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Abstract

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmania-

sis is a major global health challenge that desperately needs new validated drug targets.

Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the

nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent

broad spectrum antileishmanial drug lead. Structural modification provided an alkyne con-

taining chemical probe that labelled a protein within the parasite that was confirmed as cyto-

solic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both

promastigote and intramacrophage amastigote life forms, with no evidence of host macro-

phage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and

parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the para-

site phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular

docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is

able to bind in the putative active site hindering access to the crucial cysteine residue. Col-

lectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.

Author summary

Leishmaniasis is an insect vector-borne parasitic disease. With >350 million people world

wide considered at risk, 12 million people currently infected and an economic cost that

can be estimated in terms of>3.3 million working life years lost, leishmaniasis is a major

global health challenge. The disease is of particular importance in Brazil. Current treat-

ment of leishmaniasis is difficult requiring a long, costly course of drug treatment using

old drugs with poor safety indications requiring close medical supervision. Moreover,

resistance to current antileishmanials is growing, emphasising a major need for new drug
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targets. In earlier work we had identified a naturally inspired chalcone which had promis-

ing antileishmanial activity but with no known mode of action. In this work we use an

analogue of this molecule as an activity based probe to identify a protein target of the chal-

cone. This protein, cTXNPx, has a major role in protecting the parasite against attack by

reactive oxygen species in the host cell. By inhibiting this protein the parasite can no lon-

ger survive in the host. Collectively this work validates cTXNPx as a drug target with the

chalcone as a lead structure for future drug discovery programmes.

Introduction

The leishmaniases are a complex group of vector-borne diseases caused by protozoan parasites

of genus Leishmania. Endemic in over 98 countries, placing in excess of 1 billion people at risk

of infection [1, 2] and with an economic burden best represented by more than 2.4 million

DALYs (disability-adjusted life years), leishmaniasis is considered by the WHO as one of the

most important neglected tropical diseases [3]. Clinical manifestations vary according to the

parasite species and the host immunological status [4]. These range from the more benign skin

ulcers in cutaneous leishmaniasis (CL) to visceral leishmaniasis (VL), which infects the spleen,

liver, and bone marrow and it is fatal in more than 95% of untreated cases [4]. With no human

vaccine available, treatment relies on chemotherapy and the current pharmacopeia is reliant

on a limited number of drugs: pentavalent antimonials, amphotericin B, pentamidine, miltefo-

sine and paramomycin [5]. All of these possess drawbacks, including poorly-defined modes of

action, invasive routes of administration, severe side effects, variable efficacy, high cost and

growing resistance [6]. With approximately 1 million new cases of CL and 90,000 cases of VL

each year worldwide, there is a major unmet need to develop new broad-spectrum chemother-

apies based on new validated drug targets [7].

Chalcones have been described as a potential new class of antileishmanials. More than 300

chalcones have reported activity against Leishmania parasites [8–10]. We have previously

reported the selective antileishmanial activity of a natural chalcone 2’,6’-dihydroxy-4’-methox-

ychalcone (DMC) 1a (Fig 1) extracted from the pepper plant Piper aduncum [11]. Subsequent

synthetic refinement afforded the nitro-chalcone, 3-nitro-2’-hydroxy-4’,6’-dimethoxychalcone

(CH8) 1b [12], which showed strong and selective anti-parasite activity in vitro and in vivo
against both Leishmania amazonensis and Leishmania infantum [13–16]. Despite those prom-

ising results, further enhancement to activity were challenged by the fact the mechanism of

action of CH8 1b remained to be elucidated. In this report, through a combination of chemi-

cal, molecular and cellular biology, we describe the use of a CH8-derived chemical probe 1c

(3-nitro-2’,4’,6’- trimethoxychalcone, NAT22) to identify the cytosolic enzyme tryparedoxin

peroxidase (cTXNPx) as a target for chalcones in a range of Leishmania species. Additionally,

we demonstrated that the interaction between the chalcone and cTNXPx inhibits the capacity

to detoxify reactive oxygen species (ROS) leading to parasite death. As such, this study demon-

strates that this parasitic specific protein has significant potential as a drug target for the future

treatment of leishmaniasis.

Experimental

Analogues and probe synthesis

Details concerning the chemical synthesis and compound characterization are described in the

Supplementary Information (S1 Text).
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Anti-promastigote activity

Promastigotes of L. amazonensis (strain MHOM/BR/75/Josefa, 5 x 105/mL), L. braziliensis
(strain MHOM/BR/75/M2903, 2 x 106/mL) and L. infantum (strain MHOM/MA67IT-

MAP263, 2 x 106/mL) at the logarithmic phase of growth, were incubated at 26˚C with differ-

ent concentrations of compounds 1c, 2 and 3 for 72 h in M199 medium containing 5% of heat

inactivated fetal bovine serum (HIFBS), 0.2% hemin (Sigma-Aldrich), 100 μg/mL streptomy-

cin and 100 UI/mL penicillin (Sigma-Aldrich). Parasite viability was assessed in the last four

hours of culture by Alamar blue (ThermoFisher Scientific). The concentrations that reduced

cell viability by 50% (EC50) were calculated by non-linear regression analysis using GraphPad

Prism 7 software.

For mutant cell lines, promastigotes of L. mexicana T7 Cas9 (Parental), Δ1040, Δ1160 and

ΔcTXNPx (2 x 106/mL), were incubated at 26˚C with different concentrations of compounds

1c for 48 h in Schneider’s medium (Sigma-Aldrich) containing 10% of heat inactivated fetal

bovine serum (HIFBS), 100 μg/mL streptomycin and 100 UI/mL penicillin. Parasite viability

and EC50 values were assessed as described above.

Anti-amastigote activity

Bone marrow-derived macrophages (BMDM) were differentiated from BALB/c mouse bone

marrow [17] and plated at 5 x 105/well in 24-well culture plates onto circular glass coverslips in

RPMI medium containing 10% of HIFBS at 37˚C/5% CO2 for 24 h. Then the macrophage

monolayers were infected with L. amazonensis promastigotes (5 x 106/well) at 34˚C for 4 h.

