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Abstract. Basement membrane-adherent type II alveo- 
lar cells isolated from lung assemble into lumen- 
containing cellular spheres which retain the correct 
polarity and thereby approximate the earliest fetal 
stage of alveolar morphogenesis. The molecular basis 
of this process, determined in initial experiments to be 
attributable mainly to the large heterotrimeric glyco- 
protein laminin, was probed with laminin proteolytic 
fragments, antibodies, and synthetic peptides. The 
carboxy-terminal fragment E8, but not equimolar 
amounts of fragment P1, blocked alveolar formation. 
To pursue this observation, we used several anti-E8 
antibodies and identified one, prepared against A chain 

residues 2179-2198 ("SN-peptide') from the first loop 
of the G domain, as inhibitory. These results were 
confirmed by use of SN-peptide alone and further 
defined by trypsin digestion of SN-peptide to the se- 
quence SINNNR. This conserved site promoted diva- 
lent cation dependent adhesion of both type II alveolar 
and HT1080 cells, was inhibitable with equimolar 
amounts of fragment E8 but not P1, and derives from 
a form of laminin present in fetal alveolar basement 
membranes. These studies point to an important novel 
cell adhesion site in the laminin E8 region with a key 
role in lung alveolar morphogenesis. 

M 
ORPHOGENESIS of lung alveoli, the functional unit 
of bi-directional gas exchange, occurs mainly post- 
natally with an increase of 280 million alveoli dur- 

ing the first eight years of human life (Thurlbeck, 1975). A1- 
veoli arise initially from outgrowths of terminal air ducts, a 
process coincident with the appearance of basement mem- 
brane-adherent type II alveolar cells (Burri, 1991). Type II 
cells subsequently proliferate, coassemble, and serve both as 
progenitors for attenuated type I alveolar cells (Mason and 
Williams, 1991) and later as the only source of pulmonary 
surfactant (Hawgood, 1991). A mature alveolus consists of 
a central air space lined by type II and type I alveolar ceils 
which are adherent basally to a thin basement membrane 
(McGowan, 1992; Sannes, 1991; Lwebuga-Mukasa, 1991). 

Mechanistic investigations of this complex and important 
phenomenon have historically been restricted to in vivo 
studies in fetal or neonatal sheep and rodents (Ballard, 1986) 
for which molecular information is limited. An alternative 
approach is to develop an in vitro model system (Diglio and 
Kikkawa, 1977) which, despite limitations inherent in sim- 
plification, could effectively identify active molecules whose 
presence or absence in vivo may later be determined. This 
approach is made feasible by both the relative ease of type 
II alveolar cell isolation (Rannels and Rannels, 1988) and the 
retention of a remarkable capacity for basement membrane 

Address all correspondence to G. W. Laurie, Department of Anatomy and 
Cell Biology, University of Virginia, Box 439, Health Sciences Center, 
Charlottesville, VA 22908. 

dependent alveolar-like morphogenesis in vitro (Adamson et 
al., 1989; Blau et al., 1988; Edelson et al., 1989). Here we 
report on the use of such an in vitro model system to identify 
a key alveolar activating sequence within the carboxy termi- 
nal region of the basement membrane glycoprotein laminin. 

Materials and Methods 

Preparation of Substrates 
Basement membrane substrate (BMS) l was prepared at 4°C in the pres- 
ence of NEM (0.5 mM) and PMSF (0.5 raM) by extraction of Engelbreth- 
Holm-Swarm (EHS) mouse tumor with 10 mM EDTA in 50 mM Tris, 150 
mM NaC1, pH 7.4 according to the method of Paulsson et al. (1987). Briefly, 
EHS tumor, collected from C57B1 or ICR (Hilltop Lab Animals, Inc., 
Scottsdale, PA) mice, was homogenized, washed in 150 mM NaC1, 50 mM 
Tris, pH 7.4 (TBS), and extracted overnight in TBS containing 10 mM 
EDTA (1 ml/gm tumor starting material). BMS, comprising the solubilized 
material, was then sterilized by dialysis against TBS containing chloroform 
(5 mill). Subsequent dialysis steps were against TBS and finally against 
three changes of DME. BMS protein concentration (8-10 mg/ml) was deter- 
mined by lyophilization versus an equal volume of DME. BMS was stored 
as l-ml aliquots at -80°C. 

For gel filtration (4°C) BMS was passed over a Biogel A 1.5-m column 
(2.5 x 100 cm; Bio Rad Laboratories, Melville, NY) equilibrated in TBS 
containing 10 mM EDTA and proteolytic inhibitors. Fractions making up 
each of the two peaks (Panlsson et al., 1987) were pooled, concentrated (if 
necessary on an Amicon YMI membrane [Amicon Corp., Beverly, MA]), 
sterilized with chloroform, and dialyzed against DME. 

