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Abstract

Osteoporosis (OP) is the most prevalent metabolic bone disease, characterized by the low bone mass and microarchitectural
deterioration of bone tissue. Glucocorticoid (GC) clinically acts as one of the anti-inflammatory, immune-modulating, and
therapeutic drugs, whereas the long-term use of GC may cause rapid bone resorption, followed by prolonged and profound
suppression of bone formation, resulting in the GC-induced OP (GIOP). GIOP ranks the first among secondary OP and is
a pivotal risk for fracture, as well as high disability rate and mortality, at both societal and personal levels, vital costs. Gut
microbiota (GM), known as the “second gene pool” of human body, is highly correlated with maintaining the bone mass
and bone quality, and the relation between GM and bone metabolism has gradually become a research hotspot. Herein, com-
bined with recent studies and based on the cross-linking relationship between GM and OP, this review is aimed to discuss
the potential mechanisms of GM and its metabolites on the OP, as well as the moderating effects of GC on GM, thereby

providing an emerging thought for prevention and treatment of GIOP.
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Introduction

Osteoporosis (OP) is the most prevalent metabolic bone dis-
ease, characterized by low bone mass and microarchitectural
deterioration of bone tissue [1, 2]. According to data provided
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by International Osteoporosis Foundation (IOF), more than
200 million people worldwide suffer from OP and there is an
average fracture caused by OP every 3 s, and the incidence of
hip fracture has been increasing in the world since 1990, which
is expected to increase by 240% in women and 310% in men
by 2050, and about 50% of osteoporotic fractures might occur
again [3-6]. Glucocorticoid (GC) clinically acts as the anti-
inflammatory, immune-modulating therapeutic drugs used to
manage inflammatory diseases including inflammatory bowel
disease (IBD), allergic conditions, bronchial asthma, rheuma-
toid arthritis (RA), ankylosing spondylitis, and chronic renal
diseases, cancers, as well as severe corona virus disease 2019
(COVID-19) cases [7]. However, long-term application of GC
may cause rapid bone resorption, followed by prolonged and
profound suppression of bone formation, leading to an “immi-
nent risk of fracture” [8—11]. More than 41.4% of patients
developed the OP during the long-term treatment of GC [12].
A recent claim-based assessment on the costs of adverse events
related to GC, established an incremental cost of $3201 per
fracture at the cumulative doses greater than 1800 mg. GC
is the cause of disability, mortality and, at both societal and
personal level, significant costs [13, 14]. Though antiresorptive
and anabolic drugs could help to reduce the OP due to GC,
GC-induced OP (GIOP) ranks the first among secondary OP
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and is a significant risk for fractures [9, 10]. Thus, the in-depth
studies of cross-linking relationship and development of cor-
responding targeted therapy strategies have become the key to
the prevention and treatment of GIOP.

In general, GIOP is most common in drug-induced sec-
ondary OP [15]. The etiology of GIOP is mainly related to
the increase of osteoblast apoptosis and osteoclast activity.
Physiologically, cortisol secreted by the adrenal cortex is an
essential hormone for the differentiation and functional regula-
tion of osteoblastic lineage cells and osteoclastic lineage cells
[16, 17]. However, excessive physiological dose of GC and
its analogues might have apparent adverse influences on the
development, growth, and metabolism of bone tissues [18].
Histologically, the osteoblast apoptosis and inhibition of osteo-
blast function could be observed, while the number of bone
remodeling units increases, bone resorption lacunae increase,
the bone formation is insufficient, and the bone trabecular
thickness decreases, perforates, or disappears [19]. Addition-
ally, different from primary OP, GIOP is mainly characterized
by following three characteristics: (1) The influences of GC
on the bone tissues are mainly characterized by the obvious
activation of receptor activator for nuclear factor-xB ligand
(RANKL) and enhanced bone resorption, but no correspond-
ing increase in bone formation occurred during this period; (2)
After a period of adaptation (approximately several weeks), the
bone formation remains at a low level, while the bone resorp-
tion decreases; (3) The risk of fracture enhances rapidly, and in
a dose-dependent manner after the application of GC [20-22].

In recent years, the relationship between GM and human
diseases has been focused on. Gut microbiota (GM) is the
community of microbes (bacteria, fungi, viruses, etc.) resid-
ing in the host gastrointestinal tract, also known as the “sec-
ond gene pool” of the human body, and the number of genes
in its genome is about 150 times as much as the total number
of genes in human genome, approximately 10 trillion [23,
24]. Increasing researches have indicated a complex role of
the gastrointestinal tract in keeping bone health through a
“gut-bone” axis, in which the several mechanisms have been
proposed [25-27]. Animal experiments have shown that GM
can regulate bone mass by altering immune status, intestinal
calcium absorption, and affecting osteoclasts-mediated bone
resorption. Taken together, GM is highly correlated with
maintaining bone mass and bone quality [28-30]. It would
seem imperative to understand the mechanisms by which
GM affects the development of GIOP to identify drug targets
and design better therapies for this disease.

