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NV center based nano-NMR 
enhanced by deep learning
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The growing field of nano nuclear magnetic resonance (nano-NMR) seeks to estimate spectra or 
discriminate between spectra of minuscule amounts of complex molecules. While this field holds great 
promise, nano-NMR experiments suffer from detrimental inherent noise. This strong noise masks to the 
weak signal and results in a very low signal-to-noise ratio. Moreover, the noise model is usually complex 
and unknown, which renders the data processing of the measurement results very complicated. Hence, 
spectra discrimination is hard to achieve and in particular, it is difficult to reach the optimal discrimination. 
In this work we present strong indications that this difficulty can be overcome by deep learning (DL) 
algorithms. The DL algorithms can mitigate the adversarial effects of the noise efficiently by effectively 
learning the noise model. We show that in the case of frequency discrimination DL algorithms reach 
the optimal discrimination without having any pre-knowledge of the physical model. Moreover, the DL 
discrimination scheme outperform Bayesian methods when verified on noisy experimental data obtained 
by a single Nitrogen-Vacancy (NV) center. In the case of frequency resolution we show that this approach 
outperforms Bayesian methods even when the latter have full pre-knowledge of the noise model and 
the former has none. These DL algorithms also emerge as much more efficient in terms of computational 
resources and run times. Since in many real-world scenarios the noise is complex and difficult to model, we 
argue that DL is likely to become a dominant tool in the field.

The newly developed discipline of nano-NMR1–7 is aimed at reducing the minimal NMR sample size by many 
orders of magnitude, and thus increasing the NMR sensitivity and spatial resolution down to a few molecules8. 
This is achieved by replacing the macroscopic coil of the NMR setup, which measures the magnetic field, by a sin-
gle or an ensemble of controllable spins, e.g., NV centers in diamond, which serve as tiny magnetometers. Recent 
experiments have shown that it is possible to estimate the spectrum of artificial signals and signals of polarized 
samples with high resolution9–13. However, the obvious advantages of receiving spectral information about tiny 
quantities of molecules are masked by the extra amount of noise that goes hand in hand with most configurations 
of this setup. There are a few sources of this extra noise, which include the NV coherence time (magnetic noise), 
the controller noise (laser and microwave operations), and most importantly the diffusion induced noise, which 
is negligible in the regular NMR setup but is extremely large in the nano-NMR setup and broadens the line-width 
above the required resolution. This noise creates a serious bottleneck, as the crucial information is encoded in 
the tiny chemical shifts and small energy gaps caused by J - couplings. That is, the nano-NMR setup is usually 
characterized by a weak measured signal, which is masked by a strong noise.

Moreover, the precise noise model is usually complex and unknown. Consequently, it is an intractable data 
processing challenge to achieve a spectral discrimination between weak and similar signals of near-by frequen-
cies. In particular, because the noise model is complex and unknown, it is difficult to tackle this noise and reach 
the optimal discrimination by conventional data analysis methods with which optimal discrimination can usually 
be obtained only when full knowledge of the noise model is available.

In this work we show that the challenge of spectral discrimination between weak and similar signals in the 
presence of strong and complex noise, can be efficiently confronted by DL algorithms, which effectively learn the 
noise model. Moreover, we show that DL methods are capable of learning the noise model from a small amount 
of data which only needs to be gathered for a few minutes. This means that a DL algorithm can analyze a test sig-
nal with the same efficiency as numerically demanding Bayesian methods that rely on precise knowledge of the 
model. In addition, we show that DL methods can be extremely useful in dealing with challenging frequency reso-
lution problems and possibly overcome Bayesian methods even under assumptions that these have full knowledge 
of the model and infinite computing power.
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DL techniques have been successfully applied to spectral data in the fields of Astronomy, Chemistry, 
Geosciences, and Bioinformatics14. Spectral data from these disciplines pose similar challenges: (1) High data 
dimensionality (2) Difficulty of modeling the important features from first principles (3) Dirty environments with 
many classes of objects that need to be differentiated along with varying signal intensities (4) Importance of subtle 
differences in the signal. Despite these difficulties, which apply in our context as well, impressive achievements 
have been made such as the detection of narcotics in Raman spectroscopy data with a 0.5% error rate15.