1. Abbreviations used in this paper: BMS, basement membrane substrate; 
EHS, Engelbreth-Holm-Swarm; JMEM, Joklik's modified minimal medium. 
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Mouse laminin and collagen IV were kindly supplied by Dr. R. Ogle 
(University of Virginia, Charlottesville, VA). Mouse entactin was pur- 
chased from Upstate Biotechnology, Inc. (Lake Placid, NY). Rat tail colla- 
gen I was purchased from Collaborative Research Inc. (Bedford, MA). Pro- 
tein concentration of laminin and collagen IV was determined using their 
respective extinction coefficients [larninin: 8.3 (A I~ I cm2s0), (McCarthy et 
al., 1983); collagen IV: 5.48 (AI~I cm230)]. Protein concentration of en- 
tactin and coilagcn I was used as supplied by the manufacturer. 

Preparation of Antibodies 
Rabbit anti-mouse laminin (ab-Ln) and rabbit anti-mouse collagen IV an- 
tisera were produced on contract with Hazelton Labs (Denver, PA). Rabbit 
anti-mouse entactin antibodies were obtained from Upstate Biotechnology, 
Inc. All antisera were purified on protein A-Sepharose (Pharmacia Fine 
Chemicals, Piscataway, NJ) before use; concentration of eluted antibody 
was calculated using the extinction coefficient for rabbit IgG (13.5 [Ate1 
cm2s0]). Ab-Ln and anti-collagen IV antibodies inhibit cell adhesion to 
laminin and collagen IV, respectively. Chain specific rabbit anti-mouse 
lamiuln polyclonal antibodies were kindly provided by Dr. Y. Yamada 
(NIDR, Bethesda, MD), purified on protein A-Sepharose (Pharmacia Fine 
Chemicals), and checked for specificity by Western blotting. These antibod- 
ies are: (a) ab-B1 (antigen is a fusion protein spanning amino acids 925-933 
which includes the YIGSR sequence; previously designated HK-58); (b) 
ab-B2 (antigen is a synthetic peptide consisting of amino acids 1420-1439; 
previously designated YY-13); (c) ab-A[IK] (antigen is a synthetic peptide 
consisting of amino acids 209%2108; previously designated PA22-2 in 
Sephel et al. [1989]); (d) ab-A[SN] (antigen is a synthetic peptide consisting 
of residues 2179-2198; previously designated PAl0 in Sephel et al. [1989]). 
The rat anti-mouse monoclonal anti-laminin antibodies 5D3, 5A2, and 5C1 
were kindly provided by Dr. D. Ahrahamson (University of Alabama, Bir- 
mingham, AL) (Abrahamson et al., 1989). 

For Western blotting, DTT-reduced laminin was separated on 5% SDS- 
PAGE gels, transferred to nitrocellulose, blocked, incubated with anti- 
laminin antibody, washed, and detected with peroxidase-labeled goat 
anti-rabbit IgG (Jackson ImmunoResearch Laboratories, Inc., West Grove, 
PA) using the chemiluminescent ECL method (Amersham Corp., Arlington 
Heights, IL). Preabsorption of secondary antibody on a BMS-Sepharose 
column was necessary to eliminate background. 

Laminin Fragments and Synthetic Peptides 

Fragments E8 and P1, isolated from mouse laminin, were both kindly 
provided by Drs. Rupert Timpl (Max Planck Institut fiir Biochemie, Mar- 
tinsfi~l, Germany) and Peter Yurchenco (Robert Wood Johnson Medical 
School, Piscataway, NJ). SN-peptide (SINNNRWHSIYITRFGNMGS; 
amino acids 2179-2198 from mouse laminin A chain) was synthesized by 
the Biomolecular Research Facility (University of Virginia), purified by re- 
verse phase HPLC, and verified through NH2-terminal sequencing. To at- 
tempt to determine the minimal active length, SN-peptide (10 rag) was in- 
cubated with TPCK treated trypsin (Washington Biochemical Corp., 
Freehold, NJ) for 18 h at 37°C giving rise to three smaller peptides. Diges- 
tion was terminated by lowering the pH to 2.0; fragments were purified by 
reverse phase HPLC and sequenced. Examination of SN-peptide and 
SINNNR conservation among species made use of FastA and BestFit 
searches (Dayhoff et al., 1978). 

The HPLC purified peptide AASIKVAVSADR (amino acids 2097-2108 
from mouse lamiuln A chain) and its scrambled control AASVVIAKSADR 
were kindly supplied by Dr. Y. Yamada (Tashiro et al., 1989). Peptide 
KQNCLSSRASFRGCVRNLRLSR (amino acids 3011-3032 from mouse 
laminin A chain, previously designated GD-6 (Gehlsen et al., 1992), corre- 
sponding to the proposed tx~l integrin binding site, was kindly provided 
by Dr. K. Gehlsen (California Institute for Biological Research, La Jolla, 
CA). RGDS (functionally identical to RGDN; amino acids 1123-1126 from 
mouse laminin A chain) was provided by Dr. R. Ogle (University of Vir- 
ginia). 