The relationship between GM and OP

GM are known as the “second gene pool” of the human
body, encoding 150-fold more genes than human genome,
and about 10 trillion bacteria colonizing in the human
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gastrointestinal tract interacts with the host [23, 28]. GM
is referred to as a commensal, symbiotic, and pathogenic
microorganism living in our intestines, playing an essential
role in endocrine system, enteric nervous system, immune
system, nutrient absorption and production, metabolic bal-
ance, gut—brain-bone axis, and resistance to pathogens at
different period of ages [31-33]. Nowadays, the knowledge
of the complex interaction between GM and health outcomes
is a novel and rapidly expanding field [31]. In recent studies,
it has been observed that GM alterations associated with
reduced bone mineral density (BMD) in older adults [34,
35]. There is an increasing number of human and animal
studies suggesting that GM can exert effects in skeletal sys-
tem as it modulates gut permeability, hormonal secretion,
and immune response, and stimulates calcium and vitamin
D absorption [36].

Moreover, GM is a critical regulator of bone remodeling
mediated by the osteoclasts with bone resorption function
and the osteoblasts with bone formation function. Therein,
bone strength refers to the ability of bones to respond to
mechanical load, and GM may play a key role in the forma-
tion of differences in bone strength [37]. Long-term changes
in GM during growth and development may not only result
in the changes in bone mass, but also impair the biomechani-
cal properties of bone [38]. Several studies have reported the
alterations in the properties of bone collagen associated with
bone fragility, such as changes in biochemical properties and
protein structure [39, 40]. The supplementation of specific
probiotics in OP-related mice models can improve BMD
and enhance bone heterogeneity [41]. This is of great prac-
tical value, as most of the current anti-OP drug candidates
(such as the bisphosphonate, calcitonin, cathepsin K inhibi-
tors, and estrogen) may reduce the bone heterogeneity, and
thereby enhancing the risk of bone fragility and fractures
[42, 43]. Besides, Chen et al. [44] also observed that feed-
ing GC-treated mice in the same nest with healthy mice, or
transplanting the GM of healthy mice to the GC-treated mice
could significantly reduce the decrease of bone mass, bone
microstructure destruction, decreased angiogenesis, decrease
in the number of osteoblasts and increase in apoptotic cells
induced by GC.

