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Often the time derivative of a measured variable is of as much interest as the variable itself.

For a growing population of biological cells, for example, the population’s growth rate is

typically more important than its size. Here we introduce a non-parametric method to infer

first and second time derivatives as a function of time from time-series data. Our approach is

based on Gaussian processes and applies to a wide range of data. In tests, the method is at

least as accurate as others, but has several advantages: it estimates errors both in the

inference and in any summary statistics, such as lag times, and allows interpolation with

the corresponding error estimation. As illustrations, we infer growth rates of microbial cells,

the rate of assembly of an amyloid fibril and both the speed and acceleration of two

separating spindle pole bodies. Our algorithm should thus be broadly applicable.
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E
stimating the time derivatives of a signal is a common task
in science. A well-known example is the growth rate of a
population of cells, which is defined as the time derivative of

the logarithm of the population size1 and is used extensively in
both the life sciences and biotechnology.

A common approach to estimate such derivatives is to fit a
mathematical equation that, say, describes cellular growth and so
determine the maximum growth rate from the best-fit value of a
parameter in the equation2. Such parametric approaches rely,
however, on the mathematical model being a suitable description
of the underlying biological or physical process and, at least for
cellular growth, it is common to find examples where the
standard models are not appropriate3.

The alternative is to use a non-parameteric method and thus
estimate time derivatives directly from the data. Examples include
taking numerical derivatives4 or using local polynomial or spline
estimators5. Although these approaches do not require knowledge
of the underlying process, it can be difficult to determine the error
in their estimation5 and to incorporate experimental replicates,
which with wide access to high-throughput technologies, are now
the norm.

Here we develop a methodology that uses Gaussian proce-
sses to infer both the first and second time derivatives from
time-series data. One advantage of using Gaussian processes
over parametric approaches is that we can fit a wider variety of
data. Rather than assuming that a particular function chara-
cterizes the data (a particular mathematical equation), we
instead make assumptions about the family of functions that
can describe the data. An infinite number of functions exist in
this family and the family can capture many more temporal
trends in the data than any one equation. The advantages over
existing non-parametric methods are that we can straightfor-
wardly and systematically combine data from replicate experi-
ments (by simply pooling all data sets) and predict errors both
in the estimations of derivatives and in any summary statistics.
A potential disadvantage because we use Gaussian processes is
that we must assume that the measurement noise has a normal
or log-normal distribution (as do many other methods), but
we can relax this assumption if there are multiple experimental
replicates.

To illustrate how our approach predicts errors and can
combine information from experimental replicates, we first
focus on inferring growth rate from measurements of the optical
density of a growing population of biological cells. Plate readers,
which are now widespread, make such data easy to obtain,
typically with hundreds of measurements and often at least
three to ten replicates. We will also, though, show other
examples: estimating the rate of in vitro assembly of an amyloid
fibril and inferring the speed and acceleration of two separating
spindle pole bodies in a single yeast cell.

Results
An overview of Gaussian processes. A Gaussian process is a
collection of random variables for which any subset has a joint
Gaussian distribution6. This joint distribution is characterized by
its mean and its covariance.

To use a Gaussian process for inference on time series, we
assume that the data can be described by an underlying, or latent,
function and we wish to infer this latent function given the
observed data. For each time point of interest, we add a random
variable to the Gaussian process. With n time points, there are
therefore n corresponding random variables in the Gaussian
process. The latent function is given by the values taken by these
random variables (Fig. 1a). Without losing any generality, we set
the mean of each random variable to be zero6.

How each random variable in the Gaussian process depends on
the other random variables both at earlier and later times, that is,
how the variables covary, determines the shape of the latent
function. For example, if each random variable does not covary
with any other (the covariance matrix of the Gaussian process is
the identity matrix), then the latent function will randomly jump
back and forth around zero. If each random variable covaries
equally with every other random variable (all the entries of the
covariance matrix are one), then the functions sampled will be
straight horizontal lines starting at the value of the random
variable associated with the first time point. More pertinently, if
the covariance for each random variable is positive for those
random variables close in time and tending to zero for random
variables far away in time, then the functions generated vary, but
do so smoothly.