Isolation of 73ype H Alveolar Cells 

Type II alveolar cells were isolated from 250-g Spragoe Dawley rats 
(Hilltop Laboratory Animals, Inc.) according to the method of Rannels 
(Rannels and Rannels, 1988). Briefly, an initial cardiac perfusion with 0.9 % 
saline was followed by instillation of the airways with 0.1% elastase (Calbio- 
chem Corp., La Joila, CA) in Joklik's modified minimal medium (JMEM) 
containing 0.05 % BaSO4. Elastase was inactivated by instillation of JMEM 

containing soybean trypsin inhibitor (0.08%; Sigma Chemical Co., St. 
Louis, MO), DNase (0.08%; Sigma Chemical Co.), and 50% newborn calf 
serum (GIBCO BRL, Gaithersburg, MD). Lung tissue was minced, vor- 
texed, and filtered through 160-~m nylon mesh (Tctko, Elmsford, NY). 
Released cells were centrifuged for 10 rain at 500 g, resuspended in JMEM 
containing 0.08 % DNASe, and layered on a Percoll (Pharmacia Fine Chemi- 
cals) discontinuous density gradient. After centrifugation for 20 rain (4°C), 
cells were collected at the 1.04/1.08 interface, washed in JMEM, brought 
up in DME containing 10% fetal bovine serum (FIGS) (GIBCO BRL), and 
incubated for 30 rain (37°C) in 75-cm 2 tissue culture flasks to eliminate 
contaminating macrophage cells which rapidly adhere to the plastic surface. 
The resultant type II alveolar cell preparations were 95% viable as deter- 
mined by trypan blue exclusion; purity was 93 % as assessed by the presence 
of lamellar bodies visible with Hoffman optics at a magnification of 40 and 
by tannic acid staining. Analysis of total cellular DNA/well on each day 
of an experiment was performed in triplicate on trypsin/dispase released 
cells using a DNA fluorometry assay (Labarca and Paigen, 1980). No con- 
taminating DNA could be detected in wells containing BMS alone, which 
after dissolution with dispase and trypsin did not contribute to the cell 
pellet. 

Alveolar Formation Studies 

Freshly isolated type II alveolar cells were plated in 96-well plates at 20 
x 103 cells/well on 500 #g/well (1.8 mg/cm 2) of gelled BMS or collagen 
I. Cells were cultured over 5 d with one media change performed on day 
three. Alveolar formation was analyzed at 24-h intervals over 5 d from pho- 
tographic negatives (4 x original magnification of central portion of each 
well) of triplicate wells. Images from negatives were transferred via video 
camera to an Image I imaging system (Universal Imaging Corp., West 
Chester, PA) and viewed on a color video monitor. The area of cellular 
structures was then determined and expressed as the mean + standard devi- 
ation. In some cases two size categories were distinguished: (a) single cells 
(200-300/~m 2) and (b) model alveoli (20 x 103/~m 2 or greater) with data 
expressed as percent of area occupied by each category. 

To examine sectioned cultures, type II alveolar cells were plated on gelled 
BMS (500/~g/insert) supported by Millicell 0.4-/a-n filter inserts (Millipere 
Corp., Bedford, MA). After 5 d, cultures were fixed for 1 h with 2% form- 
aldehyde/2 % glutaraldehyde in 0.05 M sodium phosphate buffer, pH 6.8, 
and washed. Filters were cut out, treated for 1 h with 1% osmium tetroxide, 
acetone dehydrated, and embedded in Spurr's resin (Electron Microscopy 
Sciences, Ft. Washington, PA). Semi-thin or thin sections were then cut, 
stained, and examined in the light or electron microscope, respectively. 

In alveolar inhibition studies, antibodies (50/~g/well) were incubated 
with galled BMS (500 ~g/well) in wells of 96-well plates for 60 rain at 37°C. 
Unbound antibody was removed by three DME washes (200/zl/well) and 
then freshly isolated cells were added. Dose-response assays were per- 
formed on all antibodies. Laminin fragments and synthetic peptides (mi- 
cromolar amount indicated on figures) were preincubated with freshly iso- 
lated type II alveolar cells in suspension for 30 rain at 37°C with gentle 
agitation every 5 rain; cells together with fragment or peptide were then 
plated on BMS. Cell viability in the presence of each antibody, fragment, 
or synthetic peptide was assessed using the MTT (3-[4,5-dimethylthiazol-2- 
yl]-2,5-diphenyl tetrazolium bromide) assay (Chemicon International, Inc., 
Temecula, CA). 

Cell Adhesion Studies 

Plates coated overnight (4°C) with equimolar amounts of laminin, laminin 
fragment, or synthetic peptide were blocked with 1% BSA (Sigma Chemical 
Co.) for 4 h (4°C) and cells were subsequently added (2 x 104/well) in 
serum-free media and incubated for 60 rain (37°C) according to the method 
of Aumailley and Timpl (1986). Inhibition studies were carded out by prein- 
cubating cells for 30 rain (37°C; gentle agitation every 5 min) with equimo- 
lar amounts of soluble fragment or peptide. Cells, together with soluble in- 
hibitor, were then added to the coated plates. After a 60-rain (37°C) 
incubation, plates were washed twice with PBS, fixed with 1% glutaralde- 
hyde (Electron Microscopy Service Laboratories, Westmont, NJ), PBS 
washed, stained with 0.1% crystal violet (Serva Biochemicals, Hauppauge, 
NY), washed twice with distilled water, solubflized in 0.5% Triton X-100 
(Sigma Chemical Co.), and read on an ELISA plate reader (Molecular 
Devices Corp., Menlo Park, CA) equipped with a 595-nm filter. 