After removal of free parasites by washing with phosphate buffered saline (PBS), the cells were

Fig 1. Chemical structures of compounds 1–4.

https://doi.org/10.1371/journal.pntd.0009951.g001
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cultured at 37˚C for further 24 h for parasite differentiation into amastigote forms. Infected

cells were treated with different concentrations of compounds 1c, 2 or 3 for 48 h, washed with

PBS and stained with Panotic stain (Newprov, Brazil) according to manufacturer instructions.

At least 200 macrophages/coverslip and their intracellular amastigotes were counted at 400x

magnification for the determination of EC50 values as described above.

Macrophage cytotoxicity

Uninfected BMDM were treated as above for infected cells. At the end of the 48 h incubation

time, the specific release of the cytoplasmic enzyme lactate dehydrogenase (LDH) in culture

supernatants was measured using a commercial assay kit (Doles, Brazil), as previously

described [15]. CC50 values were calculated as described for EC50 values. The selectivity index

(SI) for each compound was calculated as the ratio between macrophage cytotoxicity (CC50)

and anti-amastigote activity (EC50).

Mouse infection and oral treatment with chalcone 1c

All animal studies were approved by the Animal Care and Use Committee of the Health Sciences

Center of the Federal University of Rio de Janeiro, Brazil, under the protocol number CEUA 030/

17. All animal experiments were conducted in compliance with the principles stated in the Guide
for the Care and Use of Laboratory Animals, 8th Edition.[18] BALB/c mice were randomly distrib-

uted into groups of 5 and intradermally infected in the right ear pinna with 2 × 106 L. amazonensis
promastigotes at stationary phase of growth [16]. One week after infection, animals were orally

treated daily for 3 weeks by intragastric gavage with compound 1c (40 mg/Kg/day) in propylene

glycol (PPG) vehicle. Untreated controls received PPG vehicle alone. For clinical follow-up, ear

thicknesses were periodically measured using a calliper gauge. For parasite burden, on day 30 of

infection, the individual ear tissue homogenates were assayed by limiting dilution (LDA) [15].

Animal sample size was estimated by a power-based method using the following assumptions: α
= 0.05, 1 − β = 0.9, and standard deviation 20% of mean for two groups [19].

Intracellular chalcone distribution by confocal microscopy

L. amazonensis promastigotes (1 x 106/mL) were incubated with compound 2 (5 μM) at 26˚C

in 1 mL of medium M199 for 5 h at 26˚C. At the end of incubation time cells were washed 3

times with PBS, fixed with 4% of paraformaldehyde and permeabilized with 0.1% saponin in

PBS for 5 min at room temperature (RT). Fixed/permeabilized parasites were then subjected

to cycloaddition reaction (CuAAC) by incubation with fluorescent ‘trifunctional’ probe 4 (Fig

1; 5 μM) in the presence of CuSO4 (1 mM), sodium ascorbate (2 mM) and tris-hydroxypropyl-

triazolylmethylamine (THPTA, 2 mM) for 1h at room temperature. Then, cells were incubated

for 15 min with Hoechst 33342 (8 μM) for nucleus and kinetoplast labelling. Cells were washed

with PBS, placed onto microscope slides and imaged using confocal microscope (Leica

TCS-SPE) at 63x (ACS APO 63x 1.30 oil objective) in the Hoechst (350 / 461 nm), TAMRA

(555 / 580 nm) wavelengths and DIC (Differential interference contrast).

Intracellular protein tagging by SDS-PAGE and Western blotting

L. amazonensis promastigotes (6 × 107/mL), BMDM (2 x 106/well) and amastigotes isolated

from infected macrophages [20], were treated with compound 2 (1 μM and 5 μM) for 4 h at

27˚C (promastigotes) or 37˚C (BMDM and amastigotes). Then, cells were washed twice with

cold PBS, lysed by sonication in lysis buffer (1% sodium deoxycholate, 0.5% SDS, 50 mM Tris

pH 7.4, 150 mM NaCl) containing EDTA-free protease inhibitor cocktail (Sigma-Aldrich).
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Proteins were precipitated with acetone (4 volumes at −20˚C for 1 h), and quantified using

Bicinchoninic Acid Kit (BCA1, Sigma Aldrich) according to manufacturer’s protocol.

For competition assay, promastigotes (6 × 107/mL) were incubated with 1c at different con-

centrations (1, 3, 9, 27 μM) for 4 h, washed twice with PBS, followed by incubation with 2

(1 μM) for additional 4 h in M199 medium at 26˚C. Cells were then lysed, and parasite pro-

teins precipitated and quantified as above.

For unidimensional electrophoresis (SDS-PAGE), proteins (1 mg/mL) were incubated with

compound 4 (5 μM), CuSO4 (1 mM), sodium ascorbate (2 mM) and THPTA (2 mM). The

click reaction was carried out for 1 hr at RT, then quenched by addition of 4x SDS-PAGE sam-

ple buffer with 50 mM of DTT (Bio-Rad). Proteins were then heated for 5 min at 95˚C, run in

10% SDS-PAGE, and gel images taken at Gel Doc XR imager (Bio-Rad) using Comassie Blue

and Oriole filter (270 / 604 nm) for compound 4 fluorescence detection. 2D electrophoresis

analyses were performed as described by Higa et al [21].

Protein identification by mass spectrometry

Proteins from promastigotes treated with 2 and linked to 4 were separated by unidimensional

SDS-PAGE as above. The gel section of interest (~22 kDa) was manually excised and incubated

overnight with 25 mM NH4HCO3 in 50% acetonitrile to remove the stain. Then proteins were

reduced for 1h at 56˚C with 10 mM DTT (USB Corporation), alkylated for 45 min at room

temperature with 55 mM iodoacetamide and digested by trypsin (modified sequencing grade;

Promega) solution (0.01 μg/μL in 25 mM NH4HCO3) overnight at 37˚C. Generated peptides

were extracted with 5% trifluoroacetic acid (TFA) and 50% acetonitrile, followed by concentra-

tion in a Speed-Vac system. Each sample was then solubilized in 20 μL 0.1% formic acid and

3% acetonitrile in deionized water. The mass spectrometry analyses were performed as

described previously [22]. In brief, the peptides were first desalted on-line using a Waters Sym-

metry C18 trap column, loaded on a Waters Nanoacquity UPLC system (Waters, Milford,

MA) and finally sprayed into a Q-Tof quadrupole/orthogonal acceleration time-of-flight spec-

trometer (Waters, Milford, MA) interfaced with the Nanoacquity system capillary chromato-

graph. The exact mass was determined automatically using the Q-Tof LockSpray (Waters,

Milford, MA). Data-dependent MS/MS acquisitions were performed on precursors with

charge states of 2, 3 or 4 over a range of 50–2000 m/z and under a 2 m/z window.