To proceed, we therefore must choose the type of covariance
function for the Gaussian process and, in doing so, we necessarily
make some assumptions about the latent functions that underlie
the data. We will often use a squared exponential covariance,
which imposes little restriction on the shape of the latent function
other than to assume that it is smooth (infinitely differentiable;
Fig. 1b). The Matern covariance function (paramaterized with
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Figure 1 | An overview of inference with Gaussian processes.

(a) A graphical model of a Gaussian process6. Squares denote known

variables (times, ti, and data points, yi); circles denote unknown variables

(the underlying, latent function, fi). We associate a variable in the Gaussian

process to each time point and the value of this variable gives the value of

the latent function. Each observed data point, yi, depends only on the

corresponding latent variable, fi. Each f variable, however, depends on all the

other f variables (they covary). (b) Four examples of latent functions with a

squared exponential covariance function. The functions are strictly only

defined at the time points of the observations (shown with black semi-

circles on the x axis) but are drawn with a continuous line for clarity.

(c) Four examples of latent functions after conditioning on the data (data

are shown as blue dots). Although each individual function is smooth, there

is more variation between functions where the data is more spread.

Averaging many latent functions gives the best fit. The hyperparameters of

the covariance matrix are the same as those in b.
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n¼ 5/2) relaxes this smoothness assumption and imposes that the
latent function is only twice differentiable6. Another alternative is
the neural network covariance, which tends to generate sigmoid-
shaped latent functions6. We emphasize that choosing a
covariance function to describe the latent function puts much
less restriction on its shape than the more traditional choice of
selecting a particular mathematical equation to model the latent
function.

Each covariance function is parameterized in its own way and
we must find the appropriate values of these parameters given
the data. More correctly, the parameters are called hyperpara-
meters (Methods) and determining the hyperparameters is the
computationally intensive part of the inference.

Once the hyperparameters are optimized, we can sample from
the Gaussian process to generate a latent function that is
consistent with our data (Fig. 1c). The mean latent function,
which we could find from averaging many samples but can also
calculate directly, gives the ‘best-fit’ and the variance of the latent
function provides an estimation of the error in the inference.

Following on from earlier work7, we adapt this standard
inference procedure to also allow the inference of the first two
time derivatives of the latent function, because these time
derivatives are, in many applications, of more interest than the
latent function itself. Errors in inference of the latent function are
automatically carried through to the errors in inferring time
derivatives.

Verification of the algorithm. To verify our algorithm’s infer-
ence of first and second time derivatives, we followed the tests
of De Brabanter et al.8. Gaussian measurement noise was added
to the same analytic functions chosen by De Brabanter et al.8 for
which time derivatives can be found exactly and the mean
absolute difference between the inferred derivative and the exact
derivative was used to score the inference (see ref. 8 for details—
the end points are not included). We show the distribution of
scores for 100 different data sets each with a different sample of
the measurement noise (Fig. 2).

For these tests, our method outperforms established alter-
natives. For illustration, we show results for both the squared
exponential covariance function and the neural network covar-
iance function. Independent of the choice, the method performs
at least as well as alternatives (Fig. 2).

Estimating cellular growth rates. We now consider the inference
of microbial growth rates (strictly, we infer the specific growth
rate: the time derivative of the logarithm of the population size).
The population size as a function of time is commonly fit to a
parametric equation2, although these equations are restrictive and
describe only a particular type of growth3. Therefore, to provide a
further test of our algorithm, we considered a linear sum of two
growth equations—the Gompertz9 and Richards10 models—to
generate a growth curve that cannot in principle be fit by either,
but where an exact expression for the first derivative can still be
found. We compare our results with smoothing splines, an
established non-parametric alternative3.

For these data sets and this magnitude of measurement noise,
both methods perform equally well, but the inference using
Gaussian processes becomes more robust as the number of data
points increase (Fig. 3). We note that we have artificially favoured
the smoothing spline, because the smoothing parameter for the
spline is set with the variance used to generate the synthetic
measurement noise. The Gaussian process methodology, in
contrast, infers this variance. Despite the advantage of the
spline-based inference, its median error is B45% higher when
n¼ 1,000.

Turning to experimental measurements, we fit optical densities,
which are proportional to the number of cells if properly
calibrated11,12, and show that we can infer growth rates for two
cases that cannot be easily described by parametric approaches3.
The first exhibits a diauxic shift with two distinct phases of
growth and the second shows an exceptionally long lag (Fig. 4).
We infer the growth rate and the estimated errors in our
inference as a function of time using all experimental replicates.
Data from replicate measurements are pooled together and the
algorithm applied as for a single replicate.

