippel-Lindau tumor suppressor
protein (pVHL) to HIF-o,, which subsequently targets HIF-o
for ubiquitination-mediated proteasomal degradation (52, 53,
82). Under hypoxic conditions, the activity of EGLN en-
zymes decreases, resulting in increased abundance of non-
hydroxylated HIF-o subunits, which cannot be recognized by
the pVHL complex, thus able to form an active transcrip-
tional complex.

Active HIF regulates the transcription of hundreds of coding
and noncoding genes. While a large set of miRNAs have been
reported as hypoxia responsive (31), a smaller number of
IncRNAs have been identified that respond with at least some
consistency to oxygen availability. However, it should not be
interpreted that miRNAs are generally more responsive to
oxygen deprivation. First, miRNAs have been systematically
investigated for a longer period of time (103). Second, multiple
nomenclatures coexisted for IncRNAs and one could speculate
that the same IncRNA may have been identified by different
screens under different names. Finally, omission of non-
polyadenylated transcripts from library preparation may have
led to the loss of hypoxia-responsive IncRNAs.

Overall, two types of IncRNA-HIF connections have been
described: IncRNAs that are regulated in response to hypoxia
and HIF signaling subsequently and IncRNAs that regulate

HIF signaling (Fig. 3). Many hypoxia-inducible IncRNAs
reported to date are direct transcriptional HIF targets (18, 19,
28, 79, 85, 86, 121, 124, 130). Chromatin immunoprecipi-
tation sequencing studies of HIF-DNA binding have revealed
that ~30% of HIF binding sites are close to noncoding gene
loci; correlations with hypoxic gene regulation revealed
significant associations between HIF binding and transcrip-
tion of IncRNA. Nevertheless, several IncRNAs such as nu-
clear paraspeckle assembly transcript 1 (NEATI), MALATI,
HIF1A-AS2, imprinted maternally expressed IncRNA (H19),
hypoxia-induced noncoding ultraconserved transcript 1
(HINCUT-1), and urothelial cancer-associated 1 have been
identified as hypoxia-responsive IncRNAs (18, 19, 85, 86). A
selection of hypoxia-regulated IncRNAs and their impact on
tumor biology are summarized in Table 1.

Arguably the first reported hypoxia-inducible noncoding
RNA is the transcript generated by the imprinted oncofetal
gene H19 (77,79, 80). While details remain to be elucidated,
Wu et al. provided evidence that HIF-1, while required, is not
the direct activator of H19 transcription. They proposed that
HIF-1 activates SP1, which in turn activates the HI/9 pro-
moter (117). Functionally, H/9 has been shown to promote
tumor growth and regulate anchorage-independent growth
after hypoxia recovery (77, 79).

H19 exerts broader proneoplastic effects unrelated to its
response to hypoxia. The H/9 gene is highly expressed in
common metastatic sites regardless of tumor primary origin.
H19 enhances cell migration in vitro and stimulates tumor