From the aspect of clinical researches, Yang et al. [45]
conducted the 16 S ribosomal RNA (16 S rRNA) sequenc-
ing analysis of the feces from 132 postmenopausal women,
including patients with OP, patients with osteopenia and the
individuals in the control group, and observed that the com-
position and diversity of GM in OP group and control group
were significantly different, reflecting that the abundance of
Fusicatenibacter, Lachnoclostridium, and Megamonas spp.
was higher in the OP group. In a randomized, double-blind,
placebo-controlled, multi-center trial, Jansson et al. [46]
applied a mix of 3 kinds of Lactobacillus strains (Lactoba-
cillus paracasei DSM 13434, Lactobacillus plantarum DSM
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15312, and Lactobacillus plantarum DSM 15313) at a dose
of 1x10'° CFU per day for the postmenopausal women,
and it turned out that the supplementation of Lactobacil-
lus strains reduced the bone loss in postmenopausal women
compared with placebo, indicating the benefits of probiot-
ics and prebiotics for bone metabolism. Morato-Martinez
et al. [47] suggested that regular consumption of a dairy
product to reconstitute enriched with bioactive nutrients sig-
nificantly enhanced dietary intake of calcium and vitamin D,
thus improving bone health-related markers in menopausal
women at risk of OP without pharmacological treatment.
As for the animals’ studies, by constructing the rat models
of postmenopausal OP induced by the ovariectomy (OVX),
Li et al. [23] suggested that the metabolites of GM were
effective regulators of osteoclast metabolism and bone
homeostasis, and played a critical role in the prevention and
treatment of metabolic syndrome. The treatment of Puerarin
modulated the GM disorder to elicit the anti-OP effects in
the OVX-induced rats by improving the bone micro-envi-
ronment via regulating the levels of short-chain fatty acids
(SCFAs) and repairing the intestinal mucosal integrity. In
addition, Li et al. [9] indicated that tuna bone powder (TBP)
stimulated bone formation via Wnt/p-catenin pathway acti-
vation and inhibited bone resorption via NF-xB pathway
suppression to alleviate the GIOP. Meanwhile, GC signifi-
cantly increased the transcription levels of tumor necrosis
factor-a (TNF-a), interleukin (IL)-1, IL-6, and IL-17 in
colon, whereas TBP treatment at high-dosage significantly
decreased the transcription of all the above inflammatory
cytokines, thus relieving systemic inflammation and intesti-
nal integrity. Cheng et al. [32] showed that long-term alco-
hol consumption induced OP and affected the composition
of GM, and alcohol can activate T lymphocytes directly
or indirectly regulate the alterations of GM to produce the
cytokines, and further activate osteoclasts. Moreover, the
status of OP was more severe in old rats than young rats,
which may be due to the higher diversity and stronger regu-
lation ability of GM in young rats compared with old rats.
Li et al. [48] revealed that the acceleration of senescence
caused by the administration of D-galactosamine (D-gal)
and NaNO, to mice showed an osteoporotic bone pheno-
type, which was related to aggravated oxidative stress, acti-
vated Sirt6/NF-kB/CatK signaling, and disruption of GM.
Remarkably, Fructus ligustri lucidi (FLL) aqueous extract
might preserve the aging-related bone quality via inhibiting
the above-mentioned signaling pathways [48]. In addition
to this, Wang et al. [49] suggested that the feces from senile
osteoporotic rats transferred to young rats could induce
senile OP, indicating altered GM and impaired intestinal bar-
rier contributed to the pathogenesis of OP. Zhang et al. [50]
showed that fecal microbiota transplantation (FMT) amelio-
rated the bone loss in mice with OVX-induced OP through
modulating the GM and metabolic function. To be specific,

FMT prevented the OVX-induced bone loss by correcting
the imbalance of GM, improving the level of SCFAs, opti-
mizing the intestinal permeability, and inhibiting the release
of pro-osteoclastogenic cytokines, which might be an option
to serve as a promising candidate for the prevention and
treatment of OP in the future.

In general, GM was closely associated with OP (the ani-
mals’ studies were shown in Table 1, and the population-
based researches are shown in Table 2) [51-63]. Recent
studies have underscored the emerging role of GM in regu-
lating bone metabolism. The modification of GM could be a
viable therapeutic strategy to regulate the bone metabolism
under a variety of conditions that lead to bone loss and OP.
Nonetheless, relevant studies on the relationship between
GM and OP are still in the initial stage, and more researches
are required to further clarify its in-depth mechanisms and
explore effective treatments with less side effects.