Production and purification of recombinant cTXNPx

Expression plasmid pPOPINF containing ORF for cTXNPx from L. amazonensis
(AY842247.1) tagged with N-terminal 6xHIS-tag was transformed into BL21 (DE3) competent

cells (Agilent Technologies). One litre LB-ampicillin cultures were induced to express recom-

binant protein by addition of 1M isopropyl β-D-1-thiogalactopyranoside (IPTG). After 20 h of

incubation at 30˚C, cells were pelleted and resuspended in 50 mL of lysis buffer (20 mM Tris-

HCI pH 7.5, 500 mM NaCI, 30 mM imidazole and 2 mM β-mercaptoethanol) with one tablet

of Sigma-Fast protease inhibitors (Sigma-Aldrich). Cell pellets were further lysed by sonication

and proteins were purified using His-tag affinity chromatography (HisTrap HP-1 mL column,

GE healthcare). The cTXNPx peak fractions were pooled and concentrated to approximately 1

mg/mL as determined spectrophotometrically using a NanoDrop at 280 nm.

Chalcone and recombinant cTXNPx interaction by SDS-PAGE, LC-MS/MS

and TSA

For SDS-PAGE analyses, cTXNPx (50μM) was incubated with different concentrations of

compound 1c (5, 50, 500 μM) for 1 h, followed by incubation with compound 2 (50 μM) for an
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additional 1 h. The protein was then submitted to a click reaction with compound 4 (50 μM)

as described above and analysed by SDS-PAGE.

For liquid chromatography–mass spectrometry (LC–MS/MS), cTXNPx (1 mg / mL) was

incubated with compound 1c or 3 (1:1) and desalted using Waters MassPrep desalting car-

tridge. Then, intact proteins were analysed in UPLC system in tandem to LCT premier

Acquity (Waters), as described above. Mass operating range was 100–2000 units, protein data

was processed using Masslynx 4.1 and deconvoluted using MaxEnt 1 to show the nominal neu-

tral mass of the protein. For thermal shift assay (TSA), 10 μL of cTXNPx (1 mg / mL) in 20

mM HEPES buffer, pH 6.9, 50 mM NaCl and 5 mM DTT were incubated with compound 1c

or 3 at different ratios for 30 min. Then, proteins were transferred into 48-well PCR plates con-

taining 10 μL of SYPRO Orange in water. Fluorescence data were collected using SYPRO

Orange wavelengths, 472 / 570 nm on a StepOne qPCR machine (Thermo Fisher Scientific).

Raw data was analyzed using NAMI software and Protein Thermal Shift software 1.3 (Thermo-

Fisher Scientific) to calculate the derivative curve determined Tm values and to compare ΔTm

values of different ligands [23, 24].

Molecular modeling

In the absence of a three-dimensional X-ray crystal structure of cTXNPx from L. amazonensis
(LaTXNPx), homology modeling was employed based on the L. major crystal structure of the

TXNPx homodecamer [25]. The two proteins are highly homologous with a sequence identity

of 89%. The template search, selection, model building and quality estimation were conducted

altogether with the SWISS-MODEL server [26].

To investigate the binding mode of compound 1a, 1b, 1c and 3, respectively within

LaTXNPx, we performed molecular docking studies using the flexible docking approach

GOLD [27]. First, the three-dimensional structures of ligands were built and optimized using

the Molecular Mechanics Force Field (MMFF)[28] on Spartan’18 software (Wavefunction Inc,

2012) [29]. The protein model was prepared with GOLD with all H-atoms added and charges

balanced. The search space was optimized to a radius of 10 A around the peroxidatic cysteine

residue Cys 52. The docking process involved high accuracy settings first with GoldScore and

rescoring with ChemScore, 30 genetic algorithm runs, and high ligand flexibility. The range of

ChemScore fitness was 1.6 to 19.3 (1a),1.9 to 14.6 (1b), -1.6 to 17.4 (1c) and -14.4 to 14.8 (3).

The best binding pose was identified as the solution with the highest ChemScore fitness value.

All figures were created with PyMol (Schrodinger, LCC, 2010, The PyMol Molecular Graphics

System, Version 2.1).

CRISPR-Cas9 cTXNPx gene knockouts

cTXNPx genes deletion was performed as described in Beneke et al [30]. The online primer

design tool www.LeishGEdit.net was used to design primers for amplification of the 50 and 30

sgRNA templates and for amplification of donor DNA from pT plasmids (S3 Table). L. mexi-
cana Cas9 T7 promastigotes [30] (1 x 107/mL), previously kept in the presence of nourseothri-

cin sulphate (50 μg/mL) and hygromycin B (32 μg/mL), were transfected with 10 μg of each

respective donor DNA and sgRNAs using 2 mm gap cuvettes (MBP) with program X-001 of

the Amaxa Nucleofector IIb (Lonza Cologne AG, Germany).

Following transfection, parasites were transferred into 5 mL prewarmed medium in 25 cm2

flasks and left to recover overnight at 26˚C. Then limiting dilution, in the presence of appro-

priate selection drugs, was used to generate clonal tagged cell lines. First, KO parasites for both

copies of each gene were selected using different markers, LmxM.15.1040 KO (Δ1040) was

selected with blasticidin-S deaminase (10 μg/mL), while LmxM.15.1160 KO (Δ1160) selected
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with puromycin dihydrochloride (20 μg/mL). Survival of selected transfectants became appar-

ent 7–10 days after transfection. Deletion of both copies for each gene was confirmed by PCR

(S9 Fig). Using the Δ1160 cell line, the remaining gene (LmxM.15.1040) was excluded through

a new round of transfection using a neomycin resistance gene as the repair cassette. The final

cell line, cTXNPx KO (ΔcTXNPx) was selected with G-418 disulfate (40 μg/mL).

