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To unravel the functional properties of the brain, we need to
untangle how neurons interact with each other and coordinate in
large-scale recurrent networks. One way to address this question is
to measure the functional influence of individual neurons on each
other by perturbing them in vivo. Application of such single-neuron
perturbations in mouse visual cortex has recently revealed feature-
specific suppression between excitatory neurons, despite the pres-
ence of highly specific excitatory connectivity, whichwas deemed to
underlie feature-specific amplification. Here, we studied which con-
nectivity profiles are consistent with these seemingly contradictory
observations, by modeling the effect of single-neuron perturbations
in large-scale neuronal networks. Our numerical simulations and
mathematical analysis revealed that, contrary to the prima facie
assumption, neither inhibition dominance nor broad inhibition
alone were sufficient to explain the experimental findings; instead,
strong and functionally specific excitatory–inhibitory connectivity
was necessary, consistent with recent findings in the primary visual
cortex of rodents. Such networks had a higher capacity to encode
and decode natural images, and this was accompanied by the emer-
gence of response gain nonlinearities at the population level. Our
study provides a general computational framework to investigate
how single-neuron perturbations are linked to cortical connectivity
and sensory coding and paves the road to map the perturbome of
neuronal networks in future studies.
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Perturbative approaches to study neuronal dynamics are be-
coming pivotal in our understanding of the brain’s function

and dysfunction (1–4). They however often involve perturbation
of a large number of neurons, which renders the analysis of the
underlying circuitry challenging. A more simplified approach that
has been pursued recently is to map the functional influence of
individual neurons by perturbing a single neuron at a time. Such
single-neuron perturbations have recently revealed feature-specific
suppression between excitatory neurons in mouse visual cortex (5).
However, we still lack a mechanistic account of how these single-
neuron functional influences are linked to cortical connectivity and
dynamics, and how they can shed light on functional processing of
realistic stimuli in large-scale cortical networks.
Specifically, how different motifs of excitatory (E) and inhibi-

tory (I) connectivity interact with each other to give rise to func-
tional properties of neuronal networks, and how this is manifested
in single-neuron perturbations, remains unclear. For instance,
several experimental studies have recently reported a highly spe-
cific pattern of connectivity in mouse primary visual cortex (V1),
where excitatory neurons with similar functional properties (e.g.,
orientation selectivity) are connected together with higher prob-
ability and with stronger weights (6–9). This was suggested to give
rise to feature-specific amplification of the feedforward input by
the recurrent network (10, 11). The results of single-neuron
perturbations, on the other hand, suggest that feature-specific
suppression, rather than amplification, is the dominant mode of
functional interaction between excitatory neurons (5). It has,
therefore, remained puzzling how these seemingly paradoxical
results should be interpreted and reconciled.

Here, we developed a theory of single-neuron perturbations
and used computational modeling to shed light on these questions.
We built and analyzed large-scale models of neuronal networks
constrained with realistic receptive fields (RFs) and experimen-
tally reported motifs of recurrent connectivity and studied the
effect of single-neuron perturbations in these networks. Specifi-
cally, we asked which cortical connectivity regimes are consistent
with the experimental results of single-neuron perturbations. Our
results highlighted the crucial role of inhibitory connectivity pat-
terns, and how they interact with excitatory motifs to give rise to
feature-specific effects (e.g., amplification or/and suppression).
We found that to obtain feature-specific suppression, strong and
functionally specific subnetworks of E and I were necessary. That
is, both E and I neurons with similar RFs should be connected
together more strongly than their nonsimilar counterparts, which
was consistent with recent results in visual cortex (12).
Our modeling results shed light on the above-mentioned con-

troversy by showing that feature-specific amplification and sup-
pression could both exist in the cortex, depending on the regime of
functional similarity between the influencers and the influencees.
Our model suggests specific predictions on how to observe this in
the cortex. Computational modeling also helped us to formulate
further predictions that experiments could not directly assess, for
instance regarding the temporal evolution of influence and dif-
ferential contributions of specific connectivity motifs. We could
further link the result of single-neuron perturbations to sensory
processing by studying how our model networks in different re-
gimes encode and decode natural images. More generally, we
show that our theory can be extended to study multiple-cell per-
turbations to map the perturbome of neuronal networks in future.

Significance

Brains are composed of networks of neurons that are highly
interconnected. A central question in neuroscience is how such
neuronal networks operate in tandem to make a functioning
brain. To understand this, we need to study how neurons in-
teract with each other in action, such as when viewing a visual
scene or performing a motor task. One way to approach this
question is by perturbing the activity of functioning neurons
and measuring the resulting influence on other neurons. By
using computational models of neuronal networks, we studied
how this influence in visual networks depends on connectivity.
Our results help to interpret contradictory results from previ-
ous experimental studies and explain how different connec-
tivity patterns can enhance information processing during
natural vision.
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Results
Perturbations in Excitatory–Inhibitory Networks. We first sought to
analyze how single-neuron perturbations are linked to network
connectivity and dynamics in simplified models. We asked how
the perturbome of the network, that is the relative change in
other nodes’ activity when a node is perturbed, is linked to the
connectome, i.e., how strongly the nodes are connected together
in their direct pathways. We expect a close match between the two
for primarily feedforward structures or networks with weak recur-
rent coupling. However, in neuronal networks with strong recurrent
coupling the complex interaction of excitation and inhibition and
the emergent dynamics of the network may change the perturbome.
We started our study by analyzing a simplified network com-

posed of two excitatory (E) and one inhibitory (I) subpopulations
(Fig. 1A). In weakly coupled networks, the influence of perturbing
an E subpopulation (E1; influencer) on the other (E2; influencee),
is mainly determined by the direct, monosynaptic connection be-
tween the two (E1→E2; parameterized by J) (Fig. 1B). For
strongly coupled networks, however, the effect of higher-order
interactions become more prominent. Three disynaptic influence
motifs possible for this network are shown in Fig. 1C, with two of
them (E1→E1→E2 and E1→E2→E2) conferring a net excitatory
influence and the other (E1→I→E2) exerting a net inhibitory ef-
fect. Influence motifs of higher orders can contain more compli-
cated interactions, including disinhibitory motifs (as highlighted by
an example trisynaptic motif E1→I→I→E2 in Fig. 1C). The total
influence in the network, therefore, depends on the exact sum-
mation of all these excitatory and inhibitory pathways.
For linear networks (e.g., linearized rate-based or spiking net-

works), the influence of perturbing E1 on E2, ψ(E1→E2), can be
analytically obtained from the weight matrix W by the operator
A = (1 −W)−1 (SI Appendix,Methods and Eq. 15). For the network
with connection weights as parameterized in Fig. 1A it can be
computed as follows:

ψ(E1→E2) = J + gJ2(1 − α)
1 + J(g − 2) + 2J2g(α − 1).