Relevant mechanisms of regulating OP
through GM

Inflammatory regulation

The regulatory role of inflammatory mediators in bone
metabolism has been well explored [64]. In addition to oste-
oclasts and osteoblasts, T cells, B cells, hemopoietic cells,
and osteocytes could play a role in inflammatory regulation
and bone loss, which have also been shown to be the gen-
erators of RANKL [65]. Osteoclast-induced bone resorp-
tion is activated by oxidative and inflammatory cytokines
such as nitric oxide (NO), IL-1p, IL6, IL-8, IL-18, IL-15,
IL-17, IL-32, and TNF-a, many of which induce the osteo-
clastogenesis by upregulating the release of RANKL [66].
TNF-a inhibits the mesenchymal stromal cells (MSCs) to
the transition of osteoblasts by regulating the expression of
recombinant runt related transcription factor 2 (RUNX2), a
master transcription factor that commits MSCs into osteo-
genic pathway. TNF-a targets the expression of Osterix, a
key transcription necessary for osteoblast maturation [67,
68]. By contrast, bone resorption is down-regulated by anti-
inflammatory cytokines, such as IL-3, IL-4, IL-10, IL-13,
and transforming growth factor-f1 (TGF-B1) [69]. NO
and anti-inflammatory cytokines affect the osteoblasts by
increasing osteoprotegerin (OPG) and decreasing the pro-
duction of RANKL, thus generating a high OPG to RANKL
ratio that favors the inhibition of osteoclast differentiation
[66]. Lipopolysaccharides (LPS), the important component
of lipoproteins derived from gram-negative GM, is a strong
stimulatory endotoxin triggering the inflammatory immune
responses and influencing the health, which escalates the
oxidative stress and inflammation, activating osteoclasts and
bone resorption. In osteoblasts, LPS activates the NF-kB
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and inducible nitric oxide synthase (iNOS) [69, 70]. GM
also promotes the endothelial NOS (eNOS) and increased
the inflammatory cytokines, including the TNF-a, IL-1,
and IL-6, repressing trabecular bone mineralization [69].
The estrogen-deficiency decreases intestinal permeability
and represses estrogen receptor-mediated signaling path-
ways, such as GTP-binding protein Ras, Raf, IFN-y, and
mitogen-activated protein kinase (MAPK) in intestinal epi-
thelial microenvironment [71]. Toll-like receptors (TLRs)
play pivotal roles in inflammation and provide vital links
between the immune and skeletal systems. According
to Ding et al. [72], TLR9-deficiency causes osteoclastic
bone loss via altering the composition of GM and induc-
ing systemic chronic inflammation. In detail, Mucispiril-
lum schaedleri and Parabacteroides distasonis presented
significant enhancement in the TLR9™~ mice. GM could
affect the inflammation state to regulate the bone mass,
and the inflammation is also closely associated with bone
metabolism [73]. Tousen et al. [74] observed that treatment
with resistant starch can attenuated OV X-induced bone loss,
which enhanced the abundance of Bifidobacterium in the
feces, up-regulated the expression of anti-inflammatory
cytokines in the colon, and reduced the expression of osteo-
clastogenic cytokines in the bone marrow of OVX-induced
mice. Using the tilapia nilotica head lipids (THLs) on OVX-
induced rats, Zhu et al. [75] demonstrated that the levels
of pro-inflammatory cytokines had decreased notably after
the intervention of THLs, which reduced the inflammation
and prevented the bone resorption. Long-term high fat diet
(HFD) resulted in the decreased bone mass, combined with
GM dysbiosis, leaky gut, and systemic inflammation. Zhang
et al. [76] revealed that the Fructooligosaccharides (FOS)
and/or galactooligosaccharides (GOS) reversed high intesti-
nal permeability and pro-inflammatory cytokines, alleviated
intestinal and systemic low-grade inflammation induced by
HFD, thus protecting against HFD-induced OP.

Immune regulation

A critical role of immune system is to facilitate the ben-
eficial effects of symbiotic relationship while simultane-
ously preventing the invasion of the host by pathogenic
organisms in GM [29]. It is currently clear that the inter-
actions of immune system with GM have profound effects
on the bone health [77, 78]. GM contributes to the matu-
ration of the immune system in early life [77]. Villa et al.
[79] reviewed that in the absence of the GM, the mucosal
immune system was characterized by hypoplastic Peyer’s
patches containing minimal germinal centers and a reduced
number of IgA-producing plasma cells and lamina propria
CD4 + T cells. In addition, the absence of GM results in
immature systemic immunity with fewer and smaller ger-
minal centers and reduced the number of CD4 + T cells

in the spleen. GM modulates immune system through the
production of molecules with immunomodulatory and
anti-inflammatory function that are capable to influence
the immune cells [77]. RANKL is considered as main
cytokine in osteoclast differentiation which is produced
by mesenchymal cells, osteoblasts, and osteocytes in the
bone marrow [27]. During the process of inflammation,
activated CD4 + T cells are also a source of RANKL, as
well as other cytokines including IL-17 and TNF-«, which
suppress the differentiation of MSCs into osteoblasts and
stimulate osteoclastogenesis [80, 81]. Moreover, the rela-
tionship between GM and bone is also mediated by innate
immunity through several receptors such as nucleotide-
binding oligomerization domain proteins (NOD1 and
NOD?2) receptors and TLRS [82]. NOD1 and NOD?2 are
ubiquitary intracellular sensors of the pathogen-associ-
ated molecular patterns (PAMPs), mainly expressed on
the epithelial and immune cells, that bind bacterial pep-
tidoglycans and activate the NF-kB pathway playing a
key role in the effects of microbiota on bone [83]. The
effects of GM on host immunity can be modulated by tar-
geting Th17 cells and/or Tregs [84]. For instance, T- cell
antigen receptor (TCR), specifically expressed by Th17
cells, could respond to antigens encoded by symbiotic seg-
mented filamentous bacteria (SFB) [85]. SFB-mediated
activation of TCR can induce Th17 cell expansion, which
negatively affects skeletal maturation [86]. Moreover, Bifi-
dobacteria and Streptococcus thermophilus can increase
the concentration of TGF-f, regulate the differentiation of
Tregs/Th17 cells, thereby indirectly regulating the immune
responses [87]. Gut-derived bacterial metabolites regulate
the distant organs, among which indole derivatives were
among the first bacterial metabolites to be described to
affect the intestinal immunity [88, 89]. The indoles and
indole derivatives, such as indole-3-aldehyde (IAld),
indole-3-acetic-acid (IAA), indole-3-propionic acid (IPA),
indole-3-acetaldehyde (IAAld), and indoleacrylic acid,
are the bioactive substances produced directly through
the activity of tryptophanase in Escherichia coli and Lac-
tobacillus spp [90]. In particular, SCFAs, the family of
metabolites produced by GM, that has received the great-
est attention for its capacity to diffuse to the distant organs
and induce potent regulatory effects, which recently have
been recognized as the pivotal regulators of bone resorp-
tion and bone formation [91]. SCFAs blunt the osteoclast
differentiation, and the inhibition of histone deacetylase
(HDAC) activity is one of the mechanisms whereby this
occurs [92]. It has been verified that increased solubility
of minerals caused by enriched SCFAs, promoted absorp-
tion surface, and enhanced expression of calcium-binding
proteins are the underlying mechanisms of probiotics or
prebiotics facilitating mineral utilization [93].
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Endocrine regulation

