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Functional recovery outcomes
following acute stroke is
associated with abundance of
gut microbiota related to
inflammation, butyrate and
secondary bile acid
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Accumulating evidence suggests that gut microbes modulate brain plasticity
via the bidirectional gut-brain axis and play a role in stroke rehabilitation.
However, the microbial species alterations associated with stroke and their
correlation with functional outcome measures following acute stroke remain
unknown. Here we measure post-stroke gut dysbiosis and how it correlates
with gut permeability and cognitive functions in 12 stroke participants, 18
controls with risk factors for stroke, and 12 controls without risk factors.
Stool samples were used to measure the microbiome with whole genome
shotgun sequencing and leaky gut markers. We genotyped APOE status and
measured diet composition and motor, cognitive, and emotional status using
NIH Toolbox. We used linear regression methods to identify gut microbial
associations with cognitive and emotional assessments. We did not find
significance differences between the two control groups. In contrast, the
bacteria populations of the Stroke group were statistically dissimilar from the
control groups. Relative abundance analysis revealed notable decreases in
butyrate-producing microbial taxa, secondary bile acid-producing taxa, and
equol-producing taxa. The Stroke group had higher levels of the leaky gut
marker alpha-1-antitrypsin in the stool than either of the groups and several
taxa including Roseburia species (a butyrate producer) were negatively
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correlated with alpha-1-antitrypsin. Stroke participants scored lower on memory testing
than those in the two control groups. Stroke participants with more Roseburia
performed better on the picture vocabulary task; more Bacteroides uniformis (a
butyrate producer) and less Escherichia coli (a pro-inflammatory species) reported
higher levels of self-efficacy. Intakes of fiber, fruit and vegetable were lower, but
sweetened beverages were higher, in the Stroke group compared with controls.
Vegetable consumption was correlated with many bacterial changes among the
participants, but only the species Clostridium bolteae, a pro-inflammatory species,
was significantly associated with stroke. Our findings indicate that stroke is associated
with a higher abundance of proinflammatory species and a lower abundance of
butyrate producers and secondary bile acid producers. These altered microbial
communities are associated with poorer functional performances. Future studies
targeting the gut microbiome should be developed to elucidate whether its
manipulation could optimize rehabilitation and boost recovery.

KEYWORDS

stroke, microbiome, functional recovery, NIH toolbox, butyrate, secondary bile acid, leaky gut,

dietary questionnaire
Introduction

Over 795,000 people suffer a stroke every year in the United

States alone (1). Recent advances in Stroke therapies have

lowered stroke mortality, but survivors are often left severely

impaired (2). Rehabilitation therapies such as physical

therapy, occupational therapy, and speech therapy are

beneficial for inducing neuroplasticity to overcome these

impairments (3), but over 40% of stroke survivors are left

with moderate to severe disabilities that markedly reduce

quality of life (4). Novel multimodal approaches are needed to

promote plasticity and restore sensorimotor function through

a combination of current rehabilitation therapies with other

treatments designed to foster neuroplasticity.

Accumulating evidence from animal studies suggests that gut

microbes modulate brain plasticity via the bidirectional gut-brain

axis and may play a role in functional recovery after stroke (5). A

severely imbalanced microbial community, or dysbiosis, has been

shown to occur following stroke, causing a systemic flood of

neuro- and immunomodulatory substances due to increased gut

permeability and decreased gut motility (6). These substances

can impact neuroinflammation as commensal bacteria invade

the bloodstream and as intestinal lymphocytes migrate from

gut-associated lymphoid tissue to the brain (7). Fecal microbiota

transplant has been shown to normalize brain lesion-induced

dysbiosis and to improve stroke outcome in mice (7). The

microbiome is modifiable as it is influenced by environmental

factors such as diet and exercise and could potentially be an

additional target in stroke rehabilitation through nutritional and

pharmacological interventions (8, 9). Though it is unknown

whether the findings from the bidirectional gut-brain axis in

animals translate the same way into humans. Human studies

thus far have suggested that gut dysbiosis occurs shortly
02
following stroke at one time point and that this dysbiosis is

associated with increased blood Apolipoprotein E (10) and IL-6

(11), decreased blood Trimethylamine-N-Oxide (12) and high-

density lipoprotein (13), poor early functional outcomes (14),

and 180-day mortality (15).