TABLE 1. HYPOXIA-REGULATED LONG NONCODING RNAS AND THEIR ROLE IN CANCER

Hypoxia Transcription
IncRNA response regulation Cancer type Cancer impact Refs.
HI9 Up HIF/MYC/SP1 HCC Cell survival and (13, 46, 73, 76-80,
Bladder cancer proliferation 87, 117, 122)
CRC Migration
Esophageal Angiogenesis
cancer
Breast cancer EMT
Gastric cancer
HINCUTI1/ Up HIF Colon cancer  Cell proliferation (28)
uc.475
UCAI/CURD Up HIF Bladder cancer Cell proliferation (121)
Migration and invasion
Apoptosis
NEATI Up HIF Breast cancer  Cell survival (18)
Apoptosis
MALATI Up HIF Breast cancer  Cell cycle (18, 19, 85, 107)
Lung cancer Angiogenesis
Tumor metastasis
IncRNA- Up HIF Pancreatic Proliferation, invasion 67)
NUTF2P3-001 cancer
HIFI1A-AS2 Up HIF Glioblastoma  Maintain mesenchymal (7, 86)
Breast cancer glioblastoma stem-like
cells in hypoxia niches
SARCC Up HIF RCC Proliferation (128)
ANRIL Up HIF Osteosarcoma  Invasion, apoptosis (114)
GAPLINC Up HIF Gastric cancer Proliferation (70)
PVTI Up HIF Cervical cancer Proliferation, apoptosis, 47, 50)
Gastric cancer migration, invasion,
cisplatin cytotoxicity
NBR2 Up — Breast cancer  Cell cycle (72, 116)
Apoptosis/autophagy
Metabolic checkpoint
under energy stress
EFNA3 Up — Breast cancer  Tumor metastasis (32)
IncRNA
AKO058003 Up — Gastric cancer Modulate DNA (111)
methylation at
SNCG CpG island
Migration and invasion
Tumor metastasis
AKI123072 Up — Gastric cancer Migration, invasion, (125)
metastasis
linc-ROR Up — HCC RNA sponge (miR145) (106)
Upregulate HIFIA mRNA
Cell survival
HOTAIR Up HIF Breast cancer  Cell viability (34, 130)
Lung cancer Invasion
Apoptosis
Metastasis
IncRNA-LET Down Hypoxia-mediated Gallbladder Inhibit invasion (74, 123)
epigenetic cancer and metastasis
alteration: HDAC3  SCLC
HCC
CRC
WTI1 IncRNA Up Hypoxia-mediated AML Modulate histone (83)
epigenetic alteration: methylation
DNMTI, TET2 at WT'1 TSS

AML, acute myeloid leukemia; ANRIL, CDKN2B antisense RNA 1; CRC, colorectal cancer; DNMT1, DNA methyltransferase 1; EMT,
epithelial-to-mesenchymal transition; H19, imprinted maternally expressed IncRNA; HCC, hepatocellular carcinoma; HIF, hypoxia-inducible
factor; HIFIA-AS2, hypoxia-inducible factor 1 alpha antisense 2; HINCUT-I, hypoxia-induced noncoding ultraconserved transcript 1;
HOTAIR, HOX transcript antisense RNA; IncRNA, long noncoding RNA; MALATI, metastasis-associated lung adenocarcinoma transcript 1;
NBR?2, neighbor of the BRCAI gene 2; NEATI, nuclear paraspeckle assembly transcript 1; PVT1, PVT1 plasmacytoma variant translocation 1
IncRNA; RCC, renal cell carcinoma; SARCC, suppressing androgen receptor in renal cell carcinoma; SCLC, squamous-cell lung cancer; TET2,
tet methylcytosine dioxygenase 2; UCAI/CUDR, urothelial cancer-associated 1; WT1, Wilms’ tumor 1.
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metastasis in vivo (95). In ovarian carcinoma cells, H19 over-
expression is associated with chemoresistance and epithelial-to-
mesenchymal transition phenotype (80). H19 knockdown leads
to decreased expression of genes with antiapoptotic function,
such as microphthalmia-associated transcription factor, imme-
diate early response 3, protein kinase C, zeta, B cell CLL/lym-
phoma 3, and serine/threonine kinase 1, and upregulation of
proapoptotic genes such as DNA damage-inducible transcript 3
also known as GADDI153 (77). HI9 also plays an important
and multipronged role in tumor angiogenesis (77) by regu-
lating the production of proangiogenic factors such as
angiogenin, fibroblast growth factor 18, prolylcarbox-
ypeptidase, tumor necrosis factor ¢-induced protein 1, cal-
ponin 2, and inhibitor of DNA binding 2.

Although much remains to be understood about how these
complex regulatory effects are set in motion, H79 actions most
likely involve a multitude of interactions, including proteins and
RNA interactions. For example, H/9 can modulate chromatin
structure within the imprinted gene network through interaction
with methyl-CpG-binding domain protein 1 (87). Other studies
provided evidence that H19 functions as an endogenous miR-
NA sponge for let-7 tumor suppressor miRNAs (118).