Here, g (inhibition dominance) and α (E→I dominance) denote,
respectively, the strength of inhibitory synapses and E→I weights
relative to E→E connections (J). “Perfect balance,” given by
α = 1 and g = 2 (since there is only one I subpopulation), implies
that ψ(E1→E2) = J. In this case, we can say that the effective
influence of perturbations in the network (or the perturbome) is
similar to the weight of direct connections (J) that can be
inferred from the network connectome. An intuitive explanation
is that all higher-order motifs cancel each other in terms of their
positive and negative effects. This is shown for disynaptic motifs
in Fig. 1D and can be worked out for higher-order motifs in the
same fashion.
For most realistic conditions, however, the assumption of perfect

balance might not hold [e.g., neuronal networks in mouse V1 with
dense and strong E–I interactions (13–15)]. We therefore need to
analyze how the influence changes when we vary the key parameters
of E–I connectivity. To study this, we kept either α (E→I domi-
nance) or g (inhibition dominance) the same as before and changed
the other parameter (Fig. 1E). Our simulations showed that in-
creasing g alone decreased the influence in a divisive manner: the
stronger the g, the weaker the influence between E1 and E2, but it
remained always positive (Fig. 1E). This was consistent with the
analytical expression above, when we let α = 1, leading to
ψ E1→E2( ) = J= 1 + J g − 2( )( ). When we fix g and change α in-
stead, negative influence can be obtained for large values of α
(Fig. 1E). This was also obtained from our analytical expression
under the specific condition of g = 2, leading to ψ E1→E2( ) =
J + 2J2 1 − α( )( )= 1 + 4J2 α − 1( )( ). In contrast to the previous case,
now the numerator can take negative values, provided α> 1 + 1=(2J).

Our analysis thus shows that, while strong inhibition dominance
(g) can scale the influence between two E subpopulations and
enable a divisive inhibition, strong g and α (E→I dominance) can
change the sign of E→E influence and lead to suppressive
effects.
We next asked whether our basic insights obtained from this

simplified circuit can be generalized to large-scale recurrent net-
works composed of many E and I neurons (Fig. 1F). We simulated
the effect of perturbing a single E neuron in rate-based networks
with random weights and measured the influence of single-neuron
perturbations on other E neurons. The influence ψ(E1→E2) can
be exerted via the monosynaptic connection, but also through
many indirect, higher-order influence pathways with a net excit-
atory or inhibitory effect (Fig. 1G). To obtain the total influence in
the network, we therefore need to account for all these pathways.
For a weight matrix with similar parameterization of average E–I
connectivity as Fig. 1A, we calculated the net influence between
two E neurons (SI Appendix, Methods and Eq. 88):

ψ(Ei →Ej) = J + gN J2(1 − α)
1 + (g − 1)NJ + g(α − 1)N2J2

.

We first tested the condition of perfect balance (α = 1, g = 1), as
discussed above. Although we obtained a range of influences be-
tween different pairs of neurons due to randomness of weights, the
average influence in network simulations was similar to the weight
of direct connectivity, J (Fig. 1H). This was also the case for large
values of J, which would render the E subnetwork unstable in the
absence of inhibition, meaning that, although higher-order E motifs
can be unstable and nonconverging, they are matched by a similar
inhibitory feedback, which cancels them at all higher orders. This
result was consistent with our analytical finding, whereby allowing
for α = 1 and g = 1 cancels all additional terms and leads to
ψ(Ei →Ej) = J. Deviations from perfect balance, by fixing α = 1
or g = 1 and changing the other parameter, led to similar qual-
itative results as before (Fig. 1I): increasing inhibition domi-
nance (g) alone led to divisive effects, while large values of
E→I dominance (α) were needed for changing the sign of influ-
ence. Both effects were well captured by the weight matrix [when
calculating the influence numerically from ψ = (1 −W)−1] and
by our analytical expression (Fig. 1I). We therefore conclude that
the regimes of influence, and their dependence on different com-
ponents of connectivity, can be described by our theoretical
framework in both small and large-scale E–I networks.

Single-Neuron Perturbations in Large-Scale Networks of Visual Cortex.
To go beyond random networks and relate our analysis to more
biologically realistic networks, we next studied the effect of single-
neuron perturbations in large-scale network models of visual
cortex (Fig. 2A). Individual excitatory and inhibitory neurons were
modeled by two-dimensional visual RFs with randomly assigned
initial parameters (e.g., preferred orientations and spatial fre-
quencies) (Fig. 2B). In accordance with experimental findings (8),
the connectivity of neurons in the network was governed by a RF
similarity-based rule, where neurons with more similar RFs had
stronger connection weights (Fig. 2 C and D).
We first simulated the responses of the network in the baseline

state (i.e., before perturbation) (Fig. 2 A, Upper), in response to
gratings of different orientations and spatial frequencies (Fig. 2E).
Neurons showed a wide range of responses to stimuli, with skewed
responses for excitatory neurons and larger responses for inhibi-
tory neurons, on average (SI Appendix, Fig. S1A). Excitatory
neurons responded with various degrees of selectively to specific
features of stimuli, like their orientation (SI Appendix, Fig. S1B).
Similarity of neuronal responses can be assayed by the correlation
of their responses to stimuli (response or signal correlations; see
SI Appendix, Methods). We observed a wide range of signal

Sadeh and Clopath PNAS | October 27, 2020 | vol. 117 | no. 43 | 26967

N
EU

RO
SC

IE
N
CE

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004568117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004568117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004568117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004568117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004568117/-/DCSupplemental


E→E: J

E→I: J

I→{E,I}: -gJ 

Toy model

Large-scale network

Monosynaptic 
influence

Disynaptic influence motifs Trisynaptic influence
(example disinhibitory)

J = 0.5Perfect balance
g = 2 [I→] |  = 1 [E→I]

D
is

yn
ap

tic
 m

ot
ifs

D
is

y

   J x J              + J x J              - J x 2J      = 0

G

Monosynaptic 
motif ( 1)

Disynaptic 
motif ( 2)

Influence motifs
Trisynaptic motif ( 3)

N-th order motif ( n)

A B

D E

F

H

C

Perfect balance
NE=NI | g = 1 [I→] |  = 1 [E→I] I J = 2 x10-3

J =

 [E→I dominance]g [Inh. dominance]

 [E→I dominance]g [Inh. dominance]