Endocrine regulators of the energy metabolism, such as
insulin and leptin, might influence the bone metabolism by
changing substrate availability, interaction with bone cells
or indirect signaling through central nervous system. Insu-
lin-like growth factor 1 (IGF-1), a growth factor known to
impact bone via endocrine and paracrine—autocrine mecha-
nisms, also needs to be considered as a possible pathway
for microbial impacts on bone [94]. Yan et al. [95] dem-
onstrated that levels of IGF-1, a growth factor known to
regulate skeletal formation, are dynamically modulated by
changes in GM, thus modulating the anabolic stimulus to
the skeleton. IGF-1 increases longitudinal femur develop-
ment, and cartilage-specific deletion of receptor reveals that
IGF-1 is required for growth plate maturation and secondary
ossification center development [96]. Mice with a defined
microbiota had greater IGF-1 levels than germ-free (GF)
mice, indicating that GM can influence the levels of IGF-1,
and IGF-1 has a significant impact on bone development and
healthy maintenance [97, 98]. Reid et al. [99] revealed that
leptin was a key regulator of energy intake and had also been
shown to regulate bone metabolism and bone mass in the
rodents and humans. Leptin receptor expression decreases
as osteoblast differentiation advances, and leptin has a direct
anabolic effect on the cells of osteoblast lineage. Moreo-
ver, leptin inhibition of osteoclast generation in the cultures
of human peripheral blood mononuclear cells, and leptin
increased the expression of OPG in cultures, suggesting that
the inhibitory effect was mediated via the RANK/OPG sys-
tem [100]. The endocrine regulation of bone cell activity,
including that of leptin and insulin, might act as a sensor
of substrate availability needed for the bone metabolism,
suggesting that other endocrine factors related to energy
availability may be involved in the regulation of bone cell
activity [101]. Parathyroid hormone (PTH) is a calciotropic
hormone critical for skeletal development. Similar to the
butyrate, PTH stimulates the bone formation and induces
the bone anabolism via Treg/Wnt10b/Wnt signaling pathway
[102]. Using GM depletion by wide-spectrum antibiotics
and GF female mice, Li et al. [65] showed that GM was
required for PTH to stimulate bone formation and increase
bone mass. GM depletion lowered the level of butyrate,
a metabolite responsible for gut-bone communication,
while the reestablishment of physiologic levels of butyrate
restored PTH-induced anabolism [103]. Estrogen depletion
observed in post-menopausal women adversely impacts the
bone homeostasis, and one of the principal regulators of
circulating estrogens is GM [104]. GM regulates estrogens
through the secretion of f-glucuronidase, an enzyme that
deconjugates estrogens into their active forms. When this
process is impaired through, for example, lower diversity of

@ Springer

GM, the decrease in deconjugation results in a reduction of
circulating estrogens [105]. Excessive osteoclast formation
and resorption are considered as the key pathological alter-
ations in estrogen-deficiency induced OP [106]. Estrogen
deprivation also increases intestinal permeability allowing
the translocation of bacteria and increasing the number of
antigens entering the epithelial mucosa what could lead to
systemic inflammation [107]. In summary, there is a com-
plicated and close link between GM and OP, and overall
mechanisms of three patterns of regulation (inflammation,
immune, endocrine) are shown in Fig. 1.