Currently, no human studies have been analyzed changes in the

microbiome over the first three-week course of stroke rehabilitation

and whether these changes correlate with gut permeability and

subsequent recovery as measured by functional outcome

measures. Furthermore, no human studies have included control

groups with and without risk factors for stroke to delineate how

the underlying risk factors contribute to microbiome differences.

The goal of the study is to fill the gap by documenting the gut

microbiome changes that occur following scute stroke in the first

three weeks of rehabilitation and their associations with

functional recovery measures. We also included two age-matched

control groups with and without stroke risk factors, respectively,

which allow us to inquire whether gut-brain axis changes can be

attributed to the risk factors underlying stroke.
Materials and methods

Participants

All research activities were approved by the Institutional Review

Board at the University of Kentucky. We recruited participants aged

55–85 for this study with consideration the population distribution

of Kentucky. We recruited 12 patients in sub-stroke rehabilitation

care after first time ischemic stroke Participants with clinically

significant (unresolved, requiring on-going medical management

or medication) pulmonary, gastrointestinal, dermatologic, hepatic,

or renal functional abnormality were excluded. Individuals who
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had major gastrointestinal surgery within the past five years were

also excluded.

Healthy participants (N = 30) were recruited through

researchmatch.org and from advertisements posted by the Center

for Clinical and Translational Science at the University of

Kentucky. Among these participants, 18 did not have a history of

stroke but have one or more common cardiovascular risk factors

for stroke (Healthy group), and 12 did not have a history of

stroke or common cardiovascular risk factors for stroke (At-Risk

group) Participants followed the same inclusion/exclusion criteria

listed above except for stroke. Table 1 describes the basic

demographic characteristics of the participants. Those in the

Stroke were slightly older than those in either control group. The

Stroke and Healthy group had over 20% APOE ϵ2 carriers while

the At-Risk group contained none. The participants in the Stroke

were less educated than those in the Healthy and At-Risk groups.

The Healthy group had a lower BMI than the Stroke group and

the At-Risk group. The Healthy group by definition had no

participants with diabetes, hypertension, or hyperlipidemia. In the

stroke group, 66.7% of patients had a stroke in MCA territory,

8.3% in ACA territory, and 25.0% in subcortical territory.
Study design

Each individual received a verbal and written explanation of

the purposes, procedures, and potential hazards of the study,
TABLE 1 Participant characteristics.

Stroke At-risk Healthy p-value

N 12 18 12

Age 68.5 ± 12.68 66.33 ± 6.53 64.75 ± 4.75 0.55

Sex (% Female) 83.33% 77.78% 91.67% 0.87

Race (% White) 100.00% 88.89% 91.67% 0.35

(% Black) 0.00% 11.11% 0.00% 0.35

(% Asian) 0.00% 0.00% 8.33% 0.35

Genotype (% APOE ϵ3/ϵ3) 41.67% 61.11% 41.47% 0.16

(% APOE ϵ3/ϵ4) 33.33% 33.33% 25.00% 0.16

(% APOE ϵ4/ϵ4) 0.00% 5.56% 0.00% 0.16

(% APOE ϵ2/ϵ4) 8.33% 0.00% 0.00% 0.16

(% APOE ϵ2/ϵ3) 16.67% 0.00% 33.33% 0.16

Education (years) 13.27 ± 2.97 16.78 ± 1.52 17.92 ± 2.07 <0.0001

BMI 29.65 ± 7.78 28.43 ± 5.81 24.72 ± 3.95 0.19

Diabetes 33.33% 16.67% 0% 0.08

Hypertension 75% 72.22% 0% <0.0001

Hyperlipidemia 81.82% 50.00% 0% <0.0001

Site of stroke (MCA) 66.7%

(ACA) 8.3%

(Subcortical) 25.0%

Values are mean ± SD.
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and written consent was obtained. The University of

California, San Diego Brief Assessment of Capacity to

Consent (UBACC) was used to ensure decisional capacity

then signed consent was obtained. Subjects were free to

withdraw from the study at any time. This research had

minimal risk. Following consent, study personnel collected the

following information:

• Medical History: We obtained past medical history of the

stroke patients from the electronic health record and

questionnaires. These data were used solely for research

purposes. Variables including age, gender, racial/ethnic

background, education level, history of conventional

vascular risk factors (hypertension, diabetes mellitus, atrial

fibrillation, hyperlipoproteinemia, and smoking habit), and

treatment during the acute phase were recorded and used

as covariates for our analyses.