Immunohistochemistry 
Immunostaining was performed on unfixed frozen sections of late gestation 

The Journal of Cell Biology, Volume 124, 1994 1084 



rat lung. Sections were blocked with 3% BSA (Sigma Chemical Co.) and 
then incubated with ab-A[IK] (rabbit anti-laminin A chain peptide [2097- 
2108]; 1 pg/ml) overnight at 4"C. Detection was through Cy3-1abeled goat 
anti-rabbit IgG (1/50; Jackson Immunoreseareh) that had been preadsorbcd 
to gelled BMS for 30 rain at 37"C (Stredi et al., 1991). Slide preparations 
were washed and examined with a fluorescence microscope using a P.,ho- 
damine far red filter, ab-A[SN] (rabbit anti-laminin A chain pcptide [2179- 
2198]), gave the same pattern but was much lighter. 

Results 

Role of  Basement  Membrane in Model 
Alveolar Formation 

Alveoli-like structures become (Figs. 1 and 2) apparent 
3-5 d after plating dispersed type II  alveolar cells on gelled 
BMS, a 10-mM EDTA extract of mouse EHS tumor base- 
ment  membrane.  These structures have a central lumen (Fig. 
1 C, inset; and Fig. 2 A) lined by a cuboidal epithelium of 
lamellar body containing (Fig. 2, A and B)  type II alveolar 
cells. Type II cells are of  appropriate polarity and therefore 
bear a striking resemblance to their in vivo fetal counterparts 
prior to the appearance of type I cells (Adamson and Bow- 
den, 1975). Morphogenesis was not dependent on cell prolif- 
eration (Fig. 1 C) and was basement membrane specific 
since replacement with an equal milligram amount of gelled 
collagen I was completely ineffective (compare (Fig. 1, A 
and B). 

Basement membranes are a partially characterized source 
of cell attachment, structural, and growth factor-like mole- 
cules (Paulsson, 1992). To determine which molecule or 
combination of molecules contributed to this process, we 
separated BMS into high and low molecular weight peaks by 
gel filtration and plated type II alveolar cells on each peak. 
Only the high molecular weight peak was active (not shown). 
Since constituents of the high molecular weight peak are 
laminin and entactin, interspersed with collagen IV (Pauls- 
son et al., 1987), we plated type II alveolar cells on equal 

Figure L Alveolar morphogenesis in vitro. (A) Negative control il- 
lustrating type II alveolar cells dispersed five days after plating on 
rat tail collagen I. (B) Alveoli formed five days after plating type 
II alveolar cells on BMS. Gelling concentration of all substrates 
here and throughout article is 1.8 mg/cm 2. (C) Percentage of sin- 
gle cells declined as alveolar formation progressed (continuous 
lines). Proliferation was absent as revealed by daily analysis of cel- 
lular DNA content per well (dashed line). (Inset) Light micrograph 
of a representative sectioned day five alveolus illustrating central 
lumen. Values represent the mean + SD; n = 9. Bars: (.4 and B) 
100 gm; (C) 10 ttm. 

Figure 2. (A) Electron micrograph of a sectioned day five alveolus 
illustrating cuboidal type II alveolar cell lining similar to fetal al- 
veoli. Alveolus is surrounded by BMS. Arrow points to characteris- 
tic lamellar body. L, central lumen. (B) Electron micrograph of 
type II alveolar cell within day five alveolus. Presence of circular 
lamellar bodies (arrows) and apical mieroviUi (arrowheads) are 
characteristic of type II alveolar cells in vivo. Bars: (A) 30 #m; (B) 
50 gm. 
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Table I. Effect of Laminin and Anti-Laminin Antibodies on 
Alveolar Formation In Vitro 

Protein or antibody Area (t~m 2 x 103) 

BMS 108 :t: 23 
Laminin 35 5:3 
Entactin 1 5:0.5 
Collagen IV 0.4 :i: 0.2 
Anti-Laminin (ab-Ln) 12 + 3.9 
Anti-Entactin 105 5:15 
Anti-Collagen IV 110 + 25 

Type II alveolar cells were plated on 1.8 mg/cm 2 gelled BMS, laminin, 
entaetin, or collagen IV; or on the same concentration of BMS which had been 
preineubated with 50 #g/weU ab-Ln, anti-entactin, or anti-collagen IV 
antibodies. 5 d later, area of cellular structures was determined. Data is 
expressed as the mean of three experiments performed in triplicate + SD. 
Alveoli are defined as structures ~20 × 103/~m 2. 