DL methods have also been used for the analisys of NMR data, in particular in the context of automated 
protein structure for peak-picking of nuclear magnetic resonance spectra16, of biological macromolecules17, and 
recently also in the context of analyzing a variety of spectral images of proteins by using support vector machine 
classifier combined with histogram of oriented gradient18, and by using convolutional neural network19. In addi-
tion, deep learning techniques such as long short term memory networks20 and variational auto-encoder net-
works21 have been used in NMR applications for material characterization and subsurface characterization.

We believe that the success of DL methods in the analysis of regular NMR data should be amplified in the 
nano-NMR setup due to the larger amount of noise in this setting, which originates from two main ingredients 
that are absent in the regular NMR setting. The first ingredient is the origin of the signal. While in regular NMR 
the signal is created by thermal polarization, in nano-NMR the signal is created by statistical polarization22, which 
imply that in the nano-NMR setup the noise is stronger. The second ingredient is the quantum projection noise, 
which is of a Poissonian or a Bernouli nature, and in many cases is the dominant source of noise. Here we provide 
evidence that DL methods can tackle these noises efficiently.

To evaluate the efficiency of DL methods in terms of the spectroscopy of nano-NMR data, we consider two 
problems, frequency discrimination and frequency resolution. We first examine the ability of DL methods to 
discriminate between two signals corresponding to two different frequencies. In particular, we consider data 
from signals that were read by an NV center, which simulates noisy nano-NMR data. Typical data for these 
two frequencies are shown in Fig. 1, which presents two time traces of the datasets together with their Fourier 
transforms. It is immediately clear that it is impossible to discriminate between the two frequencies based on the 
Fourier transform alone because the signal has a strong phase noise on top of the detection noise. In this work 
we show that DL methods are able to classify the data with the same efficiency as Bayesian methods, which use 
full knowledge of the signal and noise model and are numerically much more demanding than DL methods. The 
advantage of DL methods is also indicated by their superior performance in frequency discrimination of the 
experimental data, where the signal and noise models are not fully known.

We then employ DL methods to tackle the problem of frequency resolution in a noisy environment. We show 
that DL methods can efficiently discriminate between the signal of a single frequency and the signal of two nearby 
frequencies that have a strong amplitude and phase noise.

Our results strongly suggest that DL methods can effectively learn the physical and noise models and by that 
constitute an efficient alternative to Bayesian methods, which require a priori knowledge on the physical and 
noise models.

Figure 1.  Typical noisy data of two different frequencies that we aim to discriminate in this work. The 
oscillating magnetic signals at the two different frequencies suffer from a strong phase noise and are read by 
an NV center, which adds quantum noise to the output binary signal (see Eq. 10). (upper right): The time 
trace binary signal from one frequency of 250 Hz together with its Fourier transform after subtracting the zero 
frequency (upper left). (lower right): The time trace binary signal from the second frequency of 251.6 Hz and its 
Fourier transform (lower left).
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Frequency Discrimination
The physical model.  We consider the problem of discrimination between two signals corresponding to two 
different frequencies by a single quantum probe. In the nano-NMR setup this corresponds, for example, to the 
scenario where a single NV center, which serves as a tiny magnetometer, is placed in the proximity of a sample 
that contains two known molecules between which we wish to discriminate. Specifically, in the presence of a sin-
gle frequency signal (a single molecule) the Hamiltonian of the spin probe is given by

ω ϕ= +H g t Scos( ) , (1)s i i i zi

where gi, ωi, and φi are the amplitude, frequency, and (random) phase of signal i respectively, which is the stand-
ard setting in nano-NMR experiments1–4,23. The probe, which is initially polarized along x̂, freely evolves accord-
ing to Hsi

 for a short duration, Δt, and then is measured along ŷ. In the measurement scheme of a single 
experiment, the sequence of probe operations consists of initialization, evolution, and measurement, which is 
repeated many times under the constant presence of a signal (Fig. 2(a)). In the case of a single shot measurement, 
the measurement result is a sequence of zeros and ones, Fig. 1 (right), and the probability for a successful meas-
urement (one) is given by
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We start by considering an ideal scenario (no noise or inefficiencies) where Eq. (2) holds. We assume that in 
each experiment the signal corresponds to one of two known frequencies (ω1 and ω2), the amplitudes of the sig-
nals are known, but in each experiment the signal has an unknown uniformly distributed random phase. A single 
experiment results in a string of bits, x = {1, 0, 0, 1, …}, where 1 and 0 correspond to a detection of the ms = 0 state 
or ms = −1 state of the NV center. Given x, we want to obtain an estimation of the frequency of the signal, ωest = ω1 
or ωest = ω2 (Fig. 2(b)). We quantify the performance of a discrimination method M by the error probability of the 
frequency estimation, which is defined by
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where PM (ωest = ωj|ωi) is the probability of method m to output ωest = ωj given that the frequency of the signal is ωi.