Fig. 1. Influence of perturbations in excitatory–inhibitory networks. (A) A reduced circuit model composed of two excitatory (E, red) and one inhibitory
(I, blue) subpopulations. One E subpopulation (E1, Top) is perturbed and the influence of this perturbation on the activity of the other E subpopulation (E2,
Bottom) is studied. (B) The direct effect of perturbation is highlighted via the monosynaptic connection from E1 to E2. (C) The effects of disynaptic inter-
actions from E1 to E2 are highlighted with three possible motifs (E1→E2→E2, E1→E1→E2, and E1→I→E2). An example trisynaptic motif is shown on the Right,
which has a disinhibitory effect overall. (D) The contributions of disynaptic motifs to the influence cancel each other out under a perfect balance of excitation
and inhibition. This is obtained by α = 1 and g = 2, with the latter compensating for the smaller size of inhibitory neurons compared to two E subpopulations.
(E) Total influence of E1 perturbations on E2 activity in rate-base simulations (circles) for different values of g. Keeping α = 1 and increasing g leads to divisive
inhibition of the initial influence, but the influence remains positive (Left). Increasing α, on the other hand, can lead to suppressive influence for higher values
(Right). The prediction from the theory is plotted with solid lines in each case (J = 0.5). (F) Influence is evaluated in large-scale random networks of excitatory
and inhibitory neurons. (G) The effect of perturbation of an E neuron (the influencer) on another E neuron (the influencee) in the network can be mediated
by multiple pathways, including monosynaptic and higher-order motifs. The sign of the net influence at each branch is determined by considering the in-
teraction of the signs of all synapses in the respective pathway. (H, Left) Distribution of influence between all pairs of excitatory neurons in the network, in
the case of perfect balance (α = 1 and g = 1, NE = NI = 500, and J = 0.001). (H, Right) Average influence in the networks with different values of J. Given
perfect balance, the average influence always matches with the average direct connection weight between E neurons, even for networks with unstable
excitatory subnetworks (the border of instability is shown by the dashed line). (I) Average influence in networks with J = 0.002 and different values of g and α.
Similar behavior to E is observed, where increasing g leads to divisive inhibition and increasing α is needed to obtain suppressive influence. The prediction
from the weight matrix of the network, and from the theory (SI Appendix, Methods and Eq. 80), match with the results of rate-based simulations.

26968 | www.pnas.org/cgi/doi/10.1073/pnas.2004568117 Sadeh and Clopath

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004568117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2004568117


correlations between E and I pairs, and this signal correlation was
generally expected from respective RF correlations (SI Appendix,
Fig. S1 C and D).
To obtain single-neuron influences, we then simulated the

response of the network with extra perturbations of a single
excitatory neuron (“influencer”) (Fig. 2 A, Lower) and measured
the change in the activity of other excitatory neurons (“influen-
cees”) (Fig. 2F). The average response change of each influencee
as a result of perturbation normalized by the strength of per-
turbation was taken as a measure of the functional “influence”
(Fig. 2G and SI Appendix, Fig. S1E). To investigate how the in-
teraction between neurons depends on their similarity, we plotted
the influence for each pair of neurons (influencers and influen-
cees) against their signal correlation (Fig. 2H). For moderate
correlations, the net influence was negative, consistent with the
average negative effect of single-neuron perturbations in experi-
ments (5). Moreover, we observed “feature-specific suppression”
in this regime, that is the negative influence was stronger for pairs
with more similar response properties, on average (Fig. 2H, Inset).
These results are consistent with feature-specific suppression ob-
served in single-neuron perturbations in vivo (5).
However, this behavior changed for pairs with very strong

response correlations, where we observed a positive influence,
on average (Fig. 2H). A similar trend had been observed for high
“trace correlations” in the experiments (cf. figure 5B in ref. 5).
Based on our results, this regime of amplification is linked to RF
similarity of neuronal pairs and hence can be assumed as “feature-
specific amplification.” At the population level, these positive in-
fluences were stronger but less frequent, while the main bulk of
influence between neuronal pairs was negative and small (SI Ap-
pendix, Fig. S1E). These results therefore suggest different regimes
of influence in the networks, whereby pairs of neurons with

moderate response similarity (most pairs) show feature-specific
suppression on average, while feature-specific amplification is
dominant for highly similar RFs (rare examples).

Cortical Connectivity and Single-Neuron Influence. To better un-
derstand how these feature-specific effects emerge, and how they are
related to cortical connectivity, we used our theoretical framework
(as described above) for the analysis of single-neuron perturbations
(Fig. 3). For linear networks, the theory can predict the impact of
single-neuron perturbations on other neurons as a function of the
weight matrix, so we can evaluate the average influence of neuronal
pairs in the same networks as a function of their similarity. The
numerical prediction from the weight matrix shows the same non-
monotonic behavior as our previous simulations in rate-based net-
works (Fig. 2H), with feature-specific suppression for moderate
response correlations and feature-specific amplification for
highly similar RFs (Fig. 3A). We therefore conclude that the
main properties of feature-specific suppression/amplification
arising from single-neuron perturbations can be inferred from
the weight matrix, when considering the effect of monosynaptic
and higher-order pathways of E–I interactions (Fig. 1G).
To see how the key parameters of connectivity change this

behavior, we varied inhibition dominance (g) and E→I dominance
(α) in the network and characterized the influence in each case.
Consistent with our analysis before (Fig. 1), increasing inhibition
dominance alone did not introduce any feature-specific suppression;
however, when this was combined with strong E→I connections,
feature-specific suppression emerged (Fig. 3B). Feature-specific
amplification for highly similar RFs was present for moderate val-
ues of g and ⍺, but became less prominent for large values
(Fig. 3B). Our theoretical analysis also suggested that broad in-
hibition alone does not confer feature-specific suppression (SI
Appendix, Methods), a finding that was further confirmed in

A B C D E

F G H

Fig. 2. Influence of single-neuron perturbations in large-scale neuronal networks. (A) Large-scale networks composed of excitatory (triangles) or inhibitory
(circles) neurons are simulated in the baseline state (above) or after perturbing a single neuron (Lower). (B) Example visual receptive fields (RFs) of excitatory
neurons. Sample neurons with positive (Upper, red squares) and negative (Lower, blue squares) RF correlations (CC) with the RF in the Center. The thickness of
lines around each RF is proportional to the absolute value of RF CC (indicated on the Bottom). IDs of example neurons (indicated on Top of each RF) are kept
the same in the rest of the figure, for comparison. (C) Distribution of RF correlations for all excitatory pairs in the network (Upper), and the relationship
between connection weights and RF correlations for the respective pairs (Lower). (D) Sample weight matrix for 20 example excitatory neurons. Neurons are
sorted according to their similarity (RF CC) to RF #1. (E) Firing rate response of example neurons to example static gratings (shown on the Bottom). (F) Change
in the response of neurons after perturbing neuron #1. (G) Influence (average response change normalized by the perturbation size) for all pairs of example
excitatory neurons as influencers (different rows) or influencees (different columns). (H) Influence as a function of signal correlation for all excitatory pairs
(gray dots). The average influence at different levels of signal correlation is plotted on the Right (bin size: 0.05). Shading denotes ± SEM. (Inset) Zoom into the
intermediate range of RF similarity. NE = NI = 400,   JEE = 0.0025,   JEI = 0.005 (α = 2),   JIE = JII = −0.005 (g = 2),   ηEE = ηEI = ηIE = ηII = 2,   τ = 10.
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simulations with broader inhibitory connectivity (parameterized by
η, controlling the specificity of inhibitory connections; see Methods)
(Fig. 3C). Simulation of neuronal networks with similar connection
weights led to similar results, for both inhibition dominance and
broad inhibition scenarios (SI Appendix, Fig. S2).
To systematically characterize the functional properties of our