Having the inferred growth rate over time can make identifying
different stages of the growth curve substantially easier than
making this identification from the optical density data alone.
For example, the local minimum in the growth rate of Fig. 4a is
expected to indicate a shift from cells using glucose to using
galactose. Inferring a time-dependent growth rate should increase
the robustness of high-throughput automated studies, which
usually focus on identifying exponential growth13,14.

Often summary statistics are used to describe a growth curve,
such as the maximum growth rate and the lag time2, and we can
estimate such statistics and their associated errors. From our
inference, we can sample latent functions that are consistent with
the data. Each sample provides an example of a latent function
that ‘fits’ the data. To estimate errors in statistics, we generate say
100 samples of the latent function and its time derivatives
(Fig. 4a, inset). For each sample, we calculate the statistic for
that sample, such as the maximum growth rate. We therefore
obtain a probability distribution for the statistic and report the
mean and s.d. of this distribution as the best-fit value and
the estimated error (0.16±0.002 h� 1 for the maximum growth
rate for the data in Fig. 4a). A similar approach applies for any
statistic that can be calculated from a single growth curve
(Methods).

The data for Fig. 4b are considerably noisier than the data for
Fig. 4a and the spread of data is larger at short times than at long
times. The magnitude of the measurement noise changes with
time. We typically assume that the measurement noise can be
described by a Gaussian distribution with zero mean and a
constant s.d. The magnitude of the measurement noise is
determined by this s.d. and the s.d. here, for the data of Fig. 4b,
appears to be time dependent (it is largest at early times). To
empirically estimate the relative scale of this change, we calculate
the variance across replicates at each time point. We assume that
the magnitude of the measurement noise is a time-independent
constant multiplied by this time-dependent relative scale and we
fit that constant (Methods).

Further applications. As additional examples, we first infer the
rate of assembly of an amyloid fibril as a function of time from
in vitro data (Fig. 5a)15. Despite each replicate having high
measurement noise compared with the microbial data, the rate of
fibril assembly can be inferred accurately because of the multiple
replicates. The second example is one where both the first and the
second derivative are useful: estimating the speed of separation of
the spindle poles during anaphase in a single cell of budding yeast
(Fig. 5b). We demonstrate that we can infer both time derivatives
and their errors from a single replicate. As expected, the size of
the estimated error increases for the first derivative relative to the
error in the regression and increases again for the second
derivative. Changes in the speed of separation (extrema in the
second derivative) are used to characterize anaphase16 into the
fast, pause and slow elongation phases17. We chose a Gaussian
process with a neural network covariance function for this data
rather than the squared exponential covariance function used for
the others: a difference that is important here because we only

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13766 ARTICLE

NATURE COMMUNICATIONS | 7:13766 | DOI: 10.1038/ncomms13766 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


have a single replicate with few data points. The latent functions
generated then tend to be flatter either side of the increase in
separation, which leads to smoother inferences of the
acceleration.

Discussion
To conclude, we have introduced a non-parametric method that
uses Gaussian processes to infer first and second derivatives from
time-series data. In tests, our approach is at least as accurate as
others (Figs 2 and 3), but has several advantages: it systematically
estimates errors, both for the regression and the inferred
derivatives; it allows interpolation with the corresponding error
estimation (Gaussian processes were developed for interpola-
tion6); and it allows sampling of the latent function underlying
the data and so can be used to estimate errors in any statistic of
that function by calculating the statistic for the samples.

For fitting growth curves, several alternatives exist3,18–20,
which, although mostly focusing on parametric approaches, do
allow spline fitting3 and polynomial regression18,20. Both
approaches have been criticized, being sensitive to outliers and
potentially having systematic biases5, and at least in the case of
splines appear less robust (Fig. 3). Further, our software performs
inference using all replicates, can infer second derivatives and
rigorously estimates errors. Where error estimation in summary
statistics has been addressed3, bootstrapping of the data is used.
This approach is perhaps less suited for time-series data than our
approach of sampling latent functions, because it leads to some
randomly chosen data points being weighted more than others
when generating sample fits.