Diagnostic PCR for knockout verification

Genomic DNA of drug-selected clones was isolated with Wizard Genomic DNA Purification

Kit (Promega). To assess the loss of the target gene ORF and the presence of donor DNA in

putative KO lines and the parental cell lines, a diagnostic PCR was performed using GoTaq G2

DNA Polymerase (Promega), within 100ng of gDNA as template and forward primer and

reverse primer for each ORF or resistance gene.

The PCR conditions were 2 min at 95˚C followed by 35 cycles of 30 s at 95˚C, 45 s at 60˚C,

1 min 72˚C, and a final extension step of 5 min at 72˚C. The presence of expected amplicon

was confirmed by 1% agarose gel. Primer sequences are detailed in Supplementary Materials

in S4 Table.

Mutant cell growth

Promastigotes of L. mexicana T7 Cas9 (Parental), Δ1040, Δ1160 and ΔcTXNPx, at the second

passage, were cultured at 26˚C in Schneider’s medium supplemented with 10% HIFBS, and

the number of parasites was counted daily for four days using a Neubauer chamber. On day 3

of culture, parasite aliquots were placed onto microscope slides and cells imaged using fluores-

cence microscope (Nikon-EclipseTi) with a CFI Plan Apo Lambda 100X Oil objective and dif-

ferential interference contrast (DIC) module.

Statistical analysis

Single-variance analysis (ANOVA) and t-test were used to compare differences between group

samples followed by Dunett post-test, for comparisons of all groups to control group. For mul-

tiple comparison the post-test used was Bonferroni. All statistical analyses were performed

using GraphPad Prism 7 software and differences were considered significant when p� 0.05,

in a number of at least 3 independent experiments.

Results

Chemical tools for chalcone target identification

Whilst CH8 (1b; Fig 1) showed good activity, drug development was challenged by a difficult

synthesis in which flavone formation accompanied aldol condensation. Consequently, a tri-

methoxylated analogue NAT22 (1c; Fig 1), that could be prepared far more efficiently through

simple aldol condensation of the commercially available trimethoxyacetophenone with

3-nitrobenzaldehyde, was used as the parent chalcone [31]. Importantly, this showed similar

anti-leishmanial activity to chalcone CH8 (1b) in vitro and in vivo against L. amazonensis [31].

The highly electrophilic enone functional group within CH8 was predicted to be key to

activity [32]. This hypothesis was verified by the lack of a significant antileishmanial effect of

dehydrochalcone analogue (3) (Fig 2A). To further investigate the mode of action, chalcone 1c

was converted into an activity-based probe 2 (S1 Fig). Briefly, commencing from commercially

available 2,6-dimethoxyacetophenone, regioselective tandem Ir-catalysed C-H borylation—

oxone oxidation followed by alkylation with 6-bromohex-1-yne and aldol condensation

afforded the alkyne tagged chalcone probe 2. This modification did not alter the intrinsic
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chalcone activity against the promastigote parasite, with EC50 values (L. amazonensis 0.42 μM,

L. braziliensis 1.45 μM and L. infantum 0.78 μM) comparable to compound 1c (Fig 2A–2C).

To interrogate the mechanism(s) by which chalcone 1c is able to kill Leishmania spp., live

parasites were incubated with compound 2 (5 μM) and, following conjugation with the tri-

functional reagent 4 [33, 34], visualized by confocal microscopy (Fig 3A). The images obtained

indicated that the chalcone is widely dispersed in the parasite but is excluded from the nucleus.

To further investigate this localisation, promastigotes were lysed, and the soluble protein frac-

tion treated with 2 and then 4, as above. SDS-PAGE analysis revealed a fluorescent protein

band at about 22 kDa (Fig 3B). Competitive dosing with chalcone 1c led to a reduction in

labelling of this band in concentration-dependent manner (Figs 3C and S2). The labelled band

was excised from the gel, digested and the tryptic peptides analysed by LC–MS/MS. The com-

parison of these peptide sequences with the reported genome for L. amazonensis [35], revealed

10 candidate proteins (S3 Fig and S1 Table). Comparison of molecular masses for these sug-

gested that cytosolic tryparedoxin peroxidase (cTXNPx, NCBI entry: AAX47428.1) as the pre-

dominant chalcone target (Figs 3D and S3). Two-dimensional gel analysis followed by mass

spectrometry (S4 Fig and S2 Table) and immunoblotting analysis with anti-cTXNPx which

also indicated that cTXNPx was also labelled by chalcone 2 in intracellular amastigotes with no

signal being observed in uninfected macrophage samples (S5 Fig).

Chalcones can form a strong and stable interaction with cTXNPx

To further explore the interaction between cTXNPx and antileishmanial chalcones, L. amazo-
nensis cTXNPx (LaTXNPx) was expressed recombinantly in E. coli, purified and subsequently

Fig 2. In vitro and in vivo antileishmanial activity. (A) In vitro activity: Promastigotes of the indicated Leishmania
species; intracellular amastigotes of L. amazonensis, and uninfected macrophages were incubated with different

concentrations of 1c, 2 and 3 for 48 h. Then, cell viability was assessed as described in M&M for determination of EC50

and CC50 for parasites and macrophages, respectively. In vivo efficacy: Mice were infected in the ear with L.

amazonensis. Seven days after infection, were given chalcone 1c (40 mg/Kg) or vehicle alone (100 μL of propylene

glycol) daily for 3 weeks by intragastric gavage. (B) Ear thicknesses were measured in the indicated days with a digital

caliper. Lesion sizes were the difference between infected and noninfected ears in each time point. (C) Ear parasite

loads were determined by limiting dilution assay. Means ± SD (n = 5 animals/ group). �P< 0�05 in relation to Vehicle.