networks, we developed a metric (Feature S/A index; SI Appendix,
Methods) that quantifies the simultaneous presence of feature-
specific suppression at intermediate regimes and feature-specific
amplification for highly similar regimes (Fig. 3D). Higher values of
this index correspond to stronger feature-specific suppression at
moderate levels of RF similarity and feature-specific amplification
for highly similar RFs (Fig. 3 E and F). Consistent with our
qualitative observation before (Fig. 3 B and C), neither inhibition
dominance nor broad connectivity of inhibition resulted in high
values of this index, in the absence of strong E→I connectivity
(Fig. 3G). Quantifying the functional behavior of rate-based net-
works with different parameters (SI Appendix, Fig. S2) led to very
similar results (Fig. 3G). Consistent with our analysis before, these
results therefore suggest that strong and specific inhibition and
E→I connectivity are necessary and sufficient conditions to obtain
patterns of functional influence similar to the experimental results.

Contribution of Different Motifs to the Influence.Our analysis so far
highlighted the key role of connectivity in feature-specific in-
teractions. To further shed light on how different components of

connectivity give rise to suppressive or amplifying effects, we
analyzed the contribution of different influence motifs. To this
end, we calculated how the average influence would depend on
the signal correlation if it were limited to certain motifs (Fig. 4A).
The nth-order influence was calculated from the nth power of the
weight matrix (Wn) (SI Appendix, Methods and Eq. 21).
As expected, first-order interactions only conveyed feature-

specific amplification. Feature-specific suppression emerged in
the second-order influence motifs, but this pattern was reversed in
the third-order motif, which again showed feature-specific amplifi-
cation (Fig. 4A). The net effect at intermediate regimes, however,
remained negative, due to stronger feature-specific suppression of
the second-order influences. Similar analysis can be repeated for
motif-specific influences in networks with different combinations of
α and g (SI Appendix, Fig. S3), revealing how feature-specific sup-
pression can emerge in certain regimes (Fig. 3 B and C). Specifi-
cally, it shows that the sharpness of feature-specific suppression
depends on the strength and specificity of E→I connections (Fig. 4A
and SI Appendix, Fig. S3), which is evident for instance from the
E→I→E pathway of the second-order motif (Fig. 4A). As feature-
specific suppression is emerging as a higher-order motif, we would
expect it to be broader than monosynaptic amplification. That is,
even if all of the properties of E and I neurons were matched (same
RFs and connectivity profiles), broadening of inhibitory influence
could still arise from averaging over intermediate nodes.

Inhibition dominance Broader inhibition

A Inhibition dominance (g↑) Broader inhibition ( ↓)B C

E

Feature-specific suppression
(intermediate regime)

Feature-specific amplification
(highly similar regime)

D

Fe
at

ur
e-

sp
ec

ifi
c 

in
flu

en
ce

hi
gh

ly
 s

im
ila

r  
   

   
 in

te
rm

ed
ia

te
 

Feature-specific 
Suppression/AmplificationG

Signal corrSign

In
flu

en
ce

S
tro

ng
er

 E
→

I 

S
tro

ng
er

 E
→

I (
↑)

F

Fig. 3. Connectivity regimes and feature-specific influence. (A) Average influence as a function of signal correlation in neuronal networks (as reported in
Fig. 2H) and the theoretical prediction of this influence from the weight matrix of the network. (B) The average influence as a function of signal correlations
inferred from the weight matrices of networks with different parameters of E→I connectivity (α) and inhibition dominance (g). (C) Same as B for different
strength of E→I connectivity (α) and specificity of I→{E,I} connections (η). (D) Each pattern of influence was quantified by analyzing the degree of feature-
specific amplification in the intermediate regime, quantified by the slope of the linear fit to the curve (Upper) and the average amount of feature-specific
amplification in the highly similar regime (Lower). (E) Feature-specific influence for intermediate (Upper; as described in Fig. 3D, Upper) and highly similar
regime (Lower; as described in Fig. 3D, Lower) of neuronal similarity for different combination of inhibition dominance (g) and strength of E→I connectivity
(α) in the network. (F) Same as E for different strength of E→I connectivity (α) and specificity (η) of I→{E,I} connections. (G) Feature-specific suppression/
amplification (S/A) index, combining both aspects of suppression and amplification at different regimes, for different combination of parameters. The thicker
lines show the values inferred from the weight matrix, and the thinner lines correspond to simulations of the neuronal networks (SI Appendix, Fig. S2).
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The contribution of different motifs can also be observed in
the temporal evolution of the total influence. In our previous
analyses, we discarded the transient activity and evaluated the
influence from neuronal responses in the stationary state. How-
ever, transient responses can reveal important insights about the
operation of neuronal networks, especially how neuronal inter-
actions evolve over time to shape the influence. We therefore
analyzed the influence as inferred from the average activity at
different time intervals after single-cell perturbations (Fig. 4B).
Feature-specific amplification for very high response correlations
was evident from very early responses, arguing for its monosyn-
aptic nature (Fig. 4A). Feature-specific suppression, on the other
hand, emerged and strengthened over time, consistent with its
polysynaptic nature (Fig. 4 A and B). Notably, such dynamics
could not be observed in networks with weak E→I connectivity
(Fig. 4C). These results thus shed light on the evolution of the
influence over time and are consistent with the contribution of
higher-order motifs to feature-specific suppression.

Influence as a Function of Individual Features of Receptive Fields.We
presented the results of single-neuron perturbations in terms of
similarity of neuronal responses, as we had access to actual RFs
of neurons in our model networks. However, mapping the full
RF of neurons in experiments is not always feasible, and ex-
perimental results are often expressed in terms of marginal
feature selectivity of neurons (e.g., their tuning to individual
features of RFs like preferred orientation or spatial frequency).
To relate better our results to such experiments (e.g., as in ref.
5), we analyzed the influence as a function of individual features
of neurons (Fig. 5).