milligram amounts of  each of these substrates and found that 
alveoli formed only on laminin (Table I), although smaller 
in size (since alveoli which formed on peak 1 or on laminin 
were smaller than alveoli on intact BMS, molecules of the 
low molecular weight peak may have an accessory role in 
modulating alveolar size) than alveoli that formed on un- 
divided BMS. These experiments were supported by parallel 
use of BMS preincubated with IgGs purified from either 
anti-laminin, anti-entactin, or anti-collagen IV sera. Only 
ab-Ln was inhibitory (Table I), a result consistent with an 
earlier observation that polyclonal anti-laminin antiserum 
blocks Matrigel (Matrigel [Collaborative Research Inc.] is a 
2 M urea extract of  EHS tumor [Kleinman et al., 1986)]) in- 
hibition of type 11 alveolar cell spreading (Rannels et al., 
1987). 

Inhibition of Alveolar Formation by Fragment E8 

Laminin is a large cross-shaped cell adhesive heterotrimer 
(Fig. 3; Beck et al., 1990; Engel, 1992). Several large lami- 
nin domains have been partially characterized through the 
preparation of  functional proteolytic fragments, particularly 
the P1 pepsin fragment and the E8 elastase fragment, whose 
respective origins on the intact molecule are known (Fig. 3). 

P1 

G 

Figure 3. Schematic diagram 
of laminin illustrating constit- 
uent B1, B2, and A chains; and 
origin of P1 and E8 fragments. 
G domain is the large A chain 
carboxy-terminal globule. Ar- 
rows indicate antibody bind- 
ing sites or origin of pep- 
tides tested: 1, RGDS; 2, 5A2; 
3, ab-B1; 4, 5C1; 5, ab-B2; 
6, AASIKVAVSADR or ab- 
A[IK]; 7, 5D3; 8, ab-A[SN] or 
SN-peptide; 9, KQNCLS- 
SRASFRGCVRNLRLSR. See 
Materials and Methods for de- 
tails on antibodies and pep- 
tides. Laminin diagram modi- 
fied from Sasaki et al. (1988), 
with permission. 
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Figure 4. Alveolar formation is inhibited by E8 but not PI fragment. 
Dose-dependent inhibition of alveolar formation by soluble E8 but 
not P1 fragment. Freshly isolated type II alveolar cells were prein- 
cubated with E8 or P1 fragment prior to plating on BMS. Analysis 
was performed on day five. Values represent the mean + SD; n = 9. 

To determine whether in vitro alveolar promoting activity re- 
sides in laminin P1 or E8 region(s), we preincubated type II 
alveolar cells with increasing micromolar  amounts (Fig. 4) 
of soluble P1 or E8 fragment prior to plating on BMS. Only 
fragment E8 was inhibitory (Fig. 4), an effect which was not 
due to lower cell viability (viability 85 5 : 3  % at 700/zM) 
nor to a decrease in the number of adherent cells (not 
shown); adhesion is presumably mediated through alterna- 
five sites in laminin or compensated by collagen IV or attach- 
ment factors present in the lower molecular weight peak 
(Laurie, G. W., J. O. Glass, R. A. Ogle, C. M. Stone, J. R. 
Sluss, and L. Chen, manuscript submitted for publication). 

Fragment E8 represents the 250-kD carboxy-terminal one 
third of laminin with its constituent B1, B2, and A chains. 
To locate the active site within E8, we obtained a number of  
chain specific (Fig. 5 A, inset) antibodies prepared against 
synthetic peptides or fusion proteins, and several monoclo- 
nal antibodies whose binding sites (Fig. 3) had been mapped 
through rotary shadowing. We preineubated BMS with equal 
microgram amounts of  purified antibody, washed away un- 
bound antibody, and plated cells. As a positive control, we 
used equal microgram amounts of  ab-Ln against intact lami- 
nin which, as mentioned above (Table I), was inhibitory 
(Fig. 5). All antibodies prepared against sites within the P1 
region were inactive, as were all but one of the anti-Eg frag- 
ment antibodies (Fig. 5; Table l]). Complete inhibition oc- 
curred with ab-A[SN] raised against a 20-amino acid syn- 
thetic peptide (2179-2198) corresponding to a site (Fig. 3, 
*8) within the first loop of  the large globule (designated "G 
domain") at the terminus of the laminin A chain (Sephel et 
al., 1989). 