Choudhry et al. reported NEATI and MALATI as the
main IncRNAs induced in hypoxic MCF7 breast cancer cells
(18). NEATI is predominantly controlled by HIF-2, rather
than by HIF-1, and is involved in paraspeckle formation (21).
One of the paraspeckle functions is to sequester hyperedited
RNAs into the nucleus, thus impeding their translocation
to the cytoplasm (3). Interestingly, elimination of these
IncRNAs in the mouse embryo is compatible with life;
therefore, it is conceivable that these transcripts play fine-
tuning rather than essential roles in proliferation. However, in
tumor cells, hypoxic induction of NEATI promotes prolif-
eration and suppresses apoptosis (18). Protumorigenic roles
have been described for MALAT] as well. In the highly an-
giogenic neuroblastomas, upregulation of MALATI promotes
endothelial cell migration, invasion, and vasculature forma-
tion through fibroblast growth factor 2 upregulation (107). In
breast cancer, MALATI regulates critical processes such as
tumor growth, differentiation, and metastasis (1). Genetic
loss or antisense oligonucleotide (ASO)-mediated knock-
down in MMTV-PyMT mouse mammary carcinoma models
leads to gene expression alterations and splicing patterns
of genes involved in pathogenesis, resulting in reduced
branching morphogenesis in MMTV-PyMT- and Her2/neu-
amplified tumor organoids, increased cell adhesion, and loss
of migration (1). Many miRNAs, including miR-205, miR-
200c, and miR-204, have been reported to interact with
MALATI and thus contribute to its tumor-promoting mech-
anism in various cancer types (44, 65, 120). However, these
studies often provide little significant molecular proof and
require further validation.

HINCUT: are a family of IncRNAs that are transcribed from
regions exhibiting extremely high conservation between hu-
man, rat, and mouse genomes (2). Our groups have shown that
HINCUT-1 (originally termed uc.475) is an IncRNA tran-
scribed as a retained intron of O-linked N-acetylglucosamine
transferase (OGT) mRNA and is induced by hypoxia in an HIF-
dependent manner (28). Although details are unclear, HINCUT-
1 appears to play an important role in steady-state OGT ex-
pression and overall cellular glycosylation and its inactivation
has detrimental effects on cell viability and proliferation (28).
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Recently, suppressing androgen receptor in renal cell car-
cinoma (SARCC) IncRNA was reported as an HIF-2 target in
clear cell renal carcinoma. The authors provide preliminary
evidence that /ncRNA-SARCC binds and destabilizes andro-
gen receptor (AR), which results in suppression of AR/HIF-2o/
¢-MYC signaling (128).

Another IncRNA probably driven by HIF is plasmacytoma
variant translocation 1 IncRNA, which appears to be a mul-
tifaceted player in cancer. On the one hand, it promotes cell
migration and invasion, and on the other hand, it was shown
to correlate with immune response stimulation in cervical
cancer (50).

Neighbor of breast cancer 1 (BRCAI) gene 2 (NBR2)
IncRNA is a transcript expressed in the opposite orientation
from the bidirectional BRCAI promoter that has recently
been shown to regulate AMP-activated protein kinase under
energy stress (72). Wiedmeier et al. have recently shown that
NBR?2 is induced under prolonged hypoxia in MCF7 cells,
while BRCA is repressed. These results suggest that the two
transcripts driven by the BRCAI promoter are differentially
regulated in response to hypoxia, although the regulatory
element(s) required for induction of NBR2 appear to reside
outside of the BRCA1 minimal promoter (116).

A rare case of IncRNA reported as downregulated in hyp-
oxia is IncRNA-LET (74, 123), which exhibits the behavior of
a tumor-suppressing element. In primary hepatocellular car-
cinoma, IncRNA-LET expression is inversely correlated with
the prototypical hypoxia marker carbonic anhydrase 9,
and experimentally, IncRNA-LET downregulation leads to
hypoxia-induced cancer cell invasion in hepatocellular carci-
noma cells (123). In a different tumor context, ectopic ex-
pression of /ncRNA-LET leads to GO/G1 cell cycle arrest and
induction of apoptosis under hypoxic conditions and sup-
presses gallbladder tumor growth in vivo (74).

Occasionally, hypoxia-dependent IncRNA regulation may
occur through epigenetic regulators rather than direct HIF
activation. In acute myeloid leukemia cells, induction of
Wilms’ Tumor 1 (WT1) IncRNA, an antisense-oriented
IncRNA overlapping with intron 1 CpG island of the WT'/
gene, appears to be the result of demethylation through
hypoxia-regulated expression of DNA methyltransferase 1
and tet methylcytosine dioxygenase 2 (83).