NT- Not tested.

https://doi.org/10.1371/journal.pntd.0009951.g002
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incubated with 2. SDS PAGE analysis following cycloaddition reaction with 4 (50 μM) showed

a labelled band at 24 kDa (Fig 4A, L3). As observed for the live parasites, incubation with 1c

inhibited the binding of 2 and the subsequent fluorescent signal of this band in a concentration

dependent manner (Fig 4A). Thermal shift assay (TSA) revealed that binding of 1c led to a

reduction in Tm in a dose dependent manner (Fig 4B) indicative of a significant degree of

destabilisation of protein structure [36]. Mass spectrometric analysis of cTXNPx treated with

chalcone 1c revealed a new peak at 24368 Da [24025 + 343] (Fig 4C and 4D), corresponding to

a stable protein chalcone adduct that suggested that this interaction is based on a strong and

stable interaction, very likely a covalent bond. Similar observations could be made using

recombinant cTXNPx from L. major (LmTXNPx) incubated with compound 1c (S6 Fig). The

degree of labelling is only partial and attempts to drive this to higher levels through longer

incubation times were not successful. Evidence that this interaction is necessarily dependent

on the enone group, was demonstrated through the use of dehydrochalcone 3. Using the same

sequence of experiments, this compound, even at high concentrations (180 μM—4:1 (ligand:

protein)) was not able to affect protein Tm values (Fig 4B) or lead to any evidence for a labelled

protein by mass spectrometric analysis (Fig 4E).

Chalcone 1c leads to ROS accumulation in parasites

cTXNPx belongs to the highly-conserved 2-cysteine peroxiredoxins that have a key role in the

protection of the cell from hydroperoxides and peroxynitrites [25, 37]. Collectively, our results

suggested that, in Leishmania parasites, compound 1c binds to and inhibits cTXNPx, leading

to ROS accumulation and cell death. To confirm this hypothesis, L. amazonensis promastigotes

were incubated with 1c or 3, and ROS production measured by fluorimetry using H2DCFDA

(2,7-dichlorodihydrofluorescein diacetate) (S7A and S7B Fig) [38]. Compound 1c led to a

decrease in the number of parasites in a concentration dependent fashion with parasite killing

being accompanied by ROS accumulation (S7A Fig). In contrast, the dihydrochalcone 3,

resulted in a lower parasite killing and, even at higher concentrations, no significant increase

in ROS accumulation (S7B Fig). Similarly, in infected, but not in uninfected, macrophages 1c

was able to induce ROS accumulation whilst 3 was unable to affect ROS levels in either

infected or uninfected macrophages (S7C and S7D Fig). Importantly, the lack of a response on

uninfected macrophages to treatment with 1c or 3 indicated that the increased ROS levels

were attributable to intracellular amastigotes (S7D Fig).

Chalcones bind in the cTXNPx active site

To better understand the molecular mechanism of the interaction between the anti-leishman-

ial chalcones and cTXNPx, we examined the interaction by molecular modelling. Using the

amino-acid sequence of LaTXNPx (UniProtKB database, access code Q4VKK8) [39, 40] and

the crystal structure of LmTXNPx [41], which have 89% sequence identity, a homology model

was built using the SWISS-MODEL server.

Fig 3. Intracellular probe binding and identification of cytosolic tryparedoxin peroxidase as protein target. (A) Confocal microscopy of L.

amazonensis promastigotes treated (a5-a8) or not (a1-a4) with 2 (5 uM) for 5 h prior to labelling with red fluorescent probe 4 (5uM) by CuAAC.

(B) In gel fluorescence, detection of proteins from L. amazonensis promastigote lysate pre-treated with 2 (5uM) for 4 h and linked to molecule 4 by

CuAAC. White rectangle- fluorescent band at around 22 kDa. (C) In gel representative fluorescent image of competition assay between molecule

1c and 2. Promastigotes were incubated with molecule 1c (1, 3, 9 and 27 μM) for 4 h, washed, and incubated with 2 (1 μM) for additional 4 h.

Parasites were lysed, and the lysates were incubated with 4 prior to SDS-PAGE (35 μg / lane).Qualitative decrease in fluorescence signal by addition

of increasing amounts of 1c. (D) Identification of cytosolic tryparedoxin peroxidase (cTXNPx) as a best candidate by mass spectrometry analysis of

peptides from excised 22kDa band, by ESI-Q-TOF.

https://doi.org/10.1371/journal.pntd.0009951.g003
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Fig 4. Chalcone impairs the cTXNPx antioxidant effect in the parasite by a stable interaction mediated by enone group. (A) Competition binding assay between

molecules 1c and 2 employing recombinant cTXNPx. Recombinant L. amazonensis cTXNPx was incubated with the indicated concentrations of 1c for 60 min, then

washed, incubated with 2 (50 μM), and linked to 4 by CuAAC. Representative fluorescence gel images signals of 4. (B) protein melting curve from thermal shift assay

of cTXNPx protein incubated with the indicated concentrations of 1c (brown) or 3 (blue). (C-E) MS analysis of interaction between chalcone and cTXNPx. Purified

proteins (0.6 mg/ mL) were incubated or not with compound 1c or 3 (1:1) for 30 min and their molecular weight analysed by MS. (C) cTXNPx of L. amazonensis
[M-Met requires 24025 Da]. (D) cTXNPx of L. amazonensis plus 1 [M-Met+343 requires 24368 Da]. (E) cTXNPx of L. major plus 3 [M-2H-Met requires 24136 Da].

Means ± SD (n = 3 independent experiments). � p<0.05 in relation to untreated cells.

https://doi.org/10.1371/journal.pntd.0009951.g004
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In common with most peroxiredoxins, this LaTXNPx model was obtained in the fully

folded (FF) conformation as a homodecamer (Fig 5A) that can also be described as a pentamer

of dimers (Fig 5B). The active site is formed by the N-proximal peroxidatic cysteine (Cys52)

[42] from one subunit and a C-proximal cysteine from the two-fold symmetry related subunit

(Cys173). These residues form a disulfide bridge in the oxidized state [43]. It is important to

note that all crystal structures, as well as the homology model, are in the reduced form where

the two cysteine residues are approximately 10 Å apart. Docking studies on the reduced homo-

dimer, focussing on the critical Cys52, were performed to investigate possible binding modes

of the chalcones. The dimer interface exhibits a narrow groove at the end of the helix harbour-

ing the active Cys52 where all chalcones can bind as shown for 1a in Fig 5C. The chalcones 1b

and 1c (Fig 5D and 5E) showed a similar binding pose with the phenyl and nitro-phenyl group

on the same side of the tight groove where the enone moiety is located, approximately 7.7 Å
from the sulphur atom of Cys52. Thus, only a relatively small rearrangement is required to

allow the formation of the covalent adduct. This may explain why only partial covalent protein

modification is observed. While compound 3 can also occupy the same pocket as shown in Fig

5F, its binding poses show significantly lower docking scores compared to the chalcones and

the conformation is clearly more strained.