• Food Frequency: We assessed diet history using the Dietary

Screener Questionnaire in the National Health and

Nutrition Examination Survey for the dietary intake over

the last month. (https://epi.grants.cancer.gov/nhanes/

dietscreen/questionnaires.html). We included the results of

the estimated intake of fiber, calcium, whole grains, sugar,

dairy, fruits and vegetables, and sugar sweetened beverages.

• Oral Swab Sample: Oral swab was used to determine APOE

genotype.

• Self-Care CARE Items: Section GG Self-Care Items are

routinely used in the clinical care of inpatient stroke rehab

patients to measure functional recovery.

• NIH Toolbox: Cognitive, Motor, Emotional, and Sensation

measures from the NIH Toolbox were performed.

• Stool Samples: Stool samples were collected, genotyped, and

analyzed using methods obtained from the International

Human Microbiome Standards consortium (www.

microbiome-standards.org) to determine gut microbial

biodiversity.

The medical history, food frequency, NIH Toolbox

measures, and stool samples were collected at admission and

at a discharge visit for the stroke participants and at a three-

month follow-up visit. For Healthy and At-Risk groups, these

data were collected at admission and at a three-month follow-

up visit. Due to the COVID-19 pandemic, many NIH

Toolbox assessments were held via Zoom.
Stool sample collection and analysis

Stool samples were collected in Zymo DNA stabilization

solution with sarstedt feces tubes from feces catcher placed on

toilet seat. Genomic DNA was extracted from 0.25 grams of

stool using ZymoBIOMICS™ DNA Mini Kit and shipped to

the Genomics and Microbiome core facility at Rush

University for DNA quantification using fluorometer Qubit
frontiersin.org
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3.0. Libraries were constructed and the PCR products purified

using 1.0X speed beads and eluted in 15 ul of nuclease-free

water and quantified by PicoGreen fluorometric assay (100X

final dilution). The libraries were pooled and loaded onto a

high sensitivity chip run on the Caliper LabChipGX (Perkin

Elmer, Waltham, MA) for size estimation and sequenced

using Illumina NextSeq/HiSeq platform. Unassembled

sequencing reads were analyzed by the Research Informatics

Core at the University of Illinois Chicago for microbiome

analysis. Alpha diversity, beta diversity, and relative

abundance counts were calculated. For alpha diversity, raw

counts were rarefied to 2000 k and the Shannon diversity

index was calculated using the vegan R package. For beta

diversity, the Bray-Curtis dissimilarity index was used and a

Principal Component Analysis (PCA) plot was generated to

visualize the diversity. We used MetaPhlAn (Metagenomic

Phylogenetic Analysis) to profile the composition of microbial

communities using unique clade-specific marker genes

identified from ∼17,000 reference genomes (∼13,500 bacterial

and archaeal, ∼3,500 viral, and ∼110 eukaryotic) (16).
APOE genotyping

We collected oral swabs from all participants and placed

them in Zymo DNA stabilization solution (https://www.

zymoresearch.com/collections/swab-collection/products/dna-

rna-shield-collection-tube-w-swab). We sent the oral swabs to

the Research Informatics Core at the University of Illinois

Chicago for DNA extraction and amplification. The Core

performed PCR to amplify and measure SNPs rs429358 and

rs7412 that define the common allelic variants of

Apolipoprotein E.
Functional assessment

Functional analysis was measured using the Self-Care CARE

Assessment from Section GG of the standardized patient

assessment data elements in the following domains: Eating,

Oral Hygiene, Toileting Hygiene, Shower/Bathe Self, Upper

Body Dressing, Lower Body Dressing, Putting on/Taking off

Footwear (17). Stroke patients were graded on these domains

for how independently they were able to perform them on a

scale from 1 to 6, with 1 being dependent and 6 being

independent.
NIH toolbox

Cognitive, Emotional, and Sensation function were

measured using assessments from the NIH Toolbox. The

picture vocabulary test was used to measure long-term or
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crystallized memory (18). The list sorting test was used to

measure short-term memory, attention, and executive

function (19). The sadness (20), meaning and purpose (21),

self-efficacy (22), and support (23) questionnaires were used

to measure self-reported values of these emotional domains.

