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Abstract: An original and effective approach for achieving trifluoromethyl hydroxyalkylation of
5-phenylthiophen-2-amine using α-trifluoromethyl ketones is described. In the last few years, reaction
of Friedel-Crafts had been widely used to realize hydroxyalkylation on heterocycles such as indoles
or thiophenes by means of Lewis acid as catalyst. Additionally, amine functions are rarely free when
carbonyl reagents are used because of their tendency to form imines. This is the first time that a
site-selective electrophilic aromatic substitution on C3 atom of an unprotected 5-phenylthiophen-2-
amine moiety is reported. The liberty to allow reaction in neutral conditions between free amine is
valuable in a synthesis pathway. The reaction proceeds smoothly using an atom-economical metal-
and catalyst-free methodology in good to excellent yields. A mechanism similar to an electrophilic
aromatic substitution has been proposed.

Keywords: hydroxyalkylation; trifluoromethyl hydroxyalkylation; trifluoromethyl ketone; catalyst-free;
site selective; chemoselective; 2-aminothiophene; 5-phenylthiophen-2-amine

1. Introduction

2-aminothiophene (2-AT) moiety is widespread in FDA-approved drugs and is a
privileged scaffold in medicinal chemistry that is known to confer many biological ac-
tivities [1–5]. As examples, substituted-2-AT moiety such as compound 1 (Figure 1a)
demonstrated activity against Mycobacterium tuberculosis by targeting the Ag85 enzymes [3].
PD 81723 (2, Figure 1a) has been shown to be the first allosteric specific and selective
adenosine A1 receptor ligands [6]. Compound 3 has been described as a hepatitis B virus
replication inhibitor [7] and compound 4 showed antimicrobial activity against A. fumigatus,
G. candidum, C. albicans and S. racemosum [8]. 2-AT derivatives are mostly synthesized using
Gewald reaction [9,10]. Technically, it involves condensation of a carbonyl derivative,
a α-cyanoester in the presence of sulfur source. To this day, used methodologies often
undergo to the generation of trisubstituted thiophene ring with an electron withdrawing
group–particularly negative mesomeric effect–on C3 atom (Figure 1a) [11–15].

Over recent decades, interest for hydroxyalkylation on aryl derivatives as C-C bond
forming reaction has grown [16–19]. Ullyot first reported hydroxyalkylation of aryl com-
pounds with a carbonyl derivative under acidic conditions as new way to synthesize
benzoins [20]. Thereafter, synthesis methodologies have been refined to fit with chemical
diversity: heteroaryls were used as substrates; carbonyl derivatives were more complex,
likewise the Lewis acids. The methodologies described, respectively, by Schnakenburg [21],
Ramanathan [22] and Chatti [23] are relevant examples of hydroxyalkylation on heteroaryls
scaffolds (Figure 1b,c).

Hence, trifluoromethyl group introduction onto 2-AT via hydroxyalkylation method-
ology provides a dual benefit: it introduces a chemical diversity that was lacking in 2-ATs
and it inserts the trifluoromethyl group, which is very interesting from a medicinal point of
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view because it is known to confer biological properties of high value [24–27]. Chemists
are currently faced with the difficult task of increasing the efficacy of this kind of reactions
while also seeking greener processes [28]. As we know, a more responsible use of metals as
catalysts as well as the use of atom economical reactions participate in the development of
a greener chemistry [29–31]. To our knowledge, the site-selective, metal-and catalyst-free
trifluoromethyl hydroxyalkylation of unprotected 5-phenylthiophen-2-amine has never
been described in the literature. Herein, we report the trifluoromethyl hydroxyalkylation
methodology we developed in presence of various α-trifluoromethyl ketones (Figure 1d).
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2. Results

To begin, the synthesis of compound 8 has been investigated as described in Scheme 1.
2-bromo-5-nitrothiophene 5 and phenylboronic acid 6, which under Suzuki-Miyaura cou-
pling conditions, developed in our laboratory by Boibessot et al., form intermediate 7 in
86% yield after purification [32]. Then, we realized the reduction in the nitro function,
following Zhang and co-workers methodology, in the presence of hydrazine hydrate in
absolute ethanol at 50 ◦C for 15 min, followed by the careful addition of Raney nickel to
smoothly yield to 8 [33]. (90% yield after purification).
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Scheme 1. Synthesis of precursor 8.

On running 1H NMR analysis of compound 8 in D2O deuteriation on C3 atom has been
observed (Scheme 2). On the 1H spectra, H3 signal disappears and H4 signal appears as a
singlet at 7.28 ppm. On 13C spectra, C3 atom couples with the deuterium it carries to give a
triplet at 123.40 ppm (See Supplementary Materials for More Details, Figures S1 and S2).
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Scheme 2. Deuteriation of 8 on C3 atom in presence of deuterium oxide.