Chalcone antipromastigote activity is dependent on cTXNPx

In order to confirm the cTXNPx enzyme as a chalcone target as well as to examine its impor-

tance for the parasite biology, we generated parasites lacking cTXNPx genes. Due to the avail-

ability of a well described and utilised CRISPR-Cas9 system giving a straightforward way to

delete genes in L. mexicana, we choose this platform to explore these questions [30, 44].

cTXNPx is encoded by two genes (LmxM.15.1040 and LmxM.15.1160), located at chromo-

some 15, sharing 98% and 97% of similarity at the gene and protein level respectively (S8 Fig).

To analyse the potential role of each in parasite fitness and chalcone sensitivity, using sgRNAs

specific for the flanking regions (UTRs) we generated parasites with each gene knockout out

separately. In this experiment LmxM.15.1040 alleles were replaced by a repair cassette encod-

ing the blasticidin resistance maker (Δ1040) and, separately, LmxM.15.1160 by the puromycin

resistance marker (Δ1160). Knockouts for each were selected following cloning and PCR anal-

yses (S9 Fig). Subsequently, using the same approach, commencing from the Δ1160 cell-line,

the remaining gene was replaced by a sequence encoding neomycin resistance to generate a

line in which both LmxM.15.1040 and LmxM.15.1160 were ablated in this diploid parasite

(ΔcTXNPx) (Fig 6A and 6B). The correct integration of the puromycin, blasticidin and neo-

mycin-resistance markers in the cTXNPx locus, and the complete loss of cTXNPx, were con-

firmed by PCR analyses as shown in Figs 6B and S9. No growth defect or morphological

alterations, in comparison to the parental line, were observed when only one cTXNPx gene

(Δ1040 or Δ1160) was deleted (Fig 6C and 6D). However, the absence of both genes

(ΔcTXNPx) caused a severe alteration in parasite growth in comparison to the other lines (Fig

6C) and significant phenotypic alterations when observed by optical microscopy (rounded cell

body and short flagellum; Fig 6D).

To investigate if the specific cTXNPx enzyme is the chalcone target in cellulo, promastigotes

of parental and mutant cell lines (Δ1040, Δ1160 and ΔcTXNPx) were incubated with different

concentrations of compound 1c for 48 h when the parasite viability was assessed using alamar-

Blue (Fig 6E). As expected, compound 1c showed a good activity against the parental line

(EC50 1.04 μM), similar to the values found against other parasite species (Fig 2B). The lack of

one of Δ1040 or Δ1160 cell lines reduced the EC50 2 and 1.6-fold respectively (EC50 1.99 μM

and 1.67 μM; Fig 6E). When both genes were deleted in ΔcTXNPx cell line, the parasite was
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3.8-fold more resistant to the chalcone, with EC50 = 3.87 μM (Fig 6E). Together, these results

indicate that cTXNPx is important for the parasite biology and also likely to represent a major

target of antileishmanial chalcones.

Discussion

Conventional chemotherapy employed in leishmaniasis treatment relies on only a few drugs,

all of which have limitations including cost, toxic side effects, low or variable efficacy that

Fig 5. LaTXNPx 3D model and 3D/2D binding mode of 1c and 3. (A) Ribbon diagram of the cTXNPx homology model. Each chain of the

homodecamer is depicted in a single colour. The decamer can be described of pentamers of functional homodimers. (B) Ribbon diagram of one

dimer with each chain depicted in green and cyan, respectively. The key cysteine residues 52 and 173 are depicted in CPK representation with C-

atoms on grey, O-atoms in red, N-atoms in blue and S-atoms in yellow. Note, that the cysteines are present in their reduced forms. H-atoms are

omitted for clarity. (C) Close-up of the proposed binding site with the highest scoring binding pose of compound 1a depicted in a stick-

representation with C-atoms in grey and O-atoms in red. (D) highest scoring binding pose of 1b (E) 1c (F) 3.

https://doi.org/10.1371/journal.pntd.0009951.g005

Fig 6. Chalcone antiparasitic activity is partially dependent on cTXNPx. (A) Diagrams showing the PCR strategy to confirm the replacement of LmxM.15.1040

with the neomycin (NEO) cassette in the LmxM.15.1160 double KO (puromycin [PUR] cassette; S9 Fig) to create ΔcTXNPx. (B) PCR analysis of the ΔcTXNPx cell

line, PCR products visualized on agarose gels. Coding sequence for LmxM.15.1040 (CDS, grey arrow), puromycin (PUR, blue arrow) and neomycin (NEO, red

arrow) in Parental and ΔcTXNPx cells. (C) Promastigotes were seeded at 1x105 parasites/mL and the number of parasites in culture were counted every day for 4

days using a Neubauer hemocytometer in triplicate from two independent experiments. Cell lines: Parental (black line), LmxM.15.1040 double KO (green line),

LmxM.15.1160 double KO (blue line), and cTXNPx KO (red line) (D) Representative Differential interference contrast micrographs showing all cTXNPx mutant cell

lines analysed in C and E. Scale bar, 5 μm. (E) cTXNPx mutant promastigotes (2x106/mL) were incubated with different concentrations of 1c for 48h. Cell viability

was then assessed by the addition of resazurin solution for 4 h and EC50 values calculated by non-linear regression. Means ± SD (n = 3 independent experiments).

https://doi.org/10.1371/journal.pntd.0009951.g006
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depends on parasite species, difficult modes of administration and growing parasite resistance

[5]. This current scenario clearly points to the urgent demand for new treatments and innova-

tive approaches to control this neglected tropical disease (NTD) which affects more than one

million people worldwide per year [2]. Strategies for the discovery of new drug leads can

broadly be partitioned into target-based and phenotypic approaches [45]. For NTDs such as

leishmaniasis, the latter has become the favoured approach with high-content high-throughput

screening studies being described enabling the broad diversity of structures found in small

molecule and natural product collections to be explored without preconceptions [46, 47].