Preferred orientation. Characterization of the influence as a func-
tion of the difference between the preferred orientation (PO) of
the influencers and influencees revealed feature-specific sup-
pression for intermediate PO differences (dPOs), where more
suppression was observed between pairs with more similar POs
(Fig. 5A), in keeping with experimental results (cf. figure 3I in
ref. 5). However, our analysis revealed an opposite trend of
feature-specific amplification (i.e., less suppression for pairs with
more similar POs) for very small differences (Fig. 5A). That is a
consequence of feature-specific amplification for the regime of
highly similar RFs as we described before (Figs. 2H and 3), when
that similarity is projected over an individual feature of RFs,
namely their PO. Our results thus suggest that mapping the dPO
of neuronal pairs with more resolution and/or larger sample size
should reveal another regime of amplification, in addition to
feature-specific suppression for the intermediate range.
Spatial phase.Among the individual features of the RFs, we found
that the preferred spatial phase of neuronal pairs revealed the
strongest feature-specific suppression. Plotting the influence as a
function of the difference in preferred spatial phase (dPH) of
neuronal pairs revealed a monotonic increase with dPH, indi-
cating that neuronal pairs with the closest preferred spatial phase
show the most feature-specific suppression, on average (Fig. 5B).
As this aspect has not been explored in the experiments (5), our
results suggest that analysis of influence as a function of phase
difference could reveal a very strong dependence of influence on
this feature.
Spatial frequency. We also analyzed the dependence of influence
on the difference in the preferred spatial frequency (dSF) of
neuronal pairs (Fig. 5C). Here, the relationship was less obvious
and noisier, especially for small to moderate dSFs (<0.1, Fig. 5C).
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Fig. 4. Contribution of different network motifs to influence in excitatory–inhibitory networks. (A, Left) The average total influence as a function of signal
correlation, normalized to the maximum influence. (A, Right) Average influence is calculated for different motifs of the connection weights (inferred from
the corresponding power of the weight matrix, W), up to the third order. Circles in each plot show the average influence of the respective motif, with
magenta showing the sum of motifs up to that order. The total influence (red; same as the red curve on Left) is overlaid for comparison.
JEE = 0.0014,   JEI = 0.0028 (α = 2),   JIE = JII = −0.0028 (g = 2); other parameters are the same as in Fig. 2. (B) Influence as a function of signal correlation in
neuronal networks (similar to Fig. 2H), when the influence is inferred from the average firing rate up to time T (denoted on Top of each plot). Gray dots: all
pairs; red: average influence (bin size, 0.05). Shading denotes ± SEM at each bin. α = 2,   g = 2,   η = 3; other parameters the same as Fig. 2. (C) Same as B for a
network with weaker E→I connectivity (α = 1,   g = 2,   η = 3).
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This is consistent with the experimental results, which did not reveal
a significant dependence of feature-specific suppression on dSF.
However, we found a significant bandpass dependence of influence,
when we calculated the average influence for each neuron, either as
an influencer (i.e., the average influence resulting from the neuron
to all influencees) or as an influencee (i.e., the average influence
experienced by the neuron from all influencers), as a function of the
neuron’s preferred SF (Fig. 5C).
Interaction of individual features. We next analyzed how the inter-
action of above-mentioned features is related to the influence.
That is, instead of analyzing the influence as a function of a single
feature, we studied its changes in the space of multiple features (SI
Appendix, Fig. S4). We analyzed the influence as a function of the
conjoint distribution of differences in PO and phase (SI Ap-
pendix, Fig. S4A) or spatial frequency (SI Appendix, Fig. S4B).
The bandpass dependence of influence on dPO that we observed
before (SI Appendix, Fig. S4A) was exacerbated for small differ-
ences in both cases (small dPH and dSF regimes), and vanished for
the regimes with large differences (SI Appendix, Fig. S4 A and B).
This suggests that controlling for the difference in other properties
of the cells (individual features of their RFs here, e.g., SF or spatial
phase), can amplify the effect of feature-specific influence for
unique individual features. Analysis of the dependence of the in-
fluence on dPO, when controlling for dSF and dPH at the same
time, revealed similar results (SI Appendix, Fig. S4C).

Pattern of Influence in Networks with Different Levels of Realism.We
next asked whether our results hold in networks with different
levels of biological realism. We simulated and analyzed spiking

networks, networks with sparse connectivity, and networks with
more realistic inhibition.
Spiking networks. Spiking neurons are more nonlinear than rate-
based units, and the response of spiking networks can depend
on the operating regime of the network (16, 17). Especially, the
activity of spiking networks is more noisy in the fluctuation-driven
regime of activity with a strong balance of excitation and inhibition.
We therefore asked whether our results hold in balanced spiking
networks (SI Appendix, Fig. S5). The network activity was much
more noisy than rate-based simulations, and we therefore needed
significantly longer simulations to obtain reliable estimates of the
influence. However, it was possible to observe our key findings in
these networks (SI Appendix, Fig. S5F). We also inferred the in-
fluence from the membrane potential (Vm) of neurons and found
that feature-specific suppression was more evident in Vm-based
influences (SI Appendix, Fig. S5F). Our results thus suggest that
pattern of feature-specific influence can be observed from both
spiking activity and Vm, and that future perturbation studies can
employ voltage recordings to better study influence in sparsely
active networks.
Networks with sparse connectivity. We assumed all-to-all connec-
tivity in our simulations so far and only changed the weight of
connections, either randomly (Fig. 1 F–I) or according to neu-
ronal selectivity (Fig. 2). While local inhibitory connectivity
(I→E as well as E→I) has been reported to be very dense and
approaching all-to-all connectivity (14, 18, 19), E–E connectivity
in local networks is sparse. We therefore asked whether this
sparse connectivity changes our results (SI Appendix, Fig. S6).
Overall, we observed similar results in the average behavior of
the network (SI Appendix, Fig. S6A). However, a bimodal distribu-
tion of influence emerged, when we investigated the behavior of
individual pairs (SI Appendix, Fig. S6B). This result thus predicts an
increase in the variance of influence for higher signal correlations, a
pattern that seems to exist in the experimental data too (cf. figure 5B
in ref. 5). Further analysis revealed that this dichotomy arises from
connectivity: Direct connections showed primarily amplification-
dominated behavior, while suppressive effects mainly emerged in
unconnected pairs (SI Appendix, Fig. S6 C and D). This again
emphasizes the polysynaptic nature of feature-specific suppres-
sion (Fig. 4). Our results therefore suggest that the connectivity
between E–E pairs should be related to their feature-specific
influence in a specific way. If experiments were biased toward
the connected pairs, they would observe more amplification
effects and may underestimate the significance of suppressive
influences.
Networks with more realistic inhibition. We also tested our results in
networks with more realistic architecture of inhibition. We spe-
cifically tested 1) networks with biological fractions of E and I
neurons; 2) networks with different time course of inhibition;
and 3) networks with broader tuning of inhibition, and found
that our basic results hold in all variants (SI Appendix, Fig. S7).

1) We first reduced the number of inhibitory neurons to biolog-
ical ratio (E: 80%; I: 20%). This initially changed the behav-
ior of the average influence as a function of response
similarity (SI Appendix, Fig. S7 A and B), but when the
weights of inhibitory neurons (I-to-E and I-to-I) were in-
creased to compensate for the reduction in their size (13,
18), the original pattern was recovered (SI Appendix, Fig.
S7B). These results demonstrate that as long as there is a
minimum number of inhibitory neurons in the circuit to have
enough diversity of RFs, and the strength of inhibitory feed-
back is strong enough, inhibition is capable of providing
feature-specific feedback, which leads to feature-specific sup-
pression. However, in the absence of such strong feedback,
we should expect a shift toward amplification in feature-
specific influence.