The deuteriation on C3 atom seems to be due to the positive mesomeric (+M) effect of
the amino group responsible for the reactivity shown thereafter.17 A plausible mechanism
of this deuteriation is proposed in Scheme 3, such as suggested by Garnett and his team [34].
A delocalization of the lone pair of nitrogen atoms would result in a deuteriation on C3
atom to generate the intermediate 10 before the rearomatization of the structure to afford 9.
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The reactivity of 8 was then studied in the presence of other electrophiles. When 8 is
reacted with p-anisaldehyde or acetophenone in toluene under reflux, no reaction occurs
and only starting materials are recovered (See Supplementary Materials, Table S1). Facing
this lack of reactivity, we decided to use stronger electrophilic compounds to exploit the
natural reactivity of 2-AT. α-trifluorinated ketones have been chosen, as suggested in the
literature [35]. In that case, when 8 is in the presence of α-trifluorinated ketone 11e in
toluene under reflux, substitution product 12e is obtained in good yields. It suggests that
α-trifluomethyl ketone are harder electrophiles than methyl ketones, following the hard
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and soft acids and bases theory [36,37]. Temperature has been investigated. Best yield of
83% has been obtained when temperature was set to 120 ◦C. At 100 ◦C, the reaction was
incomplete and decomposition products have been observed at 140 ◦C (Table 1, entries
1–3). When an excess of α-trifluorinated ketone 11e (1.5 and 2.0 equiv.) was reacted with 8,
yields stayed similar (Table 1, entries 4–5).

Table 1. Optimization studies for the synthesis of 12e.
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Entry 11e Equivalent (eq.) T (◦C) Yield (%) b

1 a 1 100 70%
2 a 1 120 83%
3 a 1 140 47%
4 a 1.5 120 82%
5 a 2 120 81%

a Experiment conducted in toluene. b Yields obtained after purification on flash chromatography.

The reaction occurs under metal and catalyst free conditions, in toluene under reflux
for 2 to 5 h. As predicted, the reaction is site selective. This reactivity may be directed by
the +M effect of the amino group, which confers an enhanced nucleophilic reactivity of
the C3 atom and allows reaction with α-trifluoromethyl ketones as electrophiles. When
acidic catalytic conditions are used (AlCl3 or Sc(OTf)3) no product is observed, showing
that the donor effect of the amino group is sufficient to observe the formation of the desired
derivative (See Supplementary Materialsfor more details, Table S2).

Additionally, when the amino group is replaced by the electron withdrawing nitro
group on 7, no substitution product is formed in presence of ketone 11e. Whether in the
presence or absence of acidic catalysis (AlCl3 and Sc(OTf)3 10 mol%, see Supplementary
Materials for More Details, Table S3), only the starting material has been recovered showing
that the amine function is important. The presence of +M effect of the amino function is
crucial in the reactivity (Scheme 4).
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Scheme 4. Attempts of hydroxyalkylation of 7.

To investigate the scope of the proposed methodology, various α-trifluoromethyl
ketones 11a–o were allowed to react with 5-phenylthiophen-2-amine 8 in stoechiometric
amounts in toluene under reflux for 2 to 4.5 h (Scheme 5). The aliphatic nature of the group
grafted on ketone did not prevent the reactivity and substitution molecules are formed in
good yields (12a: 87%, 12b: 81%). Aryls and heteroaryls groups were also investigated
and good to excellent yields were obtained with 6-membered rings (12e–j: 75–93%), giving
slightly better yields than 5-membered rings (12c: 76%, 12d: 69%). Steric hindrance did
not seem to be a determining factor because aromatic bicycles reacted smoothly to afford
desired compounds in very good yields too (12k: 80%, 12l: 72%). In most cases, the
hydroxyalkylation was observed in good to excellent yields after purification with flash
chromatography (69–93%). Reaction did not occur in the presence of ketones 11m, 11n
and 11o. Anyway, this reaction seems to be substrate-dependent, in light of the absence of
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reactivity for α-trifluoromethyl ketones 11m–o. The presence of pyrrole and indole, known
to be two rich electron heterocycles, may be responsible for the deactivation of the hard
nucleophilic center that is the trifluoromethyl ketones 11n and 11o [38]. Considering the
perfluoro-2-hexanone 11m, no example of such reactivity has been reported in the literature
for the last 20 years (see Supplementary Materials for More Details, Table S4).
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8 (1.0 equiv.), α-trifluoromethyl ketones 11a–o (1.0 equiv.), toluene (3.5 mL/mmol), under argon for
2–4.5 h, 120 ◦C. Yields obtained after purification on flash chromatography. Not isolated, only starting
materials have been recovered.