Of the three we considered, we find that the squared
exponential function is generally the best choice of covariance
function when estimating time derivatives, because it typically
results in the inference of first and second derivatives with a
smoothness that is consistent with a priori expectations of the
nature of the underlying dynamics. Although the Matern
covariance is not as restrictive, because it constrains the
smoothness of the latent functions less, it can lead to the
inference of rough, fluctuating derivatives, in particular for
the second derivative and if the magnitude of the measurement
noise is high. For example, using the Matern covariance gives
poor results for the data in Fig. 2a (with median error scores that
are B60% higher than those for the squared exponential
covariance), but performs slightly better (medians within 10%)
for the less noisy data in Fig. 3. Finally, the neural network
covariance, although perhaps the least prone to the inference of
rough time derivatives, can be more sensitive to prior informa-
tion: the hyperparameter controlling the flexibility of the latent
function is optimized to its upper bound more often than for the
other covariance functions. All three covariance functions
are implemented in our code and can be tested for a new type
of data.

Similar to any Bayesian method, prior information on bounds
for the hyperparameters of the covariance function can affect the
inference, although these bounds can typically be set so that the
best-fit values are far from the bounds. In particular, how closely
the latent function follows the data depends both on its flexibility
and on the size of the measurement noise. An outlier can be
followed if the flexibility is high or if the measurement noise is
low. When there is not sufficient data, the algorithm, rightly in
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Figure 2 | The inference method can perform better than alternatives. (a) Inference of the first derivative. A box plot of error scores (related to the mean

absolute difference between the inferred and exact derivative) for inference of the first derivative. We use either a squared exponential covariance function

or a neural network covariance function for the Gaussian process (GP) and compare with local polynomial regression (with p¼ 3) and a quintic penalized

smoothing spline (data for both from ref. 8). Top left shows one sample data set (in red with 500 data points), the true underlying function (in green) and

the inferred latent function using a neural network covariance function—the best fit (in blue); top right shows the corresponding first derivative (with here

an error score of 0.64): exact (in green) and inferred (in blue). Equivalent plots for the alternative inference methods are given by De Brabanter et al.8.

Errors (in light blue) are s.d. (b) Inference of the second derivative. A box plot of scores for inference of the second derivative. The two alternatives are local

polynomial regression (with p¼ 5) and a septic penalized smoothing spline (data for both from ref. 8). Top right shows one sample data set (in red with

1,500 data points), the underlying function (in green) and the inferred latent function using a neural network covariance function (in blue); top left shows

the corresponding second derivative (with here an error score of 26.2): exact (in green) and inferred (in blue).
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our opinion, requires prior information to make this choice.
Alternative methods also require prior specification, such as the
degree of smoothness in fitting with either splines or a local
polynomial method, such as LOESS (locally weighted scatter plot

smoothing). For a particular type of data, the bounds typically
need to be set once allowing high-throughput analyses.

Measuring cellular growth rates is a daily task in many
laboratories, but, if using a non-parameteric approach, research-
ers often follow the method developed in the early days of
molecular biology: finding the gradient of a line fit to the portion
of the growth curve that appears most straight on a semi-log plot.
Our methodology takes advantages of advances in machine
learning, to allow inference not only of the maximum growth rate
but of the growth rate as a function of time. Time-dependent
growth rates must capture more of the underlying biology, such
as the time of the diauxic shift in Fig. 4a, but they have been little
exploited. We believe that using more advanced inference
techniques, such as the one based on Gaussian processes that
we present here, in combination with developments in high-
throughput technologies will transform our understanding of
cellular growth and the factors that control it.

Methods
Using a Gaussian process to fit time-series data. In the following, we will
denote a Gaussian distribution with mean m and covariance matrix S as N (m, S)
and use the notation of Rasmussen and Williams6 as much as possible.

Prior probability. For n data points yi at inputs xi (each xi is a time for a
growth curve), we denote the underlying latent function as f(x). We define a
covariance matrix k(x, x0), which has an explicit dependence on hyperparameters y,
and obeys

Cov f xð Þ; f x0ð Þ½ � ¼ E f xð Þ�E f xð Þ½ �ð Þ f x0ð Þ �E f x0ð Þ½ �ð Þ½ �
¼ k x; x0; yð Þ; ð1Þ

where the expectations are taken over the distribution of latent functions (samples
of f(x)).