IncRNAs are not only direct targets of HIF transcriptional
activation but also have been demonstrated to regulate the
transcription of HIF genes themselves, through direct or in-
direct interactions. This mechanism creates complex signaling
networks with positive and negative feedback loops that in-
tegrate multiple signaling pathways to control HIF response to
hypoxia. HIF-1o antisense transcripts have long been known to
be induced in response to hypoxia (7, 86) and have been shown
to negatively regulate HIF expression by chromatin inactiva-
tion or mRNA degradation (7) (Fig. 4). More recently, in
mesenchymal glioblastoma stem-like cells, HIFIA-AS2 was
found to be the most significantly upregulated IncRNA,
playing a protumorigenic role. The authors identified DExH-
box helicase 9 and insulin-like growth factor 2-binding protein
2 proteins as major interactors of HIF1A-AS2 and this inter-
action in turn drives the expression of tumor-promoting
downstream targets, in particular the high-mobility group AT-
hook 1 (86). Preliminary evidence suggests that HIFIA-AS2
may be relevant in a broader context as its knockdown was
found to inhibit gastric cancer cell proliferation (16).
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FIG. 4. HIFIA antisense

HIF-1a
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transcript forms negative
feedback loops to control
HIF response to hypoxia.
HIFIA-AS2 is an HIF-target
IncRNA. Under hypoxia, HIF
directly binds to the HIFIA-
AS2 promoter, driving the
expression of an antisense
transcript to HIFIA, which
in return negatively regulates
HIFIA expression level as a
negative feedback mecha-

A more recent, and incompletely understood, mechanism
appears to involve HIF-2 and is based on HIF-2a promoter
upstream transcript IncRNA. This is an IncRNA transcribed
from the upstream of the HIF-2o promoter, which induces cis
HIF-2a activation in osteosarcoma (112) and colorectal
cancer (126).

Several IncRNAs have been reported to regulate HIF sig-
naling through indirect mechanisms (Fig. 5). Long intergenic
noncoding RNA for kinase activation mediates heparin-
binding epidermal growth factor-like growth factor-
triggered, epidermal growth factor receptor: glycoprotein
nonmetastatic melanoma protein B heterodimer-dependent
HIF-1a phosphorylation leading to HIF-1o stabilization,
HIF-10-p300 interaction, and activation of hypoxic pro-
grams, including glycolysis under normal oxygen conditions
in breast cancer (68). In pancreatic ductal adenocarcinoma,

R Hypoxia signaling enhancing IncRNA
2 Hypoxia signaling repressing IncRNA
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HIF-a

y

LINK-A EGFR:GPNMB
—_—
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nism. HIFIA-AS2, hypoxia-
inducible factor 1 alpha anti-
sense 2.

IncRNA ENST00000480739 has been demonstrated to increase
the levels of endoplasmic reticulum lectin protein (104), which
is known to increase the affinity between HIF-1oc and EGLN
hydroxylases, therefore leading to HIF-la destabilization.
Somewhat similarly, RAB4B-EGLN2 read-through IncRNA
appears to suppress HIF-1a signaling through EGLN tran-
scription activation (132).

Other Cancer-Associated IncRNAs

Colon cancer-associated transcripts (CCATSs), 1 (119) and
2 (69), are IncRNAs transcribed from the highly conserved
8g24 region that has been shown to enhance the transcription
of MYC oncogene and promote cancer progression, invasion,
and metastasis. CCAT/ is involved in maintaining chromatin
looping between the MYC promoter and its enhancers in

RERT
ENST00000480739

EGLN

VHL
0; HIF-a

OH

HIF-o

o

FIG. 5. Examples of IncRNAs that regulate hypoxia signaling. Several IncRNAs have been reported to regulate
hypoxia signaling through indirect mechanisms. LINK-A stabilizes HIF-1a through an EGFR:GPNMB heterodimer-
dependent HIF-1a phosphorylation and thus activates HIF-1a transcriptional programs. IncRNA LET reduces the protein
levels of HIF-1o through its association with NF90. IncRNA RERT and ENST00000480739 downregulate hypoxia signaling
through modulation of EGLN. EGFR, epidermal growth factor receptor; EGLN 1-3/PHD 1-3, prolyl hydroxylases 1-3;
GPNMB, glycoprotein nmb; HIF-1«, hypoxia-inducible factor 1 alpha; LINK-A, long intergenic noncoding RNA for kinase

activation; RERT, RAB4B-EGLN?2 read-through IncRNA.
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coordination with the CCCTC-binding factor. CCAT2 in-
creases chromosomal instability through transcription factor
7-like 2-mediated transcriptional regulation. Thus, both
CCAT1 and CCAT2 have been associated with increased risk
of cancer and have been shown to regulate multiple molec-
ular pathways to promote cell proliferation, metastasis, and
cancer metabolism (96).