A mechanistic proposal is given in Scheme 6 for the conversion of 8 into 15 through a
similar mechanism of an electrophilic aromatic substitution [39–41]. First step is the attack
of C3 atom on electrophilic center of trifluoromethyl ketone to afford intermediate 14. Then,
aromatization drives the formation of structure 15.
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An X-ray crystal structure was carried out to establish the authenticity of 12j structure.
We can observe that the structure has a planar part composed of the phenyl and thiophenyl
moiety. Then, alkylation observed and assessed on C2 atom is composed of a pyridyl
group almost perpendicular to both other aromatic cycles. A very strong intramolecular
H-bond is observed between the new hydroxyl generated group and the amine group
of the thiophenyl moiety [N1-H1c · · · O1 2.187 Å and 129◦] (Figure 2a,b). This bond,
stabilizing the whole structure, could drive the reaction. Another one is observed between
nitrogen atom of pyridyl group and hydroxyl function [O1-H1c · · · N2 2.237 Å and 137◦].
(See Supplementary Materials, Figures S3 and S4, Tables S5–S9). The expansion of the
packing diagram also showed the alternance of R and S enantiomers in the crystal mesh.
(Figure 2b). Since no catalysts or chiral auxiliaries were used, we did not expect the reaction
to be enantioselective.
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3. Conclusions

In summary, we have developed an atom-economical approach to synthesize site-
specific substituted 5-phenylthiophen-2-amine from simple and commercially available
starting materials, namely, α-trifluoromethyl ketones and 5-phenylthiophen-2-amine,
by exploiting a trifluoromethyl hydroxyalkylation reaction. The chosen scope shows the
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variety we can introduce on 5-phenylthiophen-2-amine scaffold. The reaction showed
good to excellent yields after purification (69–93%) and with a total chemoselectivity given
that only carbon-carbon bond is formed. The site selective introduction of trifluoromethyl
hydroxyalkyl groups contrasts with traditionally inserted substituents with -M effect on
thiophene scaffold. Moreover, the chemo-and regioselectivity described allows flexibility
in substitutions possibilities in drug discovery.

4. Materials and Methods
4.1. General Experimental Methods

All reagents were purchased from commercial suppliers (Acros Geel—Belgium, Sigma
Aldrich L’lsle-d’Abeau Chesnes—France, Alfa Aesar Kandel—Germany and TCI Zwijndrecht—
Belgium) and were used without further purification. NMR spectra were recorded with a
Bruker Avance 300 spectrometer (300 MHz and 75 MHz for 1H and 13C NMR, respectively)
and Bruker Avance 400 spectrometer (376.5 MHz for 19F). Chemical shifts (δ) and coupling
constants (J) are given in ppm and Hz, respectively, using residual solvent signals as
reference for the 1H and 13C. The following abbreviations are used: s = singlet, d = doublet,
t = triplet, q = quartet, br s = broad signal, dd = doublet of doublets, dt = double of triplets,
m = multiplet. High-resolution mass spectra (HRMS) were obtained by electrospray using
a TOF analyzer Platform. IR spectra were obtained using a Jasco FT-IR 410 instrument
as a thin film on NaCl disc as stated; only structurally important peaks (
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in cm−1. Reactions were monitored with Merck Kieselgel 60F254 precoated aluminum
silica gel plates (0.25 mm thickness). Melting points were determined on a Stuart scientific
SMP10 apparatus and are uncorrected. Flash chromatography was performed on a Grace
Reveleris X2 using a 40 µm packed silica cartridge. HPLC analyses were obtained on the
Waters Alliance 2795 using the following conditions: Thermo Hypersil C18 column (3 µm,
50 mm × 2.1 mm), 20 ◦C column temperature, 0.2 mL/min flow rate, photodiodearray
detection (210−400 nm), mobile phase consistent of a gradient of water and acetonitrile
(each containing 0.1% trifluoroacetic acid). UPLC analyses were obtained on the Waters
Acquity H-Class using the following conditions: Waters Acquity BEH C18 column (1.7 µm,
50× 2.1 mm), 25 ◦C column temperature, 0.5 mL/min flow rate, photodiodearray detection
(TUV−214 nm), mobile phase consistent of a gradient of water and acetonitrile (each
containing 0.1% of formic acid).

4.2. Preparation of 5-Phenylthiophen-2-amine (8)

Starting from 2-bromo-5-nitrothiophene 5 (2.4 mmol; 500 mg), phenylboronic acid 6
(3.6 mmol; 440 mg) and Pd(PPh3)4 (0.12 mmol; 140 mg) in a mixture of toluene/ethanol
(16 mL, 2.3:1, v/v) was added a [2 M] of aqueous solution of Na2CO3 (4.8 mmol; 4.5 mL).
The reaction mixture was refluxed over 15 h. The cold solution was diluted with ethyl
acetate (50 mL) and filtered through a Celite pad, and the filtrate was diluted with water
(60 mL). The aqueous solution was extracted with ethyl acetate (3 × 50 mL). The organic
phases were combined, dried over MgSO4, filtered, and concentrated under reduced
pressure to give the crude compound. The residue was purified by flash column chro-
matography (silica gel, AcOEt/Petroleum ether (PE), 0/100 ramping to 100/0, v/v) to
give the desired compound. 2-nitro-5-phenylthiophene (7): Yield: 86% (756 mg); yellow
powder: mp 124–126 ◦C (lit. [32] 123–124 ◦C); Rf: 0.51 (PE/AcOEt: 8/2). νmax/cm−1

1512 (N-O). 1H NMR (300 MHz, DMSO-d6) δ 7.47–7.55 (m, 3H, 3HAr), 7.66–7.55 (m, 1H,
HAr), 7.80–7.87 (m, 2H, 2HAr), 8.17 (d, 1H, J = 4.5 Hz, HAr). 13C NMR (DMSO-d6, 75 MHz) δ
124.07 (CHAr), 126.29 (2CHAr), 129.54 (2CHAr), 130.35 (CHAr), 131.37 (CHAr), 131.48 (CAr),
149.32 (CAr), 151.52 (C-NO2). UPLC: tR: 3.15 min; purity: 97%; HRMS: [M + H]+ calculated
for C10H8NO2S: 206.0276; found: 206.0276.