We interpret equation (1) as giving the prior probability distribution of the
latent functions f(X), where were we use X to denote the inputs xi, such that

f x1ð Þ; :::; f xnð Þ½ �T �N 0;K X;Xð Þð Þ ð2Þ

where K(X, X) is the n� n matrix with components k(xi, xj). With f denoting
[f(x1), ..., f(xn)], this prior probability can be written as

P fjX; yð Þ�N 0;K X;Xð Þð Þ ð3Þ

noting the dependence of k(x, x0; y) on the hyperparameters y.

Marginal likelihood. After choosing a covariance function, to use Gaussian
processes in regression, we must optimize the covariance function’s hyperpara-
meters given the observed data. We will do so by maximizing the marginal like-
lihood, where the marginalization is made by integrating over all possible
latent functions6. Once the parameters of the covariance function have been
determined, we can sample latent functions given the data. We consider the
squared exponential, Matern (with n¼ 5/2) and neural network covariance
functions.

To optimize the hyperparameters given the data, we therefore consider the
likelihood P(y|y, X), which, more correctly, is a marginal likelihood

P yjy;Xð Þ ¼
R

df P y; f y;Xjð Þ
¼

R
df P yjf;X; yð ÞP fjX; yð Þ ð4Þ

where the marginalization is over all choices of the latent function f evaluated at X.
If we assume that for all yi, yi¼ f(xi)þ Ei where each Ei is an independent

Gaussian variable with zero mean and a s.d. of si¼s for simplicity, then

P yjf;X; yð Þ�N f; s2I
� �

ð5Þ

where I is the n� n identity matrix. Equations (3 and 5) imply that the marginal
likelihood is also Gaussian:

P yjy;Xð Þ�N 0;K X;Xð Þþ s2I
� �

: ð6Þ
We use a maximum-likelihood method to find the hyperparameters and

maximize the marginal likelihood equation (6). We have two hyperparameters
for the squared exponential covariance function and the parameter, s, which
characterizes the measurement noise. We assume a bounded, uniform prior
probability for each of these hyperparameters and use the Broyden–Fletcher–
Goldfarb–Shanno algorithm4 to find their optimum values. Although one
optimization run from random initial choices of the hyperparameters is usually
sufficient, choosing the best from multiple runs can prevent the algorithm finding
local maxima.
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more robust with increasing numbers of data points. (a) We show the
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process in blue with errors in light blue and from a cubic smoothing
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growth curve in green). Even though we favour smoothing splines by
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data points.
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Making predictions. Given the optimum choice of the hyperparameters, we would
like to generate sample latent functions at points X� , which to include the possibility
of interpolation need not be the same as X, by sampling from P(f�|X, y, y, X�). Using
equation (6) and that the distribution of the latent function evaluated at X� is also
Gaussian, we can write the joint probability of y and f� as, following ref. 6,

y
f�

� �
¼N 0;

K X;Xð Þþs2I K X;X�ð Þ
KT X;X�ð Þ K X�;X�ð Þ

� �� �
ð7Þ

where K(X, X�) is the n� n� matrix with components k(xi, x�j ).
Conditioning equation (7) on the data y, standard results for Gaussian

distributions6 give that the probability distribution P(f�|X, y, y, X�) is also Gaussian
with mean

E f�½ �¼K X�;Xð Þ K X;Xð Þþ s2I
� 	� 1

y ð8Þ

and covariance matrix

Cov f�½ �¼K X�;X�ð Þ�K X�;Xð Þ K X;Xð Þþs2I
� 	� 1

KT X�;Xð Þ: ð9Þ

We use equations (8) and (9) to sample f� .

Inferring the first and second time derivatives. To determine the time deri-
vative of the data, we use that the derivative of a Gaussian process is another
Gaussian process6. We can therefore adapt standard techniques for Gaussian
process to allow time derivatives to be sampled too.