Alveolar Formation Inhibited by SINNNR 

To test this observation directly, we synthesized the 20-  
amino acid peptide (SINNNRWHSIYITRFGNMGS;  desig- 
nated "SN-peptide')  and preincubated it at increasing micro- 
molar amounts with freshly isolated dispersed type II alveolar 
cells prior to plating on BMS. SN-peptide inhibited alveolar 
formation in a dose dependent fashion (Fig. 6; ICso = 50 
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Figure 5. Alveolar formation is inhibited by an antibody directed 
against SN-peptide in the first loop of the E8 region G domain. (A) 
Time course inhibition of alveolar formation by ab-Ln ( e )  and ab- 
A[SN] (o). Ab-A[IK] (t3), ab-B1 (A), and ab-B2 (&) had little or 
no effect; t test for ab-B1 and ab-B2 on day four vs BMS alone re- 
vealed p values of 0.3, whereas p value for ab-A[SN] on day four 
was 0.015. Antibodies were protein A-Sepharose purified prior to 
incubation with BMS; type II alveolar cells were plated after wash- 
ing away unbound antibody. (Inset) Western blot analysis of anti- 
body specificity. (B) Inhibition of alveolar formation by ab-Ln and 
ab-A[SN], expressed as the mean + SD of analysis performed on 
day five; n = 9. 

#M) without affecting cell viability, even at the highest mi- 
cromolar concentration tested (viability 97 + 1%). Stud- 
ies were also performed with equimolar amounts of  other 
laminin A chain synthetic peptides including: AASIKVAVS- 
ADR (antigen of ab-A[IK]), AASVVIAKSADR (scrambled 
IKVAV), KQNCLSSRASFRGCVRNLRLSR (proposed bind- 
ing site for c~3/~1 integrin), and RGDS (functionally equiva- 
lent to P1 fragment cell adhesion site RGDN) however, all 
had no effect on alveolar formation (Table ID. To define fur- 
ther the alveolarization site, we trypsin digested SN-peptide 
generating the smaller peptides SINNNR, WHSIYITR,  and 
FGNMGS. Each was HPLC purified, sequenced, and pre- 
incubated with type II alveolar cells at increasing micromo- 
lar concentrations. Only SINNNR was inhibitory (Fig. 6; 
IC50 = 68/~M). 

Table II. Lack of Effect of  Several Monoclonal 
Anti-Laminin Antibodies and Laminin A Chain Synthetic 
Peptides on Alveolar Formation In Vitro 

Antibody or peptide Area (~m 2 x 10 ~) 

None 108 + 23 
5D3 63 ± 18 
5A2 82 5:25 
5C1 103 ± 20 
AASIKVAVSADR 98 ± 22 
AASVVIAKSADR 100 ± 18 
KQNCLSSRASFRGCVRNLRLSR 110 ± 19 
RGDS 105 ± 24 

Antibodies (50 t~g/well) were preincubated with gelled BMS (1.8 mg/cmZ). 
Peptides (100 tiM) were preincubated with cells prior to plating on BMS. Area 
was determined 5 d after plating, t test of 5D3 and 5A2 values vs no antibody 
control indicated no significant difference. Data represents mean + SD from 
three experiments performed in triplicate. 

lOO 
lOO A n=9 

80 
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60 
~ 60 

< 40 40 
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5 "  

Figure 6. Alveolar formation is inhibited by SN-peptide, further de- 
fined by trypsin digestion to SINNNR. (,4) Dose-dependent inhibi- 
tion of alveolar formation by SN-peptide ((3) and its amino-termi- 
nal 6-met SINNNR (n). The carboxy-terminal 6-mer FGNMGS 
(e) and middle 8-met WHSIYITR (A) have minimal or partial ef- 
fect, respectively. Cells were preincubated with peptides in the 
same manner as laminin fragments and analyzed on day five. (B) 
Mean Jr SD at 700 #M on day five; n = 9. 

SN-Peptide and S I N N N R  have Cell Adhesion Activity 

How might the SN-peptide site drive alveolar morphogene- 
sis? One possibility is via cell adhesion, a fundamental re- 
quirement of  kidney epithelial morphogenesis for which E8 
fragment is thought to play a key role (Klein et al., 1988). 
To examine this possibility, we carried out cell adhesion as- 
says using SN-peptide and SINNNR in the presence or ab- 
sence of soluble inhibitors, or after preincubation with anti- 
body. Both type II alveolar (Fig. 7 A) and HT1080 (Fig. 7 
B) human fibrosarcoma cells adhered to SN-peptide and 
SINNNR (Table HI) at levels similar to E8 fragment or intact 
laminin, an interaction which was inhibited by preincubation 
with equimolar amounts of  laminin E8 or SN-peptide but not 
P1 fragment (Fig. 7, A and B).  Similarly, ab-A[SN] but not 
ab-A[IK] inhibited adhesion to SN-peptide, SINNNR, and 
E8 without affecting adhesion to P1 (not shown). In recipro- 
cal experiments, adhesion to E8 was completely inhibited by 
an equimolar amount of SN-peptide (Fig. 7 B). In addition, 
preincubation with 2 mM EDTA was inhibitory (Fig. 7 B)  
suggesting that SN-peptide adhesion was perhaps mediated 
via an integrin receptor which requires divalent cations for 
function (Hynes, 1992). 