The synthesis of 5-phenylthiophen-2-amine (8) was prepared according to a procedure
described by Zhang et al. or with minor modifications thereof [33]. To a solution of
2-nitro-5-phenylthiophene (7) (1.71 mmol; 300 mg) and Pd/C (0.28 mmol; 30 mg) in
absolute ethanol (5 mL, C = 0.1 M) was added hydrazine hydrate (15 eq). The reaction
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was stirred at 50 ◦C for 20 min and an excess of Raney nickel slurry in water (1.2 eq) was
slowly added. The reaction was monitored by TLC (PE/AcOEt 70/30). After 1.5 h, when
the bubbling ceased, the mixture was cooled to room temperature and filtered through
celite. The filtrate was condensed under reduced pressured and the crude was purified
on flash silica gel chromatography (PE/AcOEt 100/0 ramping 0/100 v/v) to afford the
desired product. 5-phenylthiophen-2-amine (8): Yield: 90% (232 mg); white powder: mp
127–129 ◦C. Rf: 0.64 (PE/EtOAc: 70/30). νmax/cm−1 3110 (NH). 1H NMR (300 MHz,
DMSO-d6) δ 5.77 (br s, 2H, NH2), 5.86 (d, J = 3.8 Hz, 1H, HAr), 7.01 (d, J = 3.8 Hz, 1H, HAr),
7.05–7.12 (m, 1H, HAr), 7.24–7.31 (m, 1H, HAr), 7.35–7.41 (m, 1H, HAr). 1H NMR (300 MHz,
D2O) δ 7.30 (s, 1H, HAr), 7.38–7.50 (m, 3H, 3HAr), 7.64–7.69 (m, 2H, 2HAr). 13C NMR
(75 MHz, DMSO-d6,) δ 104.72 (CHAr), 123.05 (CHAr), 123.39 (2CHAr), 125.01 (CAr), 125.08
(CHAr), 128.80 (2CHAr), 135.04 (CAr), 154.51 (C-NH2). 13C NMR (75 MHz, D2O) δ 122.06
(CHAr), 123.40 (t, J = 15.7 Hz, CDAr), 125.53 (2CHAr), 128.48 (CHAr), 129.07 (CAr), 129.22
(2CHAr), 132.67 (CHAr), 142.24 (C-NH2). UPLC: tR: 3.15 min; purity: 97%; HRMS: [M + H]+

calcd for C10H10NS: 176.0528; found: 176.0527.

4.3. Procedure for the Preparation of Trifluorohydroxyalkyl-5-Phenylthiophen-2-amine (12a–12l)

In a round bottom flask, 5-phenylthiophen-2-amine (8) (1eq, 0.57 mmol; 100 mg),
and the corresponding trifluorinated compound (12a–o) (1eq, 0.57 mmol) are added in 2mL
of dry toluene under reflux and inert atmosphere until complete substrate consumption
followed by TLC (PE/AcOEt 7/3) and HPLC (H2O/ACN). The cold solution is then diluted
with AcOEt (50 mL) and water (50 mL). The aqueous layer is extracted with ethyl acetate
(3 × 50 mL) and the combined organic layers are washed with water (50 mL), brine (50 mL),
dried over MgSO4 and concentrated under reduced pressure to give the crude compound
(brown oil). The residue is further purified by flash column chromatography (silica gel,
AcOEt/PE, 0/100 ramping to 100/0, v/v) to give the desired compound as a brown powder
or brown crystals.

2-(2-amino-5-phenylthiophen-3-yl)-1,1,1-trifluoropropan-2-ol (12a): Yield: 87% (142 mg);
brown powder: mp 135–137 ◦C. Rf: 0.44 (PE/AcOEt: 70/30 v/v). νmax/cm−1 3615 (NH),
3362 (OH), 1609 (N-H) and 1144 (C-OH). 1H NMR (300 MHz, DMSO-d6) δ 1.67 (s, 3H,
CH3), 5.87 (br s, 2H, NH2), 6.72 (s, 1H, HAr), 7.03 (s, 1H, OH), 7.12 (t, J = 7.3 Hz, 1H, HAr),
7.29 (t, J = 7.5 Hz, 2H, 2HAr), 7.40 (d, J = 8.1 Hz, 2H, 2HAr). 13C NMR (75 MHz, DMSO-d6)
δ 23.11 (CH3), 73.87 (q, 2JCF = 28.6 Hz, C-CF3), 113.42 (CAr), 122.89 (CAr), 123.17 (CHAr),
123.48 (2CHAr), 125.49 (CHAr), 126.60 (q, 1JCF = 285.8 Hz, CF3), 128.84 (2CHAr), 134.43 (CAr),
152.47 (CAr). 19F NMR (376 MHz, DMSO-d6) δ −80.50 (CF3). HPLC: tR: 30.28 min. HRMS:
[M + H]+ calcd for C13H13NOSF3: 288.0670; found: 288.0685.