Full bayesian method.  In the ideal scenario considered here, we have full knowledge of the model (Eq. (2)) 
and the only unknowns are the random phases φi. Hence, we can simply utilize a Full Bayesian method known as 
the likelihood-ratio test and denoted by MFB, where for each frequency we calculate the maximal log-likelihood 
over the unknown random phases. That is,

ϕ ω ϕ ω= | = |
ϕ ϕ

L L x L L xmax ( , ), max ( , ),
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Figure 2.  The physical model. (a) The probe, which is initially polarized along x̂, freely evolves according to Hsi
 

(Eq. 1) for a short duration, Δt, and then is measured along ŷ. In the measurement scheme of a single 
experiment, the sequence of probe operations consists of initialization, evolution, and measurement, which is 
repeated N times under the constant presence of a signal. In each experiment, the frequency of the signal is 
equal to one of two known frequencies, ω1 and ω2. (b) Our aim is to discriminate between the two frequencies. 
A single experiment results in a string of bits, x = {1, 0, 0, 1, …}. Given x, we want to obtain an estimation of the 
frequency of the signal, ωest = ω1 or ωest = ω2.
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We estimate the frequency according to the larger likelihood; that is
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As MFB utilizes the maximal information on the signal, it obtains the minimal possible error for an unbiased 
estimator, which can serve as a benchmark to evaluate the efficiency of a learning method. Hence, its error prob-
ability serves as a lower bound for the DL method. It is known that Bayesian methods are optimal given the max-
imal amount of information and given that the optimization can be done efficiently, which is usually not the case, 
specifically when considering a noisy environment. In order to verify that we indeed have the optimal method, 
we compare the results to an analytical calculation of the Fisher Information (FI), which can be done in this case.

In general, full knowledge is not available due to either a lack of knowledge of the noise model in the experi-
ment and detection inefficiencies, or lack of knowledge of the signal. In this case, we can utilize a correlation 
based method, Mcorr, for frequency discrimination. To this end, we first use a train set of measurement results, 
Xtrain, for which the frequency of the signal is known. For each x ∈ Xtrain we calculate the correlation vector 

= 〈 〉+C x xk i i k i (here we replace the 0 bit by −1). Then, for each frequency we calculate the averaged correlation 
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by the L2 norm. We estimate the frequency according to the smaller distance; that is,
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This method, however, disregards higher order correlations functions and the finite precision of the correla-
tion functions itself which varies considerably between the nearest neighbors and the higher neighbor separation. 
While in the limit where all these effects are taken into account this should approach the optimum, it is numeri-
cally very challenging or even impossible to apply to most problems of interest.

Deep learning method.  To overcome the model’s lack of knowledge, we suggest using a supervised DL 
model, which we denote by MDL. In particular, we consider a feed-forward fully connected neural network. The 
main reason for choosing a fully connected neural network is that the signal (frequency) information is encoded 
in the correlations between the values of different input neurons (measurement results), and in particular far 
apart input neurons. Similar to Mcorr, we use a training dataset of measurement results of known signals (known 
labels) to train MDL. We denote the labels of the two frequencies by 0 and 1. MDL is then applied to a test dataset 
and results in estimations of the frequencies of the test measurement results. Our DL model is a feed-forward fully 
connected neural network of four layers (two hidden layers) as depicted in Fig. 3. While two hidden layers are 
sufficient for the scenarios considered in this work, it may be the case that more complex noise models would 
require to employ deeper neural networks. The first layer is called the input layer. The neurons of the input layer 
output the input data; in our case, the measurement results x of a single experiment, to the second layer. The out-
put of neuron j in the second (hidden) layer is given by = ∑ +( )f z f w x b( )j i ij i j , where f is the activation func-
tion, and wij and bj are the weights and biases respectively. For the hidden layers we use the rectified linear (ReLU) 