A

B

C

Fig. 5. Influence as a function of individual features. (A) Influence (inferred
from perturbing neuronal networks similar to Fig. 2) as a function of the dif-
ference in the preferred orientation (dPO) of neuronal pairs. (Left) Distribution
of all pairs. (Middle) Average influence as a function of dPO (in bins of 4.5°).
(Right) Zoom in (x axis) of the average influence to highlight the nonmonotonic
pattern. (B) Same as A for the difference in preferred spatial phase (dPhase). Bin
size, 9°. (C) Influence as a function of the difference in the preferred spatial
frequency (dSF) of neuronal pairs. (Left) Distribution of all pairs (black) and the
average influence (red). (Middle) Average influence as a function of dSF (in bins
of 4.5°). (Right) Average influence per neuron [resulting from perturbing the
neuron as an influencer (black) or observed by the neuron as an influencee
(red)], as a function of its preferred SF. Dots show the result for all neurons in the
network, and lines denote the average at each SF. Bin width, 0.01.
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2) Next, we changed the time constant of inhibition (twice
faster or slower as excitation) and observed similar results
(SI Appendix, Fig. S7C). This might be expected as our re-
sults already had a good match with the theoretical predic-
tion from the weight matrix, which does not account for any
temporal dynamics by definition.

3) Finally, we studied networks with broader inhibition (SI Ap-
pendix, Fig. S7D). We implemented this in two ways: 3a) by
allowing for broader tuning of inhibition, or 3b) by making
the inhibitory weights less specific (broader connectivity).

3a) We generated inhibitory neurons with a range of RFs, which
were on average less elongated (and hence less orientated)
than excitatory RFs (SI Appendix, Fig. S7 E and F). Our
simulations showed that similar results can be obtained with
the new configuration (SI Appendix, Fig. S7D), arguing that
a range of inhibitory selectivity with broader properties
might be tolerated. This is in fact consistent with a broad
range of orientation selectivity reported in inhibitory neu-
rons (see, e.g., refs. 20 and 21).

3b) We also changed the specificity of connection weights for
inhibitory connections (I-to-I, I-to-E, and E-to-I) to obtain
broader feature-specific connectivity. We found that the re-
sult was more susceptible to this parameter (SI Appendix,
Fig. S7D). Based on this result, we can conclude that al-
though inhibitory neurons can have broader RFs, their
weights as a function of their response/RF similarity should
still be sharp (especially E→I; not shown).

Inhibitory Single-Neuron Influence. We also studied the influence
when inhibitory neurons are perturbed as influencers instead of
excitatory neurons. Mapping such inhibitory influences is more
challenging experimentally, but we could investigate it in our model
(SI Appendix, Fig. S8). We observed stronger negative influences, on
average (SI Appendix, Fig. S8), presumably due to stronger weights
of I→E connections. Beyond the mean suppression, a negative
slope of influence versus response correlation (which indicates
feature-specific suppression) was observed for higher signal corre-
lations (SI Appendix, Fig. S8A), as opposed to excitatory single-cell
perturbations where such a feature-specific suppression was present
in the intermediate regime (illustrated in Fig. 3D). In fact, lack of
a significant negative slope for intermediate positive signal cor-
relations indicated an absence of feature-specific suppression in
this regime (SI Appendix, Fig. S8B). The negative slope was, how-
ever, present for negative signal correlations in this regime, leading
to some degree of apparent feature-specific “amplification” for in-
termediate negative correlations (SI Appendix, Fig. S8B). Thus, the
pattern of inhibitory influence in the intermediate regime seems to
be the opposite of the pattern of excitatory influence (cf. Fig. 2H),
while the feature-specific amplification for highly similar regime is
obviously missing. Another conspicuous difference between ex-
citatory and inhibitory single-neuron perturbations was in the
transient responses of the latter, which did not show a significant
change in overall shape over time (SI Appendix, Fig. S8C). This
argues that polysynaptic motifs are more important in establishing
feature-specific suppression in excitatory single-neuron perturba-
tions, as it involves the interaction of excitation and inhibition.

Influence Resulting from Multiple-Neuron Perturbations. Our results
in the previous section revealed how interaction of multiple
features can shed light on additional properties of functional
influence, which could be masked when looking at single features
individually. In this section, we asked how such interaction can
be studied if, instead of single-neuron perturbations, the inter-
actome of the network is mapped by multiple-neuron perturba-
tions. To this end, we investigated the effect of double-neuron
perturbations, in which two neurons are perturbed simultaneously
to assay their combined influence on postsynaptic targets (SI

Appendix, Fig. S9A). We repeated similar experiments as outlined
before (e.g., in Fig. 2) for such double-cell perturbations, and ana-
lyzed the influence as a function of the similarity of each influencee
to both influencers (SI Appendix, Fig. S9B). Feature-specific sup-
pression was evident for the moderate regime of RF similarity,
especially for the region with moderate RF similarity to both
influencers. Regions with the least RF similarity to one influ-
encer, in contrast, revealed the most amplification when the RF
similarity was high with regard to the other influencer (SI Appendix,
Fig. S9B). Projecting the influence over a single dimension com-
posed of both influencers revealed a stronger feature-specific sup-
pression profile, when assayed as a function of RF similarity or an
individual feature (preferred spatial phase) (SI Appendix, Fig. S9C).
The interaction of influencers thus confers more feature-

specific suppression on average. This interaction can be more sys-
tematically studied by analyzing if the conjoint influence of two
influencers is synergistic or antagonistic, namely whether the
perturbation of neuron B in addition to neuron A increases or
decreases their influence in isolation (SI Appendix, Fig. S9D).
To analyze this, we developed a “synergy index,” which quantifies if
the change in double-neuron influences is amplifying or suppressing
the single-neuron effects (SI Appendix,Methods). The synergy index
is computed for each A–B–C triplet, where A is the first influencer
neuron, B is the second neuron that is additionally perturbed, and C
is the target influencee of single- and double-neuron perturbations.
The average synergy over all target influencees (Cs) for a sample
influencer A and all other second influencers (Bs) is shown in SI
Appendix, Fig. S9E, as a function of the response correlation of A
and Bs. The average synergy reveals a net positive synergy for all
A–B pairs, but this effect is more prominent for A–B pairs with high
response correlations. Similar trends were observed when we cal-
culated such average synergy curves for other example influencers
(As) in the network (SI Appendix, Fig. S9F). These results suggest
that double-neuron (and, more generally, multiple-neuron) pertur-
bations can be employed in future experiments to map the per-
turbome of neuronal networks, by analyzing the synergy of their
interactions.