2-(2-amino-5-phenylthiophen-3-yl)-1,1,1-trifluoro-3-phenylpropan-2-ol (12b): Yield:
81% (168 mg); brown powder: mp 118–119 ◦C. Rf: 0.37 (PE/AcOEt: 70/30 v/v). νmax/cm−1

3615 (NH), 3375 (OH), 1596 (N-H) and 1145 (C-OH). 1H NMR (300 MHz, DMSO-d6) δ
3.16 (d, J = 14.2 Hz, 1H, CH2a), 3.51 (d, J = 14.2 Hz, 1H, CH2b), 5.71 (br s, 2H, NH2),
6.92 (s, 1H, HAr), 7.08–7.21 (m, 5H, 5HAr), 7.26–7.35 (m, 4H, 3HAr, OH), 7.37–7.42 (m, 2H,
2HAr).The signal corresponding to CH2 appears under the solvent signal on 13C spec-
trum. Yet, the signal appears on DEPT-135 spectrum.13C NMR (75 MHz, DMSO-d6) δ
38.82 (CH2), 78.04 (q, 2JCF = 27.2 Hz, C-CF3), 110.57 (CAr), 120.78 (CAr), 122.90 (CAr, CHAr),
123.49 (2CHAr), 125.49 (2CHAr), 126.26 (CHAr), 126.43 (q, 1JCF = 287.2 Hz, CF3), 127.48
(2CHAr), 128.85 (2CHAr), 130.83 (2CHAr), 134.46 (CAr), 135.34 (CAr), 152.85 (CAr). 19F NMR
(376 MHz, DMSO-d6) δ −76.34 (CF3). HPLC: tR: 32.13 min. HRMS: [M + H]+ calcd for
C19H17F3NS: 364.0977; found: 364.0982.

1-(2-amino-5-phenylthiophen-3-yl)-2,2,2-trifluoro-1-(furan-2-yl)ethan-1-ol (12c): Yield:
76% (147 mg); brown powder: mp 126–128 ◦C. Rf: 0.46 (PE/AcOEt: 70/30 v/v). νmax/cm−1

3615 (NH), 3362 (OH), 1596 (N-H) and 1159 (C-OH). 1H NMR (300 MHz, DMSO-d6) δ 5.80
(br s, 2H, NH2), 6.57–6.52 (m, 2H, HAr), 6.65 (s, 1H, HAr), 7.18–7.08 (m, 1H, HAr), 7.29 (d,
J = 1.4 Hz, 2H, HAr), 7.30 (s, 2H, HAr), 7.61 (s, 1H, OH), 7.76 (dd, J = 1.7, 0.9, 1H, HAr).
13C NMR (75 MHz, DMSO-d6) δ 74.82 (q, 2JCF = 30.4 Hz, C-CF3), 109.21 (CHAr), 110.42
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(CHAr), 110.54 (CAr), 122.60 (CHAr), 122.78 (CAr), 123.50 (2CHAr), 125.11 (q, 1JCF = 286.1 Hz,
CF3), 125.73 (CHAr), 128.96 (2CHAr), 134.11 (CAr), 143.60 (CHAr), 150.91 (CAr), 153.01 (CAr).
19F NMR (376 MHz, DMSO-d6) δ −74.25 (CF3). HPLC: tR: 30.28 min. HRMS: [M + H]+

calcd for C16H12F3NO2S: 339.0535; found: 339.0532.
1-(2-amino-5-phenylthiophen-3-yl)-2,2,2-trifluoro-1-(thiophen-2-yl)ethan-1-ol (12d):

Yield: 69% (140 mg); brown powder: mp 120–121 ◦C. Rf: 0.46 (PE/AcOEt: 70/30 v/v).
νmax/cm−1 3619 (NH), 3244 (OH), 1606 (N-H) and 1157 (C-OH). 1H NMR (300 MHz,
DMSO-d6) δ 5.52 (br s, 2H, NH2), 6.83 (s, 1H, HAr), 7.04 (t, 1H, J = 4.2 Hz, HAr), 7.10–7.16
(m, 2H, HAr), 7.26–7.37 (m, 5H, 4HAr, OH), 7.58 (d, J = 4.9 Hz, 1H, HAr). 13C NMR (75 MHz,
DMSO-d6) δ 76.19 (q, 2JCF = 27.7 Hz, C-CF3), 113.09 (CHAr), 122.08 (CHAr), 122.89 (CHAr),
123.57 (2CHAr), 125.79 (CHAr), 126.05 (q, 1JCF = 280.9 Hz, CF3), 126.41 (CHAr), 126.75
(CHAr), 126.99 (CHAr), 128.99 (2CHAr), 134.13 (CAr), 143.25 (CAr), 152.88 (CAr). 19F NMR
(376 MHz, DMSO-d6) δ −76.06 (CF3). HPLC: tR: 32.27 min. HRMS: [M + H]+ calcd for
C16H13F3NOS2: 356.0391; found: 356.0397.