Building on the work of Boyle7, we let g(x) and h(x) be the first and second
derivatives with respect to x of the latent function f(x). If f(x) is a Gaussian process
then so are both g(x) and h(x). Writing @1 and @2 for the partial derivatives with
respect to the first and second arguments of a bivariate function, we have

Cgf xi; xj
� �

¼@1k xi; xj
� �

; Cfg xi; xj
� �

¼@2k xi; xj
� �

; Cgg xi; xj
� �

¼@1@2k xi; xj
� �
ð10Þ
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Figure 4 | Microbial growth rates can be inferred as a function of time. (a) A growth curve of S. cerevisiae in a mixture of 0.4% glucose and 1% galactose

showing a diauxic shift (7 replicates, each with n¼ 115). The best-fit (mean) latent function is shown in dark blue and the inferred growth rate is shown

below. All error bars (light blue) are s.d. The inset shows, as an example, four sample estimates of the growth rate as a function of time (samples of the first

derivative of the latent function—the corresponding samples of the latent function itself are not shown). (b) Growth of E. coli in hyperosmotic conditions

with an unusually long lag and short growth period (two replicates, each with n¼ 646) and the inferred growth rate. The magnitude of the measurement

noise is here allowed to vary with time and empirically estimated across the replicates (Methods). Error bars (light blue) are s.d.
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Figure 5 | The algorithm has wide application. (a) Inferring the in vitro rate of assembly of an amyloid fibril. Fluorescence data reporting the formation of

fibrils in bovine insulin (at a concentration of 0.1 mg ml� 1) by the binding of the dye Thioflavin T are shown (red dots) with 15 replicates (each with

n¼ 91)15. The best fit (top) and the inferred rate of fibril assembly (bottom) are shown in dark blue. We empirically estimate the magnitude of the

measurement noise across the replicates. Errors (in light blue) are s.d. (b) Inferring the speed and acceleration of separation of the spindle poles in

S. cerevisiae. The distance, s, between the two spindles in a single cell is plotted in microns as a function of time (red dots with n¼ 57). The best fit and the

inferred speed (middle) and acceleration (bottom) are shown in dark blue. The triangles denote turning points in the acceleration and separate anaphase

into stages with fast and slow elongation separated by a pause16. Errors are s.d.
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and that

Chf xi; xj
� �

¼@2
1 k xi; xj
� �

; Cfh xi; xj
� �

¼@2
2 k xi; xj
� �

ð11Þ

as well as

Chg xi; xj
� �

¼@2
1@2k xi; xj

� �
; Cgh xi; xj

� �
¼@1@

2
2 k xi; xj
� �

; Chh xi; xj
� �

¼@2
1@

2
2 k xi; xj
� �
ð12Þ

following ref. 21.
Consequently, the joint probability distribution for y and f� , g� and h�

evaluated at points X� is again Gaussian (cf. equation (7)):
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where we write K¼K(X, X) and K� ¼K(X� , X�) for clarity.
The covariance function is by definition symmetric: k(xi, xj)¼ k(xj, xi) from

equation (1). Therefore, @k
1@

‘
2k xi; xj
� �

¼@k
2@

‘
1k xj; xi
� �

and so

@k
1@

‘
2KðX�;XÞ ¼ ½@‘1@k

2 KðX;X�Þ�T ð14Þ
for all positive integers k and ‘. Consequently, the covariance matrix in
equation (13) is also symmetric.

Conditioning on y now gives that the distribution P(f� , g� , h�|X, y, y, X�) is
Gaussian with mean
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and covariance matrix
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Equation (16) includes equation (9) and shows that

Cov g�½ �¼@1@2K� � @1K X�;Xð Þ K þs2I
� 	� 1

@1K X�;Xð Þ½ �T ð17Þ

which gives the error in the estimate of the first derivative7. Similarly,

Cov h�½ �¼@2
1@

2
2 K� � @2

1 K X�;Xð Þ K þs2I
� 	� 1

@2
1 K X�;Xð Þ

� 	T ð18Þ

is the error in estimating the second derivative.

Using an empirically estimated measurement noise. Although our derivation is
given for a Gaussian process where the measurement errors in the data are inde-
pendent and identically distributed with a Gaussian distribution of mean zero, the
derivations are unchanged if the measurement noise has a different s.d. for each
time point6.

When the magnitude of the measurement noise appears to change with time,
we first empirically estimate the relative magnitude of the measurement noise by
the variance across all replicates at each time point. We then smooth this estimate
over time (with a Gaussian filter with a width of 10% of the total time of the
experiment, but the exact choice is not important) and replace the identity matrix,
I, in equations (6), (15) and (16) by a diagonal matrix with the relative
measurement noise on the diagonal in order to make predictions.