lincRNA-p21 is a p53 transcriptional target that has been
shown to repress p53 transcriptional response through het-
erogeneous nuclear ribonucleoprotein K and trigger apopto-
sis (48). While in coordination with RNA-binding protein
HuR, it inhibits the translation of p53 targets such as jun B
proto-oncogene and catenin beta 1 (127). In nonsmall cell
lung cancer, tumor samples with high lincRNA-p21 levels
show higher microvascular density. lincRNA-p21 induces
angiogenesis in vitro, while lincRNA-p21 inhibition leads to
downregulation of angiogenesis-related genes, such as vas-
cular endothelial growth factor A (15).

Prostate cancer-associated ncRNA transcript 1 (PCAT-1),
although initially reported as a PCAT (91), has been de-
scribed to associate with multiple types of cancers. PCAT-1
is a target of the PRC2 and represses the transcription of
genes involved in cell proliferation, invasion, and metastasis.

CDKN?2B antisense RNA 1 (ANRIL) is transcribed in the
opposite direction from the INK4b-ARF-INK4a cluster and it
is one of the most frequently altered IncRNAs in cancer.
The molecular mechanisms through which ANRIL mediated
cancer development and progression are still uncertain;
however, it is hypothesized that aberrant expression levels of
ANRIL may block the DNA damage response mechanism,
leading to genomic instability. In addition, ANRIL promotes
tumor cell proliferation by regulating target genes in trans.
ANRIL promotes the epigenetically silencing of miR-99A/
miR-449A, therefore upregulating mechanistic target of ra-
pamycin and cyclin-dependent kinase 6/E2F transcription
factor 1 pathways (129).

IncRNAs: Are Diagnostic and Therapeutic
Applications Feasible?

As functional molecules, the IncRNA expression levels
may serve as better prognostic and diagnostic indicators of
diseases than mRNAs. Additional, their highly specific spa-
tial and temporal expression signatures could lead to a more
accurate disease diagnosis and classification. Potential ap-
plications of IncRNAs in clinical oncology have been
proposed, such as diagnostic biomarkers and therapy re-
sponse predictors. Prostate cancer-associated 3 (PCA3/
DD3) IncRNA, for example, has already been tested in
controlled clinical settings based on its much higher ex-
pression in prostate tumors compared with normal prostate
and other tissues. However, based on the available data,
PCA3/DD3 does not appear to be superior to the routinely
used prostate-specific antigen (24, 60). Another potentially
valuable marker may be HOTAIR, which was found to be
upregulated dramatically in metastatic breast cancer tissue
compared with normal breast tissue (34).

The therapeutic relevance of IncRNAs is currently under
exploration, but critical hurdles need to be overcome. Due to
their size, transduction of tumor suppressor IncRNAs ne-
cessitates delivery systems (e.g., viruses) that have yet to
prove their value in clinical settings. On the other hand, on-
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cogenic IncRNAs may be targetable with synthetic RNAs,
such as siRNAs, ASOs, or miRNAs. While siRNA-mediated
knockdown of cytoplasmic IncRNAs is highly efficient, tar-
geting nuclear IncRNAs is more challenging. Thus, the ASO
technology has been optimized to target nuclear IncRNAs for
RNase H1-mediated RNA degradation. Promising in vivo
results have been reported for several IncRNAs such as
MALATI (1) and SAMSSON (64).