Figure 3.  The MDL neural network is a feed-forward fully connected neural network. The input layer inputs the 
measurement results x to the second layer (first hidden layer). The output of the last hidden layer is fed to the 
output layer, which results in the frequency discrimination, ωest = ω1 or ωest = ω2.
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activation function, f (z) = max(0, z). The output of the second layer is then fed as an input to the third layer and 
so on. The last layer is called the output layer. In our model the output layer has one neuron whose low and high 
activation levels are associated with the two possible labels (frequencies). For the output neuron we use the 
Sigmoid activation function. We use the mean squared error (MSE) between the outputs of the learning model 
and the labels of the train set as the loss function that is minimized during the training by optimizing the weights 
and biases of the model. Please note that there is no special reason for choosing the Sigmoid activation function 
with the MSE loss function; the softmax activation function together with the cross-entropy loss functions may 
be used as well. Overfitting is avoided by restricting the total numbers of nodes in the network (and hence, the 
number of free variables). In particular, for the examples considered in this work we use a second layer of 20 
nodes, and a third layer of 35 nodes (a small modification of the number of neurons in each of the two hidden 
layers would not change the model’s accuracy significantly). Regarding the test dataset, after the application of the 
Sigmoid activation function on the output of MDL, we label the output by 1 or 0 according to whether it is >0.5 or 
<0.5 respectively. We then calculate PMDL

 by the loss function (the MSE) between the output labels and the true 
labels.

Numerical analysis.  As a way of testing the performance of MDL in terms of frequency discrimination, we 
constructed numerical sets of measurement results, x, according to Eq. (2) for two different frequencies, where 
the phase, φi, was chosen randomly (uniformly distributed between 0 and 2π) for each x. The input data were 
generated with g1 = g2 = ω1 = 10/(2π) Hz, ω2 = ω1 + Δω, Δt = 0.5 sec, and a total measurement time of 
Ttot = 500 sec (1000 measurements). Part of the datasets were used for training and the remainder was used for 
testing the learning model. We compared the performance of MFB to the performance of MDL and Mcorr. In Fig. 4 
we show the discrimination error probabilities, PMFB

, PMDL
, and PMcorr

 as a function of the frequency difference, 
Δω, between the two signals, as well as the corresponding MDL receiver operating characteristic (ROC) curves 
and areas under the curve (AUC). We considered a first layer of 1000 nodes (1000 measurements), a second layer 
of 20 nodes, and a third layer of 35 nodes. This choice of number of nodes limits the free variable space and allows 
us to avoid overfitting without resorting to regularization methods. In this ideal scenario, both Mcorr and MDL 
approach the optimal performance of MFB even though both methods have no a priori information on the physi-
cal model.

In order to provide indications on the performance of MDL in real-world noisy scenarios we further considered 
a few more noise models and assumed that these noise models are “unknown” and hence, they are not taken into 
account in the Bayesian methods MFB and Mcorr, which remain unchanged as described above. This serves as an 
indication on how much better the performance of MDL could be in comparison to MFB and Mcorr in a real-world 
scenario when the noise model is truly unknown to some extent. The first noise model is still a phase noise. While 
previously we considered that the random (uniformly distributed) phase of the signal is constant during a single 
experiment, here we consider a scenario in which the random phase is changed once during a single experiment, 
where the second random phase is also uniformly distributed. Moreover, the time interval in which the phase 
change occurs is also uniformly distributed between the time intervals of a single experiment (1000 time inter-
vals). The discrimination error probabilities, PMFB

, PMDL
, and PMcorr

 as a function of the frequency difference, Δω, 
between the two signals are shown in Fig. 5(a). It is clear that while the phase noise damages the discrimination 
capability of MFB and Mcorr, MDL is capable of learning the noise model. The second noise model considers a mag-
netic noise δb, which modifies the Hamiltonian of the probe, Eq. (1) to

ω ϕ δ= + + .H g t S bScos( ) (9)s i i i z zi

Figure 4.  Performance in the ideal model scenario. Left: discrimination error probabilities (Eq. (3)) as a 
function of the frequency difference, Δω. Full Bayesian, PMFB

 (green squares), Deep Learning, PMDL
 (red circles), 

correlations, PMcorr
 (blue hexagons), and analytical bound on PMFB

 (dashed black). The input data were generated 
according to Eq. (2) with g1 = g2 = ω1 = 10/(2π) Hz, ω2 = ω1 + Δω, Δt = 0.5 sec, and a total measurement time of 
Ttot = 500 sec (1000 measurements). Right: receiver operating characteristic (ROC) curve and area under the 
curve (AUC) of MDL for different values of Δω, corresponding to the first, third, fifth and seventh points from 
left in the left figure.
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Similar to the phase noise, we assume that δb is changed once during a single experiment and that the time 
interval in which the change of δb occurs is uniformly distributed between the time intervals of a single experi-
ment. Each of the two values of δb is Normally distributed with a zero mean and a standard deviation of 
σ = gi/5 = 2/(2π) Hz. The discrimination error probabilities, PMFB