1-(2-amino-5-phenylthiophen-3-yl)-2,2,2-trifluoro-1-phenylethan-1-ol (12e): Yield: 82%
(163 mg); brown powder: mp 116–118 ◦C. Rf: 0.60 (PE/AcOEt: 70/30 v/v). νmax/cm−1

3376 (NH, OH), 1608 (N-H) and 1147 (C-OH). 1H NMR (300 MHz, DMSO-d6) δ 5.50 (br
s, 2H, NH2), 6.95 (s, 1H, HAr), 7.15 (t, J = 7.1 Hz, 1H, HAr), 7.28–7.44 (m, 8H, 7HAr, OH),
7.49 (d, J = 7.2 Hz, 2H, 2HAr). 13C NMR (75 MHz, DMSO-d6) δ 76.90 (q, 2JCF = 27.9 Hz,
C-CF3), 114.35 (CAr), 122.00 (CHAr), 123.00 (CAr), 123.63 (2CHAr), 125.67 (q, 1JCF = 281.2 Hz,
CF3), 125.79 (CHAr), 127.16 (2CHAr), 128.02 (2CHAr), 128.35 (CHAr), 129.06 (2CHAr), 134.30
(CAr), 138.80 (CAr), 152.53 (CAr). 19F NMR (376 MHz, DMSO-d6) δ −75.54 (CF3). HPLC: tR:
32.93 min. HRMS: [M + H]+ calcd for C18H15NOSF3, 350.0826; found 350.0829.

1-(2-amino-5-phenylthiophen-3-yl)-2,2,2-trifluoro-1-(p-tolyl)ethan-1-ol (12f): Yield:
75% (155 mg); brown powder: mp 113–115 ◦C. Rf: 0.56 (PE/AcOEt: 70/30 v/v). νmax/cm−1

3628 (NH), 3336 (OH), 1610 (N-H) and 1157 (C-OH). 1H NMR (300 MHz, DMSO-d6) δ
2.29 (s, 3H, CH3), 5.48 (br s, 2H, NH2), 6.95 (s, H, HAr), 7.10–7.21 (m, 3H, 3HAr), 7.29–7.42
(m, 7H, 6HAr, OH). 13C NMR (75 MHz, DMSO-d6) δ 20.65 (CH3), 76.78 (q, 2JCF = 28.3 Hz,
C-CF3), 114.47 (CAr), 122.00 (CAr), 122.87 (CAr), 123.57 (2CHAr), 125.70 (CHAr), 126.96 (q,
1JCF = 279.0 Hz, CF3), 127.07 (2CHAr), 128.54 (2CHAr), 129.00 (2CHAr), 134.30 (CAr), 135.83
(CAr), 137.57 (CAr), 152.46 (CAr). 19F NMR (376 MHz, DMSO-d6) δ −76.22 (CF3). HPLC: tR:
34.05 min. HRMS: [M + H]+ calcd for C19H17F3NOS: 346.0986; found: 364.0977.

1-(2-amino-5-phenylthiophen-3-yl)-2,2,2-trifluoro-1-(4-fluorophenyl)ethan-1-ol (12g):
Yield: 79% (165 mg); brown powder: mp 115–116 ◦C. Rf: 0.46 (PE/AcOEt: 70/30 v/v).
νmax/cm−1 3612 (NH), 3376 (OH), 1609 (N-H) and 1144 (C-OH). 1H NMR (300 MHz, DMSO-
d6) δ 5.52 (br s, 2H, NH2), 6.95–7.00 (m, 1H, HAr), 7.11–7.18 (m, 1H, HAr), 7.21 (t, J = 8.9 Hz,
2H, 2HAr), 7.32 (t, J = 7.7 Hz, 2H, 2HAr), 7.37–7.42 (m, 2H, 2HAr), 7.44 (s, 1H, OH), 7.48–7.54
(m, 2, 2HAr). 13C NMR (75 MHz, DMSO-d6) δ 76.51 (q, 2JCF = 28.7 Hz, C-CF3), 114.05
(CHAr), 114.78 (d, 2JCF = 22.5 Hz, 2CHAr), 121.75 (CHAr), 123.07 (CAr), 123.63 (2CHAr),
125.77 (CHAr), 126.22 (q, 1JCF = 286.5 Hz, CF3), 129.00 (2CHAr), 129.45 (d, 3JCF = 8.3 Hz,
2CHAr), 134.25 (CAr), 134.88 (CAr), 152.63 (CAr), 161.96 (d, 1JCF = 243.0 Hz, CAr-F). 19F NMR
(376 MHz, DMSO-d6) δ −75.15 (CF3), −114.21 (CAr-F). HPLC: tR: 30.28min. HRMS:
[M + H]+ calcd for C18H14F4NOS: 368.0727; found: 368.0725.