Another approach for IncRNA targeting may be based on
lessons learned from the study of vault RNAs (vtRNAs) as
mediators of multidrug resistance (33). It was shown that
vtRNAs directly bind to chemotherapeutic agents, indicating
that it would also be possible to design small molecules that
interact with IncRNAs (33). vtRNAs are technically short
RNAs, ranging from 80 to 90 nucleotides; however, exam-
ples of longer RNAs involved with drug interactions exist,
such as aptamers (41, 43, 88, 115). Targeting transcripts the
size of IncRNAs may appear challenging, but there is a pre-
cedent for fragmenting large ribonucleoprotein complexes
into more manageable sizes. This strategy has been applied to
design ligands for the expanded rCUG and rCAG repeats
expressed in myotonic dystrophy type 1 that interact with
Muscleblind-like 1 protein (92). Moreover, unbiased meth-
ods such as systematic evolution of ligands by exponential
enrichment have the potential to be used to identify mole-
cules that interact with IncRNAs (109).

The clustered regularly interspaced short palindromic re-
peat (CRISPR)/Cas9-based technologies have revolutionized
the study of genetic reprogramming by being developed into
a genome-wide editing tool with large applications, including
noncoding transcriptome functionality (71, 131). However,
CRISPR-Cas9-directed IncRNA genomic deletions do not
necessarily induce repression of biological activity (100,
131). The CRISPR interference has been reported as a better
approach for IncRNA functionality studies as this technology
uses a nuclease-dead dCAS9-KRAB repressor fusion protein
to repress gene transcription. This protein can be recruited by
single-guided RNA pools to the IncRNA transcriptional start
sites, and association with a specific phenotype (71) can be
selected based on specific markers as a readout.

In conclusion, multidisciplinary approaches continue to
provide critical insights into the involvement of IncRNAs in
various aspects of cancer biology. While many IncRNAs
already show significant potential as therapeutic targets or
cancer biomarkers, transitioning from basic knowledge to
viable clinical applications remains challenging. Future
studies will need to clarify which, if any, IncRNAs are truly
essential for cancer cell viability and to develop more effi-
cient tools for their inactivation in clinical tumors. Further-
more, it would be highly impactful to identify IncRNAs that
inform about tumor vulnerability to specific therapeutic
agents, potentially in a defined genetic context.
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Abbreviations Used

AML = acute myeloid leukemia
ANRIL = CDKN2B antisense RNA 1
AR = androgen receptor
ASO = antisense oligonucleotide
BRCA1 =breast cancer 1
CCATs = colon cancer-associated transcripts
CRC =colorectal cancer
CRISPR = clustered regularly interspaced short
palindromic repeat
DNMT1 = DNA methyltransferase 1
EGFR = epidermal growth factor receptor
EGLN 1-3/PHD 1-3 =prolyl hydroxylases 1-3
EMT = epithelial-to-mesenchymal
transition
GPNMB = glycoprotein nmb
H19 = imprinted maternally expressed
IncRNA
HCC = hepatocellular carcinoma
HIF = hypoxia-inducible factor
HIF-10 = hypoxia-inducible factor 1 alpha
HIF1A-AS2 = hypoxia-inducible factor 1 alpha
antisense 2
HINCUT-1 = hypoxia-induced noncoding
ultraconserved transcript 1
HOTAIR =HOX transcript antisense RNA
lincRNA =long intergenic ncRNA
LINK-A =long intergenic noncoding RNA for
kinase activation

IncRNA =long noncoding RNA
MALAT]1 = metastasis-associated lung
adenocarcinoma transcript 1
miRNA = microRNA
NAT = natural antisense transcript
NBR2 = neighbor of the BRCA1 gene 2
NEAT1 = nuclear paraspeckle assembly
transcript 1
OGT = O-linked N-acetylglucosamine
transferase
PCA3/DD3 = prostate cancer-associated 3
PCAT-1 = prostate cancer-associated ncRNA
transcript 1
PRC2 = polycomb repressive complex 2
pVHL = von Hippel-Lindau tumor
suppressor protein
PVT1=PVTI1 plasmacytoma variant
translocation 1 IncRNA
RCC =renal cell carcinoma
RERT = RAB4B-EGLN2 read-through
IncRNA
SARCC = suppressing androgen receptor
in renal cell carcinoma
SCLC = squamous-cell lung cancer
TET2 = tet methylcytosine dioxygenase 2
UCA1/CUDR = urothelial cancer-associated 1
VEGFA = vascular endothelial growth factor A
VvtRNA = vault RNA
WT1 =Wilms’ tumor 1