, PMDL
, and PMcorr

 as a function of the frequency 
difference, Δω, between the two signals are shown in Fig. 5(b). In this case MDL handles the magnetic noise better 
that MFB and much better than Mcorr. In the third noise model we consider noise in the amplitude of the signal. 
Specifically, we assume that the amplitude value is different in each time interval and that it is Normally distrib-
uted with a mean of g = 10/(2π) Hz (the previous value of the non-noisy amplitude) and a standard deviation that 
is equal to the mean value, that is, σ = g = 10/(2π) Hz. The discrimination error probabilities, PMFB

, PMDL
, and PMcorr

 
as a function of the frequency difference, Δω, between the two signals are shown in Fig. 5(c). In this case MDL 
performs slightly better than Mcorr and better than MFB. Lastly, we consider the mixed-noise scenario where all of 
the above three noise models are includes. The discrimination error probabilities, PMFB

, PMDL
, and PMcorr

 as a func-
tion of the frequency difference, Δω, between the two signals are shown in Fig. 5(d) and the corresponding MDL 
ROC curves and AUC are shown in Fig. 5(e). It is apparent that MDL is still capable of learning the noise model 
while the performance of MFB and Mcorr is severely degraded when assuming that we have no further knowledge 
on the noise model. Of course, in case that we have more knowledge on the noise model, we may be able to mod-
ify the Bayesian methods accordingly. However, the implication of such a modification is that the optimization is 
performed with respect to a larger set of free variables, and therefore implies longer run times while the DL run 
time remains unchanged. Moreover, the above results suggest that Bayesian method could be very sensitive to the 

Figure 5.  Performance in noisy scenarios. Discrimination error probabilities (Eq. (3)) as a function of the 
frequency difference, Δω. Full Bayesian, PMFB

 (green squares), Deep Learning, PMDL
 (red circles), and 

correlations, PMcorr
 (blue hexagons). (a) Phase noise - the random phase of the signal is randomly changed once 

during a single experiment at a random time interval. (b) Magnetic noise - the probe is subject to a random 
magnetic field, which is randomly changed once during a single experiment at a random time interval. (c) 
Amplitude noise - the amplitude of the signal has a different (random) value in each time interval. (d) Mixed 
noise scenario, which includes all of the above noise models. See text for more details. (e) ROC curve and AUC 
of MDL for different values of Δω, corresponding to the second, fourth, sixth, eighth and tenth points from left 
in figure (d).
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noise model; a minor unknown difference between the true noise model and the assumed noise model could 
result in a significantly reduced performance of the Bayesian method (say, for example, that there are three phase 
changes in a single experiment instead of two).

Experimental verification.  The NV center in diamond24–26 is one of the leading quantum probe systems 
for sensing, imaging and spectroscopy. Here we considered frequency discrimination of measurement results 
obtained by a single NV center in ambient conditions. Two artificial signals were produced by a signal generator 
with frequencies ω1 = 2π × 250 Hz and ω2 = 2π × 251.6 Hz. Each signal was measured for a total measurement 
time of Ttot = 220 sec, with a time interval of Δt = 10 μs. From the row data, we generated strings of 25000 meas-
urement results (Ttot = 0.25 sec) such that the phase corresponding to each x can be considered as a random phase 
(no phase relation), and the frequencies cannot be resolved by a Fourier-Transform (see Fig. 1 (left)). The low 
photon-detection efficiency of a true detection (ms = 0) and a false detection (ms = −1) was ~7.4% and ~5.2% 
respectively, indicating low SNR and contrast.