1-(2-amino-5-phenylthiophen-3-yl)-1-(4-chlorophenyl)-2,2,2-trifluoroethan-1-ol (12h):
Yield: 81% (177 mg); brown powder: mp 120–122 ◦C. Rf: 0.46 (PE/AcOEt: 70/30 v/v).
νmax/cm−1 3601 (NH), 3349 (OH), 1596 (N-H) and 1136 (C-OH). 1H NMR (300 MHz,
DMSO-d6) δ 5.53 (br s, 2H, NH2), 6.98 (s, 1H, HAr), 7.15 (t, J = 7.2 Hz, 1H, HAr), 7.32 (t,
J = 7.7 Hz, 2H, 2HAr), 7.38–7.42 (m, 2H, 2HAr), 7.45–7.51 (m, 5H, 4HAr, OH). 13C NMR
(75 MHz, DMSO-d6) δ 76.44 (d, 2JCF = 28.8 Hz, C-CF3), 113.80 (CAr), 121.67 (CHAr), 123.11
(CAr), 123.63 (2CHAr), 123.92 (q, 1JCF = 272.3 Hz, CF3), 125.79 (CHAr), 127.99 (2CHAr), 129.00
(2CHAr), 129.17 (2CHAr), 133.12 (CAr), 134.21 (CAr), 137.70 (CAr), 152.68 (CAr). 19F NMR
(376 MHz, DMSO-d6) δ −75.10 (CF3). HPLC: tR: 30.28 min. HRMS: [M + H]+ calcd for
C18H14ClF3NOS: 384.0431; found: 384.0428
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1-(2-amino-5-phenylthiophen-3-yl)-1-(4-bromophenyl)-2,2,2-trifluoroethan-1-ol (12i):
Yield: 81% (198 mg); brown powder: mp 110–112 ◦C. Rf: 0.46 (PE/AcOEt: 70/30 v/v).
νmax/cm−1 3601 (NH), 3348 (OH), 1596 (N-H) and 1135 (C-OH). 1H NMR (300 MHz,
DMSO-d6) δ 5.53 (br s, 2H, NH2), 6.98 (s, 1H, HAr), 7.15 (t, J = 7.2 Hz, 1H, HAr), 7.32 (t,
J = 7.7 Hz, 2H, 2HAr), 7.37–7.46 (m, 4H, 4HAr), 7.49 (s, 1H, OH), 7.55–7.63 (m, 2H, 2HAr).
13C NMR (75 MHz, DMSO-d6) δ 76.55 (q, 2JCF = 28.52 Hz, C-CF3), 113.78 (CAr), 121.65
(CHAr), 121.83 (CAr), 123.14 (CAr), 123.63 (2CHAr), 125.29 (q, 1JCF = 285.6 Hz, CF3) 125.77
(CHAr), 128.98 (2CHAr), 129.48 (2CHAr), 130.91 (2CHAr), 134.21 (CAr), 138.14 (CAr), 152.69
(CAr). 19F NMR (376 MHz, DMSO-d6) δ −75.10 (CF3). HPLC: tR: 30.28 min. HRMS:
[M + H]+ calcd for C18H14BrF3NOS: 427.9926; found: 427.9917.

1-(2-amino-5-phenylthiophen-3-yl)-2,2,2-trifluoro-1-(pyridin-3-yl)ethan-1-ol (12j): Yield:
93% (185 mg); brown crystals: mp 121–122 ◦C. Rf: 0.26 (PE/AcOEt: 80/20 v/v). νmax/cm−1

3599 (NH), 3389 (OH) and 1169 (C-OH). 1H NMR (300 MHz, DMSO-d6) δ 5.78 (br s, 2H,
NH2), 6.95 (s, 1H, HAr), 7.13 (t, J = 6.7 Hz, 1H, HAr), 7.24–7.38 (m, 4H, 4HAr), 7.39–7.45 (m,
1H, HAr), 7.47 (s, 1H, OH), 7.69 (d, J = 8.1 Hz, 1H, HAr), 7.90 (t, J = 7.8 Hz, 1H, HAr), 8.62 (d,
J = 4.7 Hz, 1H, HAr). 13C NMR (75 MHz, DMSO-d6) δ 77.97 (q, 2JCF = 28.3 Hz, C-CF3),
112.69 (CAr), 122.25 (CHAr), 122.59 (CHAr), 122.95 (CAr), 123.52 (2CHAr), 123.68 (CHAr),
125.64 (q, 1JCF = 276.4 Hz, CF3), 125.71 (CHAr), 128.97 (2CHAr), 134.22 (CAr), 137.46 (CHAr),
147.72 (CHAr), 152.53 (CAr), 157.48 (CAr). 19F NMR (376 MHz, DMSO-d6) δ −74.25 (CF3).
HPLC: tR: 31.37 min. HRMS: [M + H]+ calcd for C17H14N2OF3S: 351.0779; found: 351.0793.