Functional Consequences for Sensory Processing. Our work so far
revealed how different connectivity profiles lead to various pat-
terns of feature-specific suppression/amplification when indi-
vidual neurons are perturbed. However, single neurons are rarely
perturbed in isolation. Instead, the realistic operating regime of
the brain involves collective activation of neurons, for instance in
response to external stimuli. To examine the functional conse-
quences of such single-cell properties in naturalistic conditions,
we therefore need to study the response of populations of neu-
rons in different regimes. To address this, we presented natural
images to large-scale visual networks. The feedforward input was
obtained by filtering the images by the RF of individual neurons,
and the output of the network was read from the population
activity (Fig. 6A). We then analyzed how different networks
transformed the input to output in different regimes.
We first looked at networks similar to those with feature-specific

suppression/amplification as a result of single-neuron perturbations
(e.g., as in Fig. 2). We analyzed the output activity of excitatory
neurons as a function of their input in response to a sample image
(Fig. 6B). For such networks, the activity of neurons with small
inputs (small feedforward projections) was suppressed, while the
activity of neurons with medium and large feedforward projections
was mainly maintained or amplified (Fig. 6B). To understand what
underlies such a transformation, we repeated the input–output
analysis for the same network but with weaker E–I connectivity.
Here, we did not observe the same nonlinear transfer function;
instead, output responses were generally amplified with respect to
the input (Fig. 6C).
To quantify the transformation, we calculated the response

gain for each neuron as a factor with which the input needs to be
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multiplied to obtain the output. Neurons in the original networks
(with strong E–I connections) showed a sigmoid response gain
function: close to zero gains for small inputs and high gains for
larger inputs, with a saturation trend at very high feedforward
projections (Fig. 6D). In contrast, the network with weak E–I
connections showed the opposite trend: higher gains for neurons
with small feedforward projections, and the least amplification
for intermediate and large inputs (Fig. 6D). We characterized
such response gain curves for an ensemble of natural images
(Fig. 6E) and observed similar nonlinear behavior for both net-
works across the images (Fig. 6 F and G). These results suggest
that recurrent interactions in the networks with strong E–E con-
nections can amplify the “noise” if the E–I interaction is weak;
however, when strong and functionally specific connectivity exists
between E–E and E–I connections, neuronal responses show a
selective suppression of the noise and enhancement of the signal.
Lack of sigmoid-shape transfer functions in networks with

weaker E–I connections can be a result of less inhibition in the
network. We therefore asked whether an unselective increase of
inhibition in our networks can compensate for the weakening of
E–I connections, and restore the transfer function. To test that,
we studied networks with an increase in inhibition dominance or
broadness of the inhibitory connectivity, similar to the procedure
we used before to evaluate different regimes of feature-specific
suppression/amplification in these networks (cf. Fig. 3 B and C).
Under both scenarios, we observed qualitatively similar response
gain curves as in networks with weak E–I connections, and sig-
moid nonlinearity did not emerge as a result of nonspecific in-
hibition (SI Appendix, Fig. S10). These results corroborate that
strong and functionally specific E–I connections, which were

necessary to obtain feature-specific suppression and amplifica-
tion for different regimes, are also necessary for the emergence
of sigmoid-shape nonlinear transfer functions, which can po-
tentially enhance sensory coding.
To evaluate more directly the contribution of such nonlinear

transfer functions to sensory processing, we studied the representa-
tion of natural images in different networks. We assessed how
population responses to different images could be distinguished in
networks with different nonlinearities. This was measured by quan-
tifying the distance between population vectors in the N-dimensional
space of neural activity (where N is the number of neurons). If the
nonspecific component induced by all images over neurons is smaller
than the specific projections, the distance between the vectors of
population activity is small, and hence it is more difficult to dis-
criminate different images. On the other hand, orthogonal rep-
resentations, namely patterns of activity with the least overlap,
enable the most discriminability for image pairs. We quantified
such discriminability of population representations for all pairs of
natural images in different networks (SI Appendix, Methods). The
results revealed that networks with strong E–I connections in-
creased the discriminability of feedforward projections, whereas
networks with weak E–I had lower discriminability (Fig. 6H). By
suppressing the redundant information and enhancing the repre-
sentation of more informative neurons, networks with the sigmoid
nonlinearity can therefore provide a more efficient population
code to represent natural images.
The enhancement in the encoding of visual stimuli should lead to

better decoding capacities of visual networks. To test this directly,
we assessed the capacity of different networks in distinguishing
different natural images. We trained a decoder to discriminate

A B C D

FE G H

JI K

Fig. 6. Population responses in different regimes and consequences for sensory processing. (A) The response of the network is obtained by projecting the
input image over RF of neurons (feedforward input) and accounting for recurrent interactions resulting from the weight matrix. (B) Input and output of
excitatory neurons in the network for a weight matrix with strong E–I interaction. Input and output are both normalized to the maximum level of input in
response to the image. Distribution of input and output are shown on respective axes. (C) Same as B for a weight matrix with weak E→I. (D) Response gain
(output divided by input) for each excitatory neuron as a function of input, for weight matrices with weak and strong E→I, respectively. (E) Sample images
from an ensemble of 600 natural images used to test the networks. (F) Individual response gain curves (as in D) for individual images (gray) and their average
across all images (red). (G) Same as in F for a weight matrix with weak E→I connections. (H) Discriminability of population responses calculated as the
normalized angle (divided by 90°) of the vectors of population responses to all pairs of natural images (SI Appendix,Methods). (I) For each image, a decoder is
trained to distinguish the image from half of the images in the ensemble, and then tested to distinguish the image from images in the other half. (J)
Percentage of the correct responses of decoder in I in distinguishing the target image. (K) Percentage of correct responses at different levels of noise.
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a target image from other images in the ensemble, based on the
population activity of excitatory neurons (SI Appendix, Methods).
We then tested the discrimination accuracy of the decoder when
other nontarget images (not seen during the training) were shown,
under different levels of noise (Fig. 6I). Decoders which per-
formed their discrimination based on the population activity of
networks with strong E–I connections performed significantly
better than decoders based on the feedforward input, while net-
works with weak E–I weights did much worse than both (Fig. 6J).
Increasing the level of noise reduced the accuracy for all networks,
but networks with strong E–I connections outperformed other
networks consistently; moreover, they showed the most robust
behavior and were affected the least by noise (Fig. 6K). We
therefore conclude that nonlinear response gains, emerging in
networks with strong E–I connections and feature-specific sup-
pression/amplification in single-neuron perturbations, improve
image processing by increasing the capacity of a downstream de-
coder to distinguish different stimuli.