In order to achieve a theoretical bound on the discrimination error, we considered a theoretical model with a 
modified probability for a successful measurement, which is given by

η η= + −Q t P t P t( ) ( ) [1 ( )], (10)true false

where P(t) is given by Eq. (2), and ηtrue and ηflase are the true and false detection efficiencies respectively. Assuming 
that ηflase = 0.7 ηtrue, we constructed numerical datasets according to Eq. (10), and set the amplitudes of the signals, 
g1 and g2, and the efficiency ηtrue for each signal to match the experimental results according to two constraints: (i) 
The power spectrum at the frequency of the signal of the numerical data was required to be approximately equal 
to the power spectrum of the experimental data. (ii) The average of the experimental and numeric signals fulfilled 
〈 〉 =

η η+
x

2
true false . For the numerical model we achieved ≈ .P 10 8%MFB

 and ≈ .P 11 6%MDL
, (see Fig. 6 (left), green 

square and red circle under the diamonds). These results are consistent with the experimental data, for which we 
obtained ≈ .P 12 1%M

exp
DL

 (Fig. 6 (left) blue diamond), reaching PMFB
 without having any information on the model. 

Moreover, the Full Bayesian method on the experimental data obtained only ≈ .P 16 2%M
exp

FB
 (Fig. 6 (left) green 

diamond). This difference is due to the fact that the experimental statistics differ slightly from our probability 
function; while for the Bayesian method this creates a problem, the DL method is able to learn this difference and 
take it into account. This difference is expected to be much more dramatic in real nano-NMR experiments in 
which there are much more uncertainties of the model. In addition, we analyzed PMFB

 and PMDL
 on the numerical 

data as a function of the frequency difference, Δω. The results are shown in Fig. 6 (left). The ROC curve and AUC 
of MDL on the experimental data are shown in Fig. 6 (right).

It is worth noting that due to the relatively large window size of 25000, a full analysis of Mcorr is not possible 
within a reasonable time scale on a common computer. Partial analysis (taking into account segments of 
two-point correlations only) of Mcorr of both the numerical model and the experimental data yielded  .P 0 4Mcorr

. 
This indicates that DL could indeed be the better choice when there is a lack of knowledge on the model.

Comparison to other machine learning methods.  So far we have shown that DL methods are useful 
for the problem of frequency discrimination in the nano-NMR settings. In this section we ask whether other 
machine learning methods could be useful for this task and if so, how these methods perform compared to DL.

Any method that is able to discriminate between two signals of near-by frequencies, as we have considered 
in previous sections, should be able to learn and acquire the information on the signals from the correlations 
between different measurement results (different xi). Hence, any successful discrimination method should involve 
some non-linearity. Indeed, a fully connected neural network with only linear layers fails in the considered 

Figure 6.  Performance in the low-efficiency model scenario. Left: discrimination error probabilities (Eq. (3)). 
Full Bayesian, PMFB

 (green squares) and Deep Learning, PMDL
 (red circles) on numeric data, Full Bayesian, PM

exp
FB

 
(green diamond), and Deep Learning, PM

exp
DL

 (blue diamond) on the experimental data, as function of the 
frequency difference, Δω. The input numeric data were produced according to Eq. (10) with g1 = 12.5 KHz, 
g2 = 11.25 KHz, ω1 = 250 Hz, ω2 = ω1 + Δω, Δt = 10 μsec and a total measurement time of Ttot = 0.25 sec (25000 
measurements). Right: ROC curve and AUC of MDL on the experimental data, corresponding to the blue 
diamond in the left figure.
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discrimination problem (the achieved error probability is 1/2). We tested the performance of three other linear 
learning methods, namely, logistic regression (with no interaction terms), K nearest neighbours and supported 
vector machines (SVM) with a linear kernel, in the ideal model scenario (Fig. 4). Similarly to a fully connected 
linear neural network, these methods completely fail to discriminate between the signals and achieve an error 
probability of 1/2 for all values of Δω.

Regarding non-linear models, we considered two models, SVM with the non-linear radial basis function (rbf) 
kernel and XGboost, which is an implementation of gradient boosted decision trees (in our case we consider 
non-linear boosting as linear boosting fails). We tested these two models in the ideal model scenario (Fig. 4) as 
well as in the mixed noise model scenario (see Fig. 5(d)). The results are shown in Fig. 7. It can be seen that these 
two methods achieve accuracies (discrimination error probabilities) which are very similar to the accuracies 
obtained by DL. However, there is a big difference in terms of required computational resources as these two 
methods consume more memory compared to DL, and require much longer running times of, for example, 
~20 hours compared to ~20 minutes by DL. Indeed, it is not feasible to use these methods for the discrimination 
in the case of the experimental data, where the size of the inputs is much larger (input strings of 25000 compared 
to input strings of 1000). While we have not made an exhaustive study and analysis of machine learning meth-
ods, which is beyond the scope of this work, these findings strengthen the possible advantage and benefit of DL 
method for data processing of nano-NMR experimental results.