The effects of GC on GM
The effects on intestinal mucosal barrier

The gastrointestinal tract is the largest surface facing outside
environment, being in direct contact with the commensal
microbiota and antigens from the diets [108]. To ensure the
homeostasis, the intestine acts as a permeable but selective
barrier, absorbing nutrients and water to obtain energy and
blocking the passage of antigens and bacteria to inner milieu.
This critical property of the gut is known as intestinal barrier
function (IBF). The regulation of paracellular permeability
is exerted chiefly at the tight junction level [109]. The tight
junctions are constituted by the transmembrane proteins
(claudins, occludins, tricellulin and the junctional adhesion
molecule) and peripheral membrane associated proteins that
connect to the actin cytoskeleton (zonulae occludens (ZO)
1-3, AF-6, and cingulin) [110]. In most cases, the patho-
logically increased permeability, for instance, by dysregu-
lated secretion of pro-inflammatory cytokines is associated
with the modulation of tight junctions [111]. GC increased
the intestinal permeability (barrier leaks) as evidenced by
increased levels of endotoxin in the serum. More impor-
tantly, the treatment of high-molecular-weight polymer
effectively prevented the GC-induced elevation of serum
endotoxin and correspondingly prevented femoral trabecular
bone loss induced by GC. Lactobacillus reuteri and chronic
antibiotic treatments prevented GC-induced barrier leaks.
Together, GC-altered barrier dysfunction is a key pathogenic
event in GIOP [112].

The effects on GM-related metabolites

In this term, Qiu et al. [113] used gas chromatography to
measure levels of SCFAs from 55 individuals, including
patients with GC-induced obesity, and age- and gender-
matched healthy controls. The result revealed that the over-
all content of SCFAs in GCs-induced obesity group tended
to be lower than that of healthy control. Correspondingly,
they observed that propionate and butyrate also decreased
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dramatically in that group. Zhang et al. [114] revealed that
the treatment of prednisone altered the profile of fecal metab-
olites in the rats, and the changed fecal metabolites included
SCFAs, fatty acids, amino acids, organic acids, benzenoids,
and phenylpropanoic acids. Collectively, 11 down-regulated
and 10 up-regulated metabolites were identified based on a
volcano plot and a variable importance in projection analy-
sis. In details, decreased metabolites included valeric acid,
propanoic acid, isobutyric acid, isovaleric acid, caproic
acid, hydrocinnamic acid, 2-phenylpropionate, phenylacetic
acid, orthohydroxyphenylacetic acid, acetoacetic acid, and
ethylmethylacetic acid. On the contrary, phenyllactic acid
(PLA), hydroxyphenyllactic acid (OH-PLA), homovanil-
lic acid, m-aminobenzoic acid, malonic acid, succinic acid,
methylmalonic acid, 2-hydroxy-3methybutyric acid, L-tryp-
tophan, and L-phenylalanine (PAH) increased significantly.
Moreover, the pathway analysis suggested that differential
metabolites were enriched in pathways, including the pheny-
lalanine metabolism, butanoate metabolism, and propanoate
metabolism. In the survey conducted by Marazzato et al.
[115], the metabolomic analysis of SCFAs showed that early

rheumatoid arthritis (ERA) patients presented significantly
decreased propanoic acid levels at baseline compared to
controls. Such differences persisted after standard admin-
istration (methotrexate plus GC) to the ERA group but the
tendency to increase.

The effects of oxidative stress

Oxidative stress, which is induced by the excessive reac-
tive oxygen species (ROS) production and/or an impaired
antioxidant system, has been revealed as an underlying
mechanism for loss of bone mass and quality [116]. ROS
includes the superoxide anion (O, "), hydroxyl (HO"), singlet
oxygen (102), and hydrogen peroxide (H,0O,) [117]. They are
highly reactive molecules formed upon incomplete reduc-
tion of oxygen during the aerobic metabolism [118]. GC
has been reported to induce ROS generation, activating
the PKCp/p66shc/INK signaling cascade, leading to apop-
tosis. In response to ROS, the activity of forkhead box O
(FoxO) is spontaneously enhanced, along with inhibited Akt
phosphorylation and attenuated osteoblastogenesis [119].
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Supraphysiologic GC disturbs the balance between free radi-
cal generation and the scavenging activities of intracellular
antioxidants, which results in oxidative stress [44]. There
is currently enough evidence that oxidative stress and the
development of OP go hand in hand. Excessive GC induces
oxidative stress due to the production of enormous oxidants,
leading to the apoptosis of osteoblasts [120]. The upregula-
tion of GC could physiologically indicate increased stress
levels, which may alter bone homeostasis, which induces
osteoblast injury by triggering JNK phosphorylation medi-
ated the production of ROS [121]. Overproduction of ROS
also promotes lipid peroxidation leading to bone loss by
inhibiting bone formation [122]. Rai et al. [121] deline-
ated that compound Se (a BMP2 secretagogue) activated
the NRF2 signaling to counter the disturbed cellular redox
homeostasis and escalate the osteoblast survival. On the
other hand, 5e increased ALP, mineralization activity, and
promoted osteoblast differentiation by activating WNT/f-
catenin signaling in BMP2-dependent manner, which ame-
liorated the GC-induced oxidative stress in osteoblasts. Hua
etal. [119] reviewed that connexin hemichannel opening was
increased under oxidative stress conditions, which confered
a cell protective role against the oxidative stress-induced cell
death. Oxidative stress acts as a key contributor to the GIOP,
and impairs osteocytic network and connexin gap junction
communication [123, 124]. Lee et al. [125] reported that the
elevated levels of oxidative stress may increase bone resorp-
tion by promoting osteoclastogenesis and inhibiting osteo-
genesis and ginkgolide B (GB), a small natural molecule
from ginkgo biloba, possesses pharmacological activities
by regulating the ROS in GIOP. In female mice with GIOP
models, the oral gavage of GB significantly improved bone
mass consistent with the increase in the OPG-to-RANKL
ratio.