To determine whether SN-peptide and SINNNR were con- 
served among different species (Table IV), we used the FastA 
and BestFit programs revealing that SN-peptide has 65 % 
identity and 85% similarity over the same 20-amino acid 
residues in human (Haaparanta et al., 1991; Nissinen et al., 
1991) laminin A chain. SINNNR displayed 50% identity and 
83% similarity. Compared with merosin and Drosophila 
laminin A chain (Garrison et al., 1991; Hortsch and Good- 
man, 1991), SN-peptide was 30% and 21% identical and 
47% and 40% similar, respectively (Table IV). 

Since the laminin A chain is replaced by the A chain 
homologue, merosin, in some organs (Ehrig et al., 1990; 
Engvall et al., 1990; Sanes et al., 1990), we investigated 
whether laminin A chain was indeed present in rat lung alve- 
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Figure 7. Cells adhere to SN-peptide in an E8 fragment and 2 mM 
EDTA inhibitable manner. (A) Adhesion of type II alveolar cells to 
laminin, E8 fragment, and SN-peptide but not BSA. Preincubation 
of type II cells with E8 fragment competitively inhibited SN-pep 
adhesion whereas P1 fragment did not. (B) Adhesion of HT1080 
cells to SN-peptide and laminin, with BSA as the negative control. 
E8 fragment inhibited HT1080 cell adhesion to SN-peptide. Simi- 
larly, SN-peptide inhibited adhesion to E8 fragment and SN- 
peptide but not to P1 fragment. Preincubation of 2 mM EDTA with 
HTI080 cells inhibited adhesion to SN-peptide. Coating and inhibi- 
tor concentrations were both 100 #M corresponding to the inhibit- 
ing amounts used in alveolar formation five day time course experi- 
ments. Values in A and B represent the mean :t: SD; n = 9. 

olar basement membranes. We probed fetal lung with anti- 
body ab-A[IK] (Fig. 8) and ab-A[SN], through Western blot- 
ting (Fig. 8 A) and immunofluorescence (Fig. 8 C), revealing 
that laminin A chain was readily detectable in late gestation 
rat alveolar basement membranes, as had been observed ear- 
lier for mouse lung (Klein et al., 1990; Schuger et al., 1991). 

Discussion 

The results of this study point to a conserved cell adhesion 
site within the laminin E8 region G domain which plays a 
key role in alveolar formation in vitro and is present in base- 
ment membranes of developing alveoli in vivo. SN-peptide 
derives from the first of five G domain loops, in keeping with 
evidence that a major cell adhesion site exists at an un- 

Table III. SN-peptide and SINNNR Adhesion Activity 

Substrate Percent cell attachment 

Laminin 80 + 0.02 
E8 fragment 78 + 0.05 
SN-peptide 76 -t- 0.02 
SINNNR 65 + 0.09 
BSA 21 + 0.03 

Adhesion o f  HT 1080 cells to SN-peptide, SINNNR, laminin, and Eg fragment 
with BSA as the negative control; coated at 35 #M. Data represents mean ± 
SD from three experiments performed in triplicate. 

Figure 8. Presence of laminin A chain in fetal rat alveolar basement 
membranes. (A) Laminin A chain detected in fetal lung homoge- 
hate blot using ab-A[IK]. (B) Light micrograph of fetal rat lung in- 
cubated with Cy3-1abeled secondary antibody alone, as compared 
with (C) incubation with ab-A[IK] followed by Cy3-1abeled sec- 
ondary antibody. Arrows indicate immunoreactive alveolar base- 
ment membranes. Bar, 50 #m. 

identified location within the first three loops (Yurchenco et 
al., 1993). 

We initially determined that isolated type II alveolar cells 
assembled into alveolar-like structures on gelled BMS, as 
previously described using Matrigel (Shannon et al., 1987; 
Adamson et al., 1989). BMS was fractionated by size exclu- 
sion chromatography and the high molecular weight peak 
supported alveolar formation, an activity subsequently 
identified as laminin using inhibitory antibodies and laminin 
gels; in agreement with an earlier observation of Rannels 
who described how an anti-laminin antiserum neutralized 
the capacity of Matrigel to inhibit alveolar cell spreading 
(Rannels et al., 1987). Use ofproteolytic fragments, inhibi- 
tory antibodies, and synthetic peptides progressively local- 
ized the alveolarization site first within the laminin E8 re- 
gion, then to a novel cell adhesive 20 residue sequence 
(amino acids 2179-2198) within the first loop of the carboxy 

Table IV. Conservation of Laminin A Chain G Domain 
Sequence Between Species and Homologue 
Laminin A chain Sequence 

MOUSE 

HUMAN 

DROS 

MEROSIN 

S]:~ N N ~ |  Y I TRFGN~i 
• ii::i " :?. i ::iiii :::.!i::!~: . : . : :.::i i 
P::] D ~ i ~  HVARFGN I ~ : :  

WAb~QAWbRMGPNAk 
• : : .  ! i ! • .  . . . 