Frequency resolution.  In this section we considered the problem of discrimination between a signal with a 
single frequency and a signal with two proximal frequencies centred at the value of the single frequency (Fig. 8). 
We assumed that the signals have strong amplitude and phase noise, which we model by the Ornstein-Uhlenbeck 
(OU) process, motivated by NV probed statistically polarized nano-NMR experiments4,5,23. The OU process is a 
stochastic random process, which is a stationary, a Gaussian and a Markov process. It is given by 

+ = − +
τ

x t dt x t x t dt c dW t( ) ( ) ( ) ( )1 , where τ and c are positive constants called, respectively, the relaxation 
time and the diffusion constant, and dW(t) is a temporally uncorrelated normal random variable with mean 0 and 
variance dt. The environmental noise experienced by an NV center is faithfully modelled by an OU process27.

Specifically, the Hamiltonian of the probe is given by

Figure 7.  Comparison to other Machine Learning methods. Discrimination error probabilities (Eq. (3)) of 
Deep Learning, PMDL

 (red circles), Supported Vector Machines, PMSVM
 (blue hexagons), and XGBoost, PMXGB

 
(magenta pentagon). (a) Ideal model (see Fig. 4). (b) Mixed noise model (see Fig. 5(d)).

ω

S(ω)

Figure 8.  The problem of frequency resolution. The observed signal could be one of two possible signals that 
should be resolved. One signal (red) has two near by frequencies (blue and orange) and corresponds to their 
sum. The second signal (green) has one frequency, which is centered between the two near by frequencies of the 
first signal. The closer the two frequencies are, the harder it is to resolve between the two signals.
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where Ai and Bi undergo an OU process due to the amplitude and phase noise, and δi are the frequencies. The 
probability for a successful measurement (one) is
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where n = 2 and δi = δc ± Δ2. For two frequencies Δ is finite, and for a single frequency Δ = 0.

Numerical analysis.  We constructed numerical datasets according to Eq. (12) where Ai(t) and Bi(t) follow 
OU processes with mean μ = 0, volatility σ = π

πT10
4

2
, and reversion speed θ = 1/T2, where T2 = 256 sec is the 

coherence time of the signal. In addition, we fixed Ttot = 2T2 and Δt = 1 sec. We tested the performance of MDL as 
a function of the frequency difference, Δ, in comparison to MFB and Mcorr. In MFB the maximal log-likelihood was 
calculated over the random OU processes. For each string of measurement results x, we considered the single 
frequency signal with Δ = Δ0 = 0 and the signal of two near-by frequencies with Δ = Δn > 0, where Δn corre-
sponds to the numerical value of the frequency difference between the two frequencies. We generated many sets 
of random OU processes denoted by Ok and calculated

= | Δ = | ΔL L O x L L O xmax ( , ), max ( , ),
(13)O

k
O

k n1 0 2
k k

where

∑| Δ = Δ + − − Δ .L O x x P t O x P t O( , ) ( log ( , , ) (1 ) log(1 ( , , )))
(14)

k i
j

j j i k j j i k

We estimated the signal as a single frequency signal or as a signal of two frequencies according to the larger 
likelihood; that is

Δ =




Δ >
Δ .

L L
otherwise (15)

est
n

0 1 2

Figure 9 (left) shows the error probability as a function of the frequency difference. The MDL results were better 
than the results of Mcorr as well as the results of MFB. Interestingly, even though MFB has full knowledge of the noise 
model it achieves a larger error probability than MDL. We note that increasing the number of OU processes, Ok, in 
the above likelihood calculation does not improve PMFB

. While MDL and Mcorr could reach a result within ~45 min, 
MFB did so within ~7 hours (CPU times, both considered on the same common PC without utilizing GPU). The 
MDL ROC curves and AUC are shown in Fig. 9 (right). These numerical results provide a strong indication that 
DL methods can potentially identify molecules based on their NMR signal extremely fast, which may be a useful 
tool in probing chemical reactions at the nano scale.

Theoretical implications.  While the numerical advantages of machine learning methods were already 
shown28,29, their theoretical value was not demonstrated before. Beyond the practical interest of utilizing machine 

Figure 9.  Performance in the noisy frequency resolution scenario. Left: discrimination error probabilities (Eq. 
(3)). Full Bayesian, PMFB

 (green squares), Deep Learning, PMDL
 (red circles), and correlations, PMcorr

 (blue 
hexagons), as a function of the frequency difference, Δω. The input data were produced according to Eq. (12) 
with Ttot = 2T2. Right: ROC curve and AUC of MDL for different values of Δω, corresponding to the second, 
fourth, and sixth points from left in the left figure.
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learning methods in the nano-NMR frequency resolution problem, machine learning methods, and in particular 
DL methods, could also have a considerable theoretical value.