1-(2-amino-5-phenylthiophen-3-yl)-1-(benzo[d]thiazol-2-yl)-2,2,2-trifluoroethan-1-ol (12k):
Yield: 80% (185 mg); brown powder: mp 115–117 ◦C. Rf: 0.46 (PE/AcOEt: 70/30 v/v).
νmax/cm−1 3606 (NH), 3376 (OH), 1609 (N-H) and 1157 (C-OH). 1H NMR (300 MHz,
DMSO-d6) δ 6.01 (br s, 2H, NH2), 7.08 (s, 1H, HAr), 7.10–7.17 (m, 1H, HAr), 7.26–7.36 (m,
4H, 4HAr), 7.47–7.60 (m, 2H, 2HAr), 8.08–8.18 (m, 2H, 2HAr) 8.64 (s, 1H, OH). 13C NMR
(75 MHz, DMSO-d6) δ 77.60 (q, 2JCF = 29.9 Hz, C-CF3), 110.61 (CAr), 122.23 (CHAr), 122.35
(CHAr), 123.38 (CHAr), 123.59 (2CHAr), 124.66 (q, 1JCF = 287.8 Hz, CF3), 125.87 (CHAr),
125.90 (CHAr), 126.47 (CHAr), 128.99 (2CHAr), 133.96 (CAr), 134.67 (CAr), 152.48 (CAr),
153.15 (2CAr), 171.32 (CAr). 19F NMR (376 MHz, DMSO-d6) δ −75.14 (CF3). HPLC: tR:
30.28 min. HRMS: [M + H]+ calcd for C19H14F3N2OS2: 407.0494; found: 407.0500.

1-(2-amino-5-phenylthiophen-3-yl)-2,2,2-trifluoro-1-(naphthalen-2-yl)ethan-1-ol (12l):
Yield: 72% (164 mg); brown powder: mp 127–128 ◦C. Rf: 0.60 (PE/AcOEt: 70/30 v/v).
νmax/cm−1 3575 (NH), 3336 (OH), 1609 (N-H) and 1134 (C-OH). 1H NMR (300 MHz,
DMSO-d6) δ 5.84 (br s, 2H, NH2), 6.37 (s, 1H, HAr), 6.99–7.34 (m, 5H, 5HAr), 7.35–7.50
(m, 2H, 2HAr), 7.57 (t, J = 7.8 Hz, 1H, HAr), 7.74 (s, 1H, HAr), 7.77 (br s, 1H, OH), 7.93 (d,
J = 7.2 Hz, 1H, HAr), 7.99 (d, J = 8.4 Hz, 1H, HAr), 8.43 (d, J = 8.6 Hz, 1H, HAr). 13C NMR
(75 MHz, DMSO-d6) δ 79.47 (q, 2JCF = 26.9 Hz), 113.04 (CAr), 122.88 (CHAr), 122.97 (CHAr),
123.33 (2CHAr), 123.42 (CAr), 124.54 (CHAR), 125.61 (3CHAr), 126.21 (q, 1JCF = 281.2 Hz, CF3),
126.86 (CHAr), 128.74 (CHAr), 128.90 (2CHAr), 129.83 (CHAr), 130.90 (CAr), 133.96 (CAr), 134.41
(CAr), 134.52 (CAr), 151.68 (CAr). 19F NMR (376 MHz, DMSO-d6) δ −74.25 (CF3). HPLC: tR:
33.70 min. HRMS: [M + H]+ calcd for C22H17F3NOS: 400.0977; found: 400.095.

4.4. Crystallographic Data

CCDC 2083160 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail:
deposit@ccdc.cam.ac.uk)

Supplementary Materials: The following are available online, Figure S1: 1H spectra of 9 in D2O (singlet
at 7.28 ppm; 300 MHz); Figure S2: 13C spectra of 9 in D2O (triplet at 123.40 ppm; 75 MHz); Figure S3:
Crystal structure of compounds 12j; Figure S4: (A) XP diagram of compound 12j with atomic
numbering scheme; (B) Expandation of the packing diagram of compound 12j within the crystal
mesh trough intra and intermolecular hydrogen bonds; Table S1: Optimization attempts for the
synthesis of 16–17; Table S2: Optimization studies for the synthesis of 12e; Table S3: Optimization

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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attempts for the synthesis of 13; Table S4: Kinetics considerations following HPLC spectra; Table S5:
Crystal data and structure refinement details for 12j; Table S6: Bond lengths for 12j (Å); Table S7:
Bond angles for 12j (◦); Table S8: Torsion angles for 12j (◦); Table S9: Hydrogen bond distances (Å)
and angles for 12j (◦). Characterization of compounds (1H 300MHz, 13C 75MHz, 19F NMR 376 MHz,
DEPT-135 in DMSO-d6; HRMS, HPLC).
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