However, determination of the molecular target and mode of action is then required to facili-

tate further drug development [48–50].

Previously, we described the discovery and development of the synthetic nitro-chalcone 1b

(CH8), to effectively treat both CL and VL in an animal model [13–16]. However, as with

many such studies, despite excellent results against the parasite, the molecular target and

mechanism of action important for the development of new chalcone leads remained

unknown [9]. To address this, we have employed a chalcone derived activity-based chemical

probe (ABPP) based approach, to identify cytosolic tryparedoxin peroxidase (cTXNPx) as a

target of this compound. Whilst ABPP has been employed quite widely in cell biology, applica-

tion to Leishmania spp. is limited [51–57]. Similarly, whilst many bioactive natural products

have been adapted for use as ABPP agents to identify and validate new drug targets [58],

despite being intrinsically electrophilic and therefore able to label a protein target, the use of

chalcones in this context is surprisingly limited [32, 59].

Belonging to the ubiquitous 2-Cys family of antioxidant enzymes that are highly conserved

among trypanosomatids with no direct mammalian orthologue [60], the tryparedoxin peroxi-

dases have key roles in parasite survival and virulence [37, 61]. Their primary function is to

reduce reactive oxygen species (ROS), most notably generated in the oxidative burst that fol-

lows parasite internalisation by macrophages. The ultimate electron donor in this cycle is try-

paredoxin which distinguishes Leishmania, and other kinetoplastids, from most other

eukaryotes, including the mammalian host, where thioredoxin is employed. As such, TXNPx

provides an essential mechanism for trypanosomatids to survive under these conditions of

biotic stress [62, 63]. Moreover, TXNPx has been shown to be a major contributor to the

growth of resistance to many of the existing drugs [64, 65], with over-expression in L. donovani
and L. amazonensis providing protection against oxidative stress from macrophages as indi-

cated by increased parasite infectivity [37, 66].

Reflecting this unique and species-specific role, TXNPx may be considered a potential drug

target [67]. Significantly this hypothesis is supported by our results in which genes encoding

cTXNPx were deleted, leading to parasites with a compromised phenotype. Moreover, the

lower efficacy of the chalcone in these mutants clearly demonstrated the involvement of

cTXNPx in the antileishmanial activity of these nitro chalcones. However, the fact that signifi-

cant activity remains suggests that the chalcones have multiple modes of action that are work-

ing in concert. Significantly, in this context it is pertinent to note that Leishmania spp. possess

two distinct tryparedoxin peroxidases, a mitochondrial and cytosolic form, sharing approxi-

mately 50% similarity at protein level and with a conserved tertiary structure (S8 Fig) [61].

Interaction of the chalcones with the mitochondrial tryparedoxin peroxidase would be consis-

tent with the earlier reports of mitochondrial alterations on treatment with DMC (1a) and

cannot be ruled out at this stage [11]. The fact that no labelling of this second tryparedoxin

peroxidase was detected in our experiments may simply reflect its lower cellular abundance

and the low levels of protein alkylation observed (Fig 4D) in our experiments.

The pull-down experiment reported here is consistent with a model in which the nitro chal-

cone and cTXNPx interplay occurs through a covalent bond, potentially the Michael addition
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of a cysteine thiol with the electrophilic enone group [32, 68]. Similar mechanisms of inhibi-

tion of thioredoxin reductases by chalcones [69] and other Michael acceptors, such as curcu-

mins, cinnamaldehydes, and fungal metabolites [70–72] have been described. This proposal is

supported by our studies with compound 3 where the lack of the α,β-unsaturation resulted in

loss of chalcone interaction with cTXNPx protein in vitro and in situ, and consequently low

antiprotozoal efficacy. However, despite the ability to isolate cTXNPx by pull-down, the label-

ling of the protein is not complete, and we were not able to identify the specific amino acid res-

idues involved in this process. We suggest that this partial labelling is indicative of a two-stage

process involving initial binding of the chalcone into active site followed by a slower non-spe-

cific alkylation event, potentially following disruption of the critical active dimer.

Support for this pathway comes from our molecular modelling and docking studies

which reveal how 1c can access the enzyme active site, fitting between Cys-52 and Cys-

173, and block disulfide bond formation. This orientation of 1c places the electrophilic

carbon of the enone in close proximity (8.0 Å) to the reactive Cys-52 residue. Monitoring

this interaction by thermal shift assay (TSA) revealed that binding of 1c leads to a lower

melting temperature, suggesting that binding was accompanied by a partial unfolding of

the protein [36, 73]. Again, this proposal is supported by the observation that the ‘inactive’

dihydro analogue 3 exhibited less favourable binding in the docking studies and did not

affect protein stability. Consequently, whilst the α,β-unsaturated ketone is essential for

ABPP activity, this suggests that the double bond has a conformational role in inhibition

of enzyme activity. Importantly, this implies that alternative biosteres can be designed to

avoid the potential problems associated with the generic electrophilicity and potential

polypharmacology of the chalcone template.

Based on these findings, we propose a mechanism of action for the nitrochalcones. Chal-

cone 1c is taken up by the macrophage and is able to access the amastigotes. Here, 1c interacts

with cTXNPx, enzyme recycling is impaired and ROS levels, especially H2O2 and ONOO−,

rise within the amastigote leading to apoptosis-like cell death due to oxidative damage to lipids,

proteins and nucleic acids [74–76]. In support of this hypothesis, many indications of apopto-

sis-like cell death, such as mitochondrial damage [11], DNA fragmentation and other morpho-

logical changes have been observed in Leishmania spp. on chalcone treatment.