Estimating the growth characteristics. From the growth curve, we estimate
the maximum growth rate as the maximum time derivative of the logarithm of
the growth curve2:

Growth rate ¼max
t

y0 tð Þ
y tð Þ ð19Þ

where we denote the growth curve as y(t). The doubling time is ln(2) times the
inverse of the growth rate. We define the lag time as the intercept of the line
parallel to the time axis that passes through the initial OD, y(0), and the tangent
to the logarithm of the growth curve from the point on the growth curve with
maximum growth rate (a standard choice2). If this point of maximum growth
rate is at t¼ t� , then

Lag time ¼t� � y t�ð Þ
y0 t�ð Þ ln

y t�ð Þ
y 0ð Þ : ð20Þ

For each characteristic, we can estimate measurement error through calculating
the characteristic for 100 s of sampled latent growth curves.

Implementation and GUI. The code for our algorithm is freely available and
written in Python 3 using NumPy22, SciPy, Matplotlib23, and the Pandas data
analysis library (all available via the free Anaconda package) and is compatible with
Microsoft’s Excel. We give an example script and data set and have written a GUI
that runs on Windows, OS X, and Linux.

Bounds used for the hyperparameters are given in Table 1.

Table 1 | Ranges of hyperparameters used for the examples.

Figure Covariance function Hyperparameter Lower bound Upper bound

1a Squared exponential 0 10� 5 105

1 10� 3 102

2 10� 5 102

Neural network 0 10� 1 105

1 103 103

2 10�6 102

1b Squared exponential 0 10� 5 105

1 10� 3 104

2 10� 5 102

Neural network 0 10� 1 105

1 101 102.5

2 10�6 102

2a & 2b Squared exponential 0 10� 5 105

1 10�6 102

2 10� 5 102

3a Squared exponential 0 10� 5 105

1 10�6 102

2 10� 5 100

3b Neural network 0 10� 1 105

1 10�4 10� 1

2 10�6 102

For the squared exponential covariance function, the hyperparameters determine the amplitude of the variation in the latent function, its flexibility and the magnitude of the measurement noise; for the
neural network covariance function, the hyperparameters determine the initial y-value of the latent function, its flexibility and the magnitude of the measurement noise.
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Code availability. The software and instructions for its use are at http://swain-
lab.bio.ed.ac.uk/software/fitderiv.

Generating synthetic data. To generate the synthetic data shown in Fig. 3, we use
a weighted sum of a Gompertz model (parameters: A¼ 1.1, mm¼ 0.6 and l¼ 2.3;
weight: 0.3) and a Richards model (parameters: A¼ 1.5, mm¼ 0.3, l¼ 4.3 and
n¼ 0.8; weight: 0.7) using the notation of ref. 2. We added log-normal
measurement noise with zero mean and a s.d. of sm¼ 0.03 and used the SciPy
implementation of a cubic spline and its time-derivative, setting the smoothing
parameter to be nsm

2 where n is the number of data points.
The error score in Fig. 3 is the mean absolute deviation of the inferred growth

rate from the exact growth rate ignored 5% of the data points both at the beginning
and end of the time series, to avoid endpoint effects potentially dominating
the error8.

Experimental methods. Data for Fig. 4a was gathered using a Tecan Infinity
M200 plate reader and a BY4741 strain of Saccharomyces cerevisiae growing in
synthetic complete media supplemented with 0.4% glucose and 1% galactose at
30 �C, following an established protocol24. Optical density was measured at an
absorbance wavelength of 595 nm every 11.4 min.

Data for Fig. 4b was gathered using a Spectrostar Omega microplate reader
and a BW25113 strain of Escherichia coli growing in MM9 (sodium–sodium
instead of sodium–potassium) media with 0.1% glucose and 1,106 mOsm sucrose
at 37 �C. Optical density was measured at an absorbance wavelength of 600 nm
every 7.5 min.

Data for Fig. 5a is from ref. 15.
Data for Fig. 5b was gathered using a custom spinning disk confocal microscope

for 20 min in 20 s time steps with 50 ms exposure time per focal plane. Spindle
pole bodies were labelled with Spc42-Cerulean. An image stack of 30 z-planes with
300 nm step size was gathered for each time point to allow the position of the
spindle poles to be fitted to three-dimensional Gaussian distributions and tracked
in time. Imaging, fitting and tracking followed an established protocol16.

Data availability. Data generated in this work is available at http://dx.doi.org/
10.7488/ds/1405.
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