Discussion
We presented computational models and mathematical analysis
of the functional effects of single-neuron perturbations in neu-
ronal networks. Our results revealed specific connectivity motifs
necessary for the emergence of feature-specific suppression and
amplification for moderately similar and highly similar RFs.
Particularly, strong and specific E–I connections were necessary
to explain the experimental results of single-neuron perturba-
tions (5), and consistent with recent experimental reports of the
specificity of E→I and I→E connections in the mouse visual
cortex (12). Our theoretical analysis suggests that the most
feature-specific suppression is achieved when these two motifs
are balanced. Selective modulation of E→I and I→E connections
in future experiments (e.g., by optogenetics techniques) can test
individual contribution of different connectivity motifs to the
influence, as predicted by the model.
We found that the same connectivity profiles also gave rise to

the nonlinearity of neuronal responses underlying the ability to
discriminate natural images. A similar nonlinearity has been
suggested to explain the visual responses to natural images in
mouse V1 (figure 2G in ref. 22). A prediction of our model is
that such a sigmoid nonlinearity can be an emergent property of
neuronal responses at the population level, as networks with
different connectivity profiles expressed different nonlinearities
in our simulations. Our model neurons in fact lacked such
nonlinear transfer function at the single-cell level. Pyramidal
neurons in the real cortex have a large dynamic range and show
rather linear response curves (23), which can be a combined
result of dendritic mechanisms (24) and operation in fluctuation-
driven regimes of activity (25). It is therefore possible that such a
nonlinearity in fact emerges at the population level and as a
result of recurrent E–I interactions in the network. This pre-
diction, and its potential link to the representation capacity of
the population code, can thus be tested in future experiments by
selective perturbation of the recurrent circuitry.
Strong E–I connectivity has been reported in many cortices

across different species (13, 26, 27). Specifically, very large ex-
citatory inputs from pyramidal cells to inhibitory neurons have
been observed in humans, a property that has been absent in any
other nonhuman cortices (26, 28), which may argue for the
prominent role of this connectivity motif in complex cognitive
processing. However, in the absence of specific mapping of their
functional properties, and in view of the broad selectivity of in-
hibitory neurons (13, 29), it has been assumed that these con-
nections are nonspecific and provide a blanket of inhibition to the
local network (14, 18, 19). Recent studies, on the other hand, have
revealed the emergence of specific E–I subnetworks, emphasizing
the potential significance of selective inhibition for cortical computa-
tion (30–32). In mouse visual cortex, dendrite-targeting somatostatin-

positive (SOM+) inhibitory neurons have been reported to have
comparable levels of orientation selectivity to excitatory neurons in
both L4 and L23 (21), and even within parvalbumin-positive (PV+)
interneurons a range of selectivity has been observed depending
on the extent of their dendritic tree (20). Future studies are thus
needed to address the functional connectivity of E–I subnetworks
more systematically to shed light on the specificity of E–I inter-
actions. A case in point is a recent study of odor processing in the
olfactory bulb of larval zebrafish (33). By mapping the functional
connectomics via dense reconstructions of wiring diagrams (as
opposed to sparse sampling of connections), the study could shed
light on the higher-order interactions of excitatory and inhibitory
neurons. Interestingly, the study found that bidirectional E–I
connectivity is implicated in the decorrelation of odor responses
via feature suppression.
Our work described how different connectivity patterns can

lead to different perturbation effects. In networks with sparse
E-to-E connectivity, we found that connected neurons primarily
amplify each other upon single-neuron perturbations, while sup-
pressive influences emerge via polysynaptic pathways. This may
explain the experimental finding that neurons with higher noise
correlations show higher influence, on average (5). The structure of
noise correlation might, however, be governed by other parameters
that we have not considered in our current model. For instance, it
has been shown that balanced networks with spatially localized
lateral projections can show high noise correlations (cf. figures 4
and 5 in ref. 34) compared to classic balanced networks with ran-
dom connectivity (35–38). This was also shown in ref. 38, where
distance-dependent connectivity profiles with localized excitation
and global inhibition can generate higher noise correlations com-
pared to networks with random connectivity (cf. figure 7 in ref. 38).
The structure of noise correlations arising from these configurations
may explain the pattern experimentally observed (cf. figure 3G in
ref. 5). Note, however, that “distance”-dependent connectivity can
also arise in the feature space, which can be the case in networks
with sharper feature-specific connectivity of excitatory neurons,
compared to inhibition.
In addition to linking connectivity and coding in single-neuron

perturbations, our theory outlines how multiple-cell perturbations
can be used to study functional properties of neuronal networks,
by mapping higher-order interactions between influencers. A
similar mathematical approach has been used recently to analyze
the interaction of drugs and their resulting changes in cell mor-
phologies, in order to shed light on the link between drug com-
binations and treatment of diseases (39). Targeted multiple-
neuron perturbations of functionally identified neurons have in
fact been used recently to shed light on the dynamics of persistent
activity and short-term memory in mice (40). Similar approaches
can be recruited to reveal how neurons work in tandem to shape
functional processing in sensory cortices, with the possibility that
different network perturbomes can dissociate between functional
and dysfunctional circuitries (41, 42).
Our study also suggests that the temporal dynamics of the

evolution of feature-specific suppression/amplification can reveal
fundamental insights about the operation of the network. In our
model neuronal networks, we found that feature-specific suppres-
sion emerges later than feature-specific amplification as a result of
polysynaptic interactions (Fig. 4). Testing if such a pattern also
exists in the cortex would have implications for the connectivity and
function of cortical networks (e.g., transient responses versus sus-
tained activity). Although technically challenging, future exper-
iments can use population voltage-based measurements (43, 44)
combined with single-neuron optogenetic perturbations to cast light
on this important aspect. The temporal profile of functional influ-
ence can be further combined with multiple-neuron perturbations
to map the temporal perturbome of neuronal networks, which will
provide a more complete picture of functional and temporal pat-
terns of processing in the brain.
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In summary, our study provides a general mathematical
framework to study the effect of single- (and multiple-) neuron
perturbations in excitatory–inhibitory neuronal networks. By
applying it to the visual cortex, we could unveil connectivity
principles underlying the emergence of feature-specific influence
in recent single-neuron perturbations and predict further prop-
erties of visual networks. The model specifically provided an
explanation for the mutual presence of functionally specific ex-
citatory connectivity and feature-specific suppressive influence of
perturbations, thus reconciling previous experimental results
(5–8). The modeling framework can be used in future studies to
link cortical connectivity and dynamics to function in perturbation
experiments.

Methods
The activity of neuronal networks was simulated by solving the following:

τ
dr
dt

= −r + [Wr + s]+,

where r is the vector of firing rates, W is the weight matrix, s is the external
input, and τ is the time constant of integration. The weight of connection be-
tween neurons (wij) was modulated as a function of RF similarity of neurons:

wij = J exp(η  CCij) + ζ,

where CCij is the correlation coefficient of respective RFs, η determines the
specificity of connections, and ζ is added noise. RFs were simulated as Gabor
functions.

Influence (ψ) was assayed by perturbing the input to single or multiple
neurons (δs), calculating the difference in the average activity of neurons as
a result of perturbations (δr), and normalizing that by the size of input
perturbation (δp):

ψ = δr=δp.

Full experimental procedures are provided in SI Appendix, Methods. Codes for
reproducing main simulations and results are freely available from ModelDB
(http://modeldb.yale.edu/262045).

Data Availability. All study data are included in the article and SI Appendix.
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