Collectively, these results demonstrate that the nitrochalcone 1c interacts with cTXNPx

leading to protein deformation and inactivation and ultimately parasite death due to cellular

damage by non-scavenged ROS. Whilst many of the existing antileishmanial drugs, like penta-

valent antimonials, also lead to elevated levels of ROS these effects are non-specific and con-

tribute to the off-target toxicity associated with their use. Moreover, resistance to these

chemotherapies is rising and this can be associated with increased tolerance to ROS. It is there-

fore significant that nitrochalcone 1c targets a parasite specific protein that contributes to this

defence mechanism. As such 1c not only represents a valuable new drug lead, but also poten-

tially enables the design of combination therapies with the added benefits of reducing thera-

peutic dose and related toxic effects, and retarding resistance mechanisms [77, 78]. Studies

towards this goal are in progress and will reported in due course.

Conclusion

In conclusion, this work validates TXNPx as a much-needed drug target for the treatment of

leishmaniasis. Moreover, the chalcone 1c represents a well-defined structural starting point in

the search for new antileishmanials. As such, this work opens a new perspective in the search

for treatments for leishmaniasis, an important but neglected tropical disease which impacts

millions of people worldwide and has a high economic and social impact.
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Supporting information

S1 Fig. Synthetic routes for preparation of compounds 2–3.

(TIF)

S2 Fig. Uncropped SDS-PAGEs corresponding to Fig 3C. (ai) SDS-PAGE of all tested condi-

tions stained with comassie blue. (aii) Fluorescence image of all tested conditions.

(TIF)

S3 Fig. Uncropped SDS-PAGEs corresponding to Fig 3D. (a) SDS-PAGE stained with Coo-

massie blue. (b) In-gel fluorescence image. Yellow rectangles- Protein bands excised for mass

spectrometry analysis. (c) Proteins candidates identified from the band.

(TIF)

S4 Fig. Confirmation of cTXNPx as a chalcone target by two-dimensional gel analysis. (a)

Map of the dots excised from the 2D gel stained with comassie blue and submitted to mass

spectrometry analysis. (b) In-gel fluorescence detection image. (c) Proteins candidates identi-

fied for each 2D dot.

(TIF)

S5 Fig. Immunoblotting analysis of chalcone labelling on cTXNPx in different parasite

stages. Proteins from promastigotes (Pro), isolated intracellular amastigotes (Ama), and mac-

rophage (Mac) lysates that had been pre-incubated with 2 (5 μM) and linked to 4 (5 μM) prior

to fluorescence revelation. Alternatively, the run lysates were revealed with mouse anti-

cTXNPx antibody followed by anti-Mouse IgG-HRP (anti- cTXNPx). a. In-gel fluorescence

detection image. b. Immunoblotting analysis with anti-cTXNPx. Proteins from promastigotes

(P1), amastigotes (A1) and macrophages (M1) without 2. Proteins from promastigotes (P2),

amastigotes (A2) and macrophages (M2) pre-incubated with 2.

(TIF)

S6 Fig. Mass spectrometry analysis of interaction between chalcone and Lm-cTXNPx. Puri-

fied proteins (0.6 mg/ mL) were incubated or not with compound 1c (1:1) for 30 min and their

molecular weight analysed by Mass Spectrometry. (a) cTXNPx of L. major molecular weight

[M-Met requires 24138 Da]. (b) cTXNPx of L. major with 1 [M-Met+343 requires 24481 Da].

(TIF)

S7 Fig. Inhibition of cTXNPx by chalcone impairs the enzyme antioxidant effect in the

parasite. L. amazonensis promastigotes (1 x 106/mL) were incubated with compounds 1c or 3

at the indicated concentrations for 48 h, during which the numbers of cells were recorded.

Then, 4 x 105 cells were transferred to black 96 well plates for fluorimetric assessment of ROS

production with H2DCFDA (20 μM) for 30 min. (a-b) Parasite killing (dotted lines) and ROS

production (continuous lines) induced by 1c (a) 3 (b). BMDM (1 x 105/well) infected or not

with L. amazonensis promastigotes (10:1) for 72 h on 96 well-plate, then cells were incubated

with 1c or 3 (0.07, 0.7 and 7.0 μM) for 1 h at 37˚C and ROS production measured as described

for promastigotes. (c) ROS production on infected macrophages. (d) ROS production on unin-

fected macrophages. Means ± SD (n = 3). � p<0.05 in relation to untreated cells.

(TIF)

S8 Fig. TXNPx sequence alignment. Gene and protein sequences of mitochondrial

(LmxM.23.0040) and cytosolic (LmxM.15.1040 and LmxM.15.1160) TXNPx were obtained

from https://tritrypdb.org website and aligned using Jalview software (2.11.1.3). (a) Gene

sequence alignment (b) Protein sequence alignment.

(TIF)
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S9 Fig. Screening of KO clones for each gene. (a) Diagrams showing PCR strategy for assess-

ing presence of gene copies for LmxM.15.1040 and LmxM.15.1160 and their replacement with

the blasticidin [BLA] or puromycin [PUR] cassette. (b) PCR of clonal lines following transfec-

tion with sgRNA targeting LmxM.15.1040 gene with BLA as the repair cassette. Yellow star

highlights clonal double KO of LmxM.15.1040 (left; green arrow BLA and grey arrow

LmxM.15.1040 CDS) and the retention of LmxM.15.1160 (right; yellow arrow LmxM.15.1160

CDS). (c) PCR of clonal lines following transfection with sgRNA targeting LmxM.15.1160

with PUR as the repair cassette. White star highlights clonal double KO of LmxM.15.1160

(right; blue arrow PUR and yellow arrow LmxM.15.1160 CDS) and the retention of

LmxM.15.1040 (grey arrow LmxM.15.1040 CDS). P—positive control. Pop—population.

(TIF)

S1 Table. Proteins candidates identified from the band on 1D-gel in S3 Fig.

(XLSX)

S2 Table. Proteins candidates identified for each 2D dot from S4 Fig.

(XLSX)

S3 Table. Primers used to knockout cTXNPx in L. mexicana using pT plasmids.

(XLSX)

S4 Table. Primers used for the validation of cTXNPx knockouts.

(XLSX)

S1 Text. Synthetic procedures.

(DOCX)
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