Potential approaches for prevention
and treatment of GIOP from perspectives
of GM and its metabolites

Recent researches underscore the emerging role of the
GM and metabolites in the treatment of OP [126, 127].
Warmth enhances bacterial polyamine biosynthesis, result-
ing in higher total polyamine levels in vivo and spermidine
supplementation can increase bone strength. The warmth
exposure (34 ‘C) protects against OVX-induced bone loss
by increasing the trabecular bone volume, connectivity
density, and thickness, leading to improved biomechanical
bone strength in adult female, as well as in the young male
mice [1]. Probiotics, which are microorganisms conferring
a health benefit to the host when administered in adequate
amounts, are present in fermented dairy products and some
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vegetable-derived food such as sauerkraut and kimchi [128,
129]. Modification of the GM by ingesting probiotics could
be a viable therapeutic strategy to regulate bone metabolism
under various conditions that result in the bone loss and
OP [130, 131]. Prevotella histicola could prevent estrogen
deficiency-induced bone loss via the GM-bone axis in post-
menopausal women, which may serve as a therapeutic agent
or target for OP [132]. The intervention of dietary chon-
droitin sulfate calcium complex (CSCa) has potentials to
alleviate the OP and OP-related symptoms probably involv-
ing GM or metabolite profiles as demonstrated in rats [28].
Arecanut seed polyphenol-ameliorated OP by altering GM
via lysozyme and immune system in estrogen deficiency rats
[133]. FMT, which refers to the transplantation of GM from
healthy donors to recipients with GM imbalance, so that the
GM in recipients can be reshaped and play a normal func-
tion, and further prevent or treat the diseases related to the
GM disorder. As a novel “organ transplantation” technique,
it can be as a promising treatment option for the OP [50, 88].
Besides, exercise could enrich the abundance and diversity
of GM, improve proportion of Firmicutes and Bacteroi-
detes, induce the proliferation of beneficial microbiota, and
improve the function of intestinal mucosal barrier, thereby
further modulating the bone metabolism [83, 134, 135].
Currently, the individuals are trying to treat GIOP from
the perspectives of GM and its metabolites. Current thera-
pies for OP treatment by inducing osteoblast activity (such
as parathyroid hormone treatment), or inhibiting osteoclast
function (such as treatment of bisphosphonates), have cer-
tain limitations [136, 137]. Due to complex compositions
of bioactive substances in natural products and its possible
synergistic effects, natural product-derived alternatives for
OP therapy are becoming more and more popular. Li et al.
[9] reported that TBP alleviates GIOP via the coregulation
of NF-kB and Wnt/B-Catenin signaling pathways and the
modulation of composition of GM and metabolism, enhanc-
ing the abundance of anti-inflammatory bacteria and SCFAs
producers. The GC treatment increased the abundance of
Bacteroidetes and Proteobacteria and decreased Firmi-
cutes, whereas TBP aggravated the alterations in Bacilli
and Clostridia induced by GC and restored the abundance
of Actinobacteria. In terms of effects of TBP on the produc-
tion of SCFAs in feces, the contents of acetic, propionic, and
n-butyric acids in feces were reduced in the model group and
increased dose dependently after treatments with different
dosages of TBP. Liu et al. [2] investigated APS-modified
GM and the potential key bacteria to alleviate OP, as well
as its relationship with improved OP. They demonstrated
the anti-osteoporotic function of APS with restored BMD
and repaired bone microarchitecture in a dexamethasone-
induced OP rat model. In APS-treated rats, analysis on the
bacterial community revealed that the structure of GM was
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dramatically altered by APS, and the bacteria (c_Bacte-
roidia, p_Bacteroidetes, and g_Allpprevotella) could serve
as biomarkers for APS-improved OP. In addition to this
result, five genera (uncultured_bacterium_f_Ruminococ-
caceae, Alloprevotella, Ruminococcaceae_UCG-014, Blau-
tia and Lactobacillus) were inferred as the key bacteria in
APS-improved OP. Researches of GM change accordingly
in various food and nutritional conditions which provide a
basic knowledge for the future investigations of how interac-
tions between the food components and GM may influence
or even determine human health and disease [138-140].
Accordingly, Yun et al. [141] reported that bovine colos-
trum-derived exosomes (BCE) can delay the progress of
GIOP and change the GM in GIOP mice. Osteoporotic
mice fed a high BCE exhibited higher BMD and the percent
of bone volume than the osteoporotic mice not fed BCE,
indicating that BCE ingestion significantly prevented GIOP.
Based on the heat map, the relative abundance of Lactobacil-
lus and Bacteroides in PDS group was decreased more than
that in the Sham group, but that decrease was significantly
reversed by the intake of BCE. Moreover, GIOP increased
Firmicutes and Deferribacteres, whereas Bacteroidetes were
decreased. The increased Deferribacteres and Bacteroidetes
in PDS group was significantly decreased by BCE. Schepper
et al. [10] conducted an experiment with adult C57BL/6 J
male mice, revealing that probiotic Lactobacillus reuteri
6475 supplementation prevents GC-induced bone loss.
Moreover, the composition of GM was significantly differ-
ent between the groups when examined at the level of OTUs,
and the GC-induced bone loss was transferable by FMT.
Wang et al. [142] presented that GM diversely changed in
GIOP rats and Daphnetin treatment ameliorated this disor-
der effectively. PCoA plot indicated that the main compo-
nents of GM in DEX group differed from the control group,
while H-Daph treatment narrowed the difference between
the GIOP rats and control rats. In addition, the expressions
of Clostridiales_vadin_BB60_group and Peptostreptococ-
caceae were all up-regulated, while the expression of Bac-
teroidales_RF16_group was down-regulated in GIOP rats,
while the treatment of H-Daph restored the expressions of
these bacterium. Pan et al. [143] systematically analyzed
metabonomic characteristics of GIOP rats and elucidated
the therapeutic effects of Epimedium (a common kind of
traditional Chinese medicine), using a 'H NMR-based meta-
bonomic approach in conjunction with multivariate data
analysis. They observed that GC led to the metabolic dis-
orders of GM and an increase on phenylalanine. Compared
with GIOP rats, the concentration of phenylacetylglycine (a
metabolic product of phenylalanine from the GM) decreased
in the Epimedium group, indicating that Epimedium had
effects on metabolism of phenylalanine and improved the
status of GM.