Generally in estimation problems, the MSE of an estimator M for a given unseen test input x can be written as

− = + +y M x M x M xE[( ( )) ] (Bias[ ( )]) Var[ ( )] Var[ ], (16)2 2 

where y is the true label, M(x) is the estimated label, E is the expectation value with respect to the training set, the bias 
of M is given by = −M x M x M xBias[ ( )] E[ ( )] ( ), the variance of M is given by = −M x M x M xVar[ ( )] E[ ( ) ] E[ ( )]2 2, 
and Var[ ]  is the irreducible error due to the (zero mean) noise . The error probability, PM, is then obtained by the 
expectation value of the MSE, −y M xE[( ( )) ]2 , with respect to the test set.

An unbiased estimator is an estimator M for which we have that =M xBias [ ( )] 0. An optimal unbiased esti-
mator has a minimal variance, which is known as the minimum variance unbiased (MVU) estimator. However, 
from Eq. (16) it is seen that an MVU estimator is not necessarily an optimal estimator which minimizes the MSE. 
Indeed, it is known that biased methods can outperform the unbiased ones30–32. In this case the magnitude of the 
bias is increased and >M x(Bias [ ( )]) 02 , but the variance M xVar [ ( )] is significanlty decreased such that the MSE 
is smaller than the MSE of an MVU estimator. Such strategies of error reduction are used ubiquitously in image 
restoration33,34 and beamforming applications35,36. Moreover, it is known that biased methods can be superior in 
various spectral analysis applications37. Despite its superiority there are only a few structured methods in which 
such a biased estimator can be constructed31 and in most cases the search for such estimators is extremely chal-
lenging, especially as it is unknown if such an estimator exists.

Our numerical analysis of MFB has converged to the final result, however, the method has resolved the two fre-
quencies with a higher error rate than the error rate of MDL. Since MFB is an MVU estimator, our results indicate 
that for the model at hand the unbiased full model Bayesian analysis is not optimal, and that a superior biased 
method exists. This brings up an extra advantage of DL as the search for a biased method in usually done in an 
ad-hoc manner. Moreover, in most cases there is no way of knowing if a superior method to the unbiased method 
exists. Hence, our results provide some hope that DL methods could be used as an analytical tool for identifying 
superior estimators, and in particular, for identifying the ultimate limits of resolution problems.

Conclusion
In conclusion, we showed that DL methods are able to mitigate the effect of the inherent strong noise in the 
nano-NMR settings. In particular, the DL neural networks effectively learn the noise model, even when no prior 
knowledge on the noise model is assumed. This is a crucial property of the DL methods as in many realistic 
nano-NMR scenarios the noise model is complex and not accurately known. We investigated the performance of 
DL methods in the problems of frequency discrimination and frequency resolution. We showed that DL methods 
can outperform Bayesian methods when full knowledge of the noise model is not available and that DL methods 
can analyze a test signal as accurately as numerically demanding Bayesian methods even though Bayesian meth-
ods have full knowledge of the noise model, and the DL methods have no prior knowledge at all.

DL methods can perform better than Bayesian methods when the noise model is not precisely known or when 
the noise model is known but it is a complex model. In the first case DL methods can achieve better results than 
Bayesian methods as DL methods do not assume prior knowledge on the model while Bayesian methods rely 
on precise knowledge of the model. This was demonstrated in the case of frequency discrimination in the noisy 
scenario, as well as in the analysis of the experimental data. In the second case the results of both methods may be 
similar, but the consumption of computational resources of Bayesian methods can be much larger compared to the 
resources required by DL methods, as was demonstrated in the problem of frequency resolution of noisy signals.

Our results can be seen as a strong indication that DL methods will turn out to be the method of choice when 
analyzing spectroscopic nano-NMR data. In addition, our results indicate that DL methods could be utilized as a 
tool that may enable to identify superior biased estimators and ultimate limits of resolution problems, which are 
otherwise difficult to obtain12.

Data availability
The authors declare that all relevant data supporting the findings of this study are available within the paper (and 
its Supplementary Information Files).
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