T[ DDS~Ri VASRTGRN~IT 

Shaded regions indicate amino acids identical to the mouse laminin sequence. 
Conservatiyely substituted amino acids with a comparison value equal to or  
greater than 0 .50 are shown by  two dots (:). A single dot (.) indicates a 
comparison value equal to or greater than 0.10 as defined by the BestFit 
program. 
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terminal G domain, and finally to the sub-sequence 
SINNNR (amino acids 2179-2184). In this manner, and 
eliminating the possibility of inhibition via cell toxicity, we 
followed three of Yamada's four criteria for proof of synthetic 
peptide specificity (Yamada, 1991). 

Curiously, SN-peptide was first tested by Sephel et al. 
(1989; designated'PAl0") in a 16-peptide screen for a laminin 
neurite outgrowth site, wherein SN-peptide was found not to 
support PC12 cell adhesion (also our own unpublished ob- 
servations) and neurite outgrowth. In contrast, type II alveo- 
lar and HT1080 fibrosarcoma cells adhered to SN-peptide 
and SINNNR which at a coating concentration of 35 #M was 
equivalent to fragment E8 adhesion, and when presented to 
cells in soluble form at this level completely inhibited adhe- 
sion to E8. Moreover soluble fragment E8 but not P1 in- 
hibited SN-peptide dependent adhesion, and divalent cation 
dependency raised the interesting possibility that an integrin 
surface receptor may mediate the interaction, the identity of 
which is under investigation. Whether this site is active for 
other cells and whether it is non-neuronal specific remains 
to be determined. 

Laminin-driven morphogenesis has been documented in 
other in vitro lung systems which have examined branching 
of embryonic airways (attributed by partially neutralizing an- 
tibodies to the center of the laminin cross and ends of the 
short arms; Schuger et al., 1991), and reaggregation of 
mixed fetal epithelial and mesenchymal lung cells (active re- 
gion of laminin unknown; Schuger et al., 1992). These 
studies are made relevant by the early and sustained in vivo 
presence of embryonic airway and alveolar basement mem- 
brane laminin (Gil and Martinez-Hernandez, 1984; Chen et 
al., 1986) containing A, B1, and B2 chains (Klein et al., 
1990; Schuger et al., 1991). 

The lamiuin E8 region has proven to be the most adhesive 
of all parts of laminin (Timpl, 1989; Aumailley et al., 1990; 
Drago et al., 1991), an activity used by numerous different 
cell types in which the ot~m integrin serves as the most 
common surface receptor (Sonnenberg et al., 1990; Aumail- 
ley and Timpl, 1990; Sorokin et al., 1990; Akiyama, 1990). 
Since fragment E8 is large, attempts have been made to pre- 
cisely define adhesive site(s). Initial studies with synthetic 
peptides identified: (a) IKVAV (Tashiro et al., 1989), a 
highly conserved A chain adhesive sequence located on the 
amino side of the G domain whose surface receptor is now 
known to be the same as that for amyloid precursor protein 
(Kibbey et al., 1993), and (b) the proposed laminin binding 
site of the tx3B~ integrin receptor, KQNCLSSRASFRGCV- 
RNLRLSR (amino acids 3011-3032; Gehlsen et al., 1992), 
located at the carboxy terminus of the G domain; neither of 
which had any effect on alveolar formation. Another ap- 
proach has been to systematically test proteolytic subfrag- 
merits of E8 (Deutzmann et al., 1990) and a recombinant G 
domain (Yurchenco et al., 1993). These studies have given 
rise to the interesting conclusion that a key cell adhesion site 
exists somewhere within the first three loops of the G do- 
main. The manner by which this site may be presented to the 
cell surface is the subject of discussion. One suggestion, 
based on experiments with E8 subfragments but apparently 
incompatible with our data, depicts that a site is formed by 
folding all or part of the first three loops with the rod domain 
formed by B1 and B2 chain carboxy termini and associated 
A chain. An alternative interpretation is that both the site in 

the first three loops and another in the rod domain are re- 
quired for complete E8 adhesion activity (Deutzmarm et al., 
1990). Differing from these models is the recent observation 
that full myoblast cell adhesion and spreading activity re- 
sides in a recombinant G domain fragment consisting of the 
first three loops (Yurchenco et al., 1993); whether this prop- 
erty applies to other cell types remains to be determined. 
The two site possibility would be in keeping with dose re- 
sponse experiments (not shown) in which SN-peptide is less 
active than E8 at low coating concentrations (such as 10 
/2M), much as has been observed in the case of fibronectin 
wherein RGD plus a second synergistic site are required for 
full adhesive activity of the central cell binding domain 
(Obara et al., 1988; Nagai et al., 1991). Identification of 
SINNNR should greatly facilitate understanding the mecha- 
nism by which the E8 region signals cell surface integrin 
receptors, for which combined use of SINNNR with E8 
subfragrnents and recombinant G domain could be very 
revealing. 

In summary, the combined morphogeuic/cell adhesive 
role of the lamimn A chain sequence SINNNR in vitro, taken 
together with the early appearance of laminin A chain in al- 
veolar basement membranes in vivo, raises the possibility 
that through receptor interaction the SINNNR site may serve 
as an important extraeellular trigger in early lung alveolar 
development. 
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