Conclusions and perspectives

GC is widely and successfully used in a variety of inflam-
matory conditions as an immunosuppressive agent, despite
the long-term or high-dose use of GC is associated with
detrimental effects on bone, leading to GIOP and increased
fracture risk. With the increasing understanding of GM-
host interactions in recent years, the involvement of GM
has become an ingenious and non-negligible way to regu-
late the host health. The apparent association between the
GM and bone metabolic processes suggests that the char-
acterization and identification of GM features may have
great clinical potential. Based on the proven regulatory
effects of GC on GM, as well as GM on OP, the pivotal
contribution of GM in maintaining the balance between
the bone formation and bone absorption in the GIOP has
become a research hotpot. Amount of clinical and animal
researches indicated the beneficial effects of probiotics,
prebiotics, traditional Chinese medicines, and bioactive
substances derived from natural products on the treatment
of GIOP. On this basis, we should also focus on whether
GM plays a modulatory role in primary OP and GIOP
via the same mechanisms, and how GM and its metabo-
lites affect primary OP and GIOP through different ways
and mechanisms in the future researches. Over and above,
there are still challenges in translating the applications of
GM from the animal studies to clinical practice, including
the safety, efficacy, duration of use, and methods for mak-
ing rational use in humans. Nonetheless, it is reasonable
to realize that with further research development in the
future, GM and its metabolites may become an impor-
tant target for regulating the bone metabolism, which is
expected to provide a novel approach for the prevention
and clinical treatment of GIOP.
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