The pain intensity scale (24) was used to measure sensation.
Statistical analyses

All statistical analyses were completed using JMP Statistical

Software (SAS, Cary, NC, USA) and R Statistical Software (25).

Two-sample t-test and 2-way ANOVA were used to determine

differences between groups. The MaAsLin2 R package was

used to normalize all variables and employ linear regression

analysis to correlate various variables with microbiome

measures (26). A false discovery rate of q < 0.25 was used in

selecting significant variables to correct for multiple

comparisons.
Results

Stroke patients had altered microbiome
diversity and composition

We determined the beta diversity of the various groups

using the Bray-Curtis dissimilarity index. An ANOSIM R

test reveals a significant dissimilarity between the Stroke

and At-Risk groups (R = 0.405, p = 0.001) and a significant

dissimilarity between the Stroke and Healthy groups (R =

0.126, p = 0.039). The dissimilarity between the At-Risk

and Healthy groups was not significant (R = 0.0381, p =

0.228). A detailed analysis of the microbial taxa shows

significant decreases in butyrate producers [Agathobaculum

butyriciproducens, Lawsonibacter asaccharolyticus, and

Anaerostipes hadrus (Figures 1A–C)], secondary bile acid

producers [Blautia obeum and the genus Ruminococcus

(Figures 1D,E)] and equol producers [Adlercreutzia

equolifaciens (Figure 1F)]. There was a significant increase

in a couple of pro-inflammatory taxa, including

Clostridium bolteae and Ruthenibacterium lactatiformans,

(Figures 1G,H).
Stroke dysbiosis is associated with leaky
gut markers

Figure 2 shows the average of the leaky gut markers

amongst the groups. The calprotectin assay is a marker for

intestinal inflammation and did not show differences

among the groups (Figure 2A). Alpha-1-antitrypsin is a

marker for intestinal permeability and was significantly
frontiersin.org
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FIGURE 1

Bacterial taxa significantly changed in the stroke as compared to At-risk and healthy groups. The following taxa are lower in the stroke group:
(A) Agathobaculum butyriciproducens, (B) Lawsonibacter asaccharolyticus, (C) Anaerostipes hadrus, (D) Blautia obeum, (E) Genus Ruminococcus,
(F) Adlercreutzia equolifaciens, The following taxa are higher in the stroke group: (G) Clostridium bolteae, (H) Ruthenibacterium lactatiformans.
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

FIGURE 2

Leaky gut markers. (A) Calprotectin. (B) Alpha-1-antitrypsin. Leaky gut markers were compared amongst the participant groups using Kruskal-Wallis
Test. *p-value < 0.05; **p-value < 0.01.
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increased in the Stroke (Figure 2B). Table 2 shows the

associations of alpha-1-antitrypsin with various microbial

taxa. The presence of alpha-1-antitrypsin was inversely

associated with several microbial taxa, including

Adlercreutzia equolifaciens, Lawsonibacter asaccharolyticus,

the genus Anaerostipes, Blautia obeum, Coprococcus
Frontiers in Rehabilitation Sciences 05
eutactus, Dorea longicatena, Lachnospira pectinoschiza, the

genus Roseburia, Agathobaculum butyriciproducens, and the

genus Ruminococcus (Figures 3A–J). Alpha-1-antitrypsin

was positively associated with Eggerthella lenta, Clostridium

bolteae, Anaerotruncus colihominis, and Clostridium leptum

(Figures 3K–N).
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TABLE 2 Microbial taxa associated with fecal alpha-1-antitrypsin.

Bacteria Coefficient Q-value

Taxa positively correlated with alpha-1-antitrypsin

Eggerthella lenta 0.468 0.1731

Clostridium bolteae 0.274 0.1814

Clostridium leptum 0.344 0.2363

Anaerotruncus colihominis 0.456 0.1814

Taxa negatively correlated with alpha-1-antitrypsin

Adlercreutzia equolifaciens −0.307 0.1731

Genus Anaerostipes −0.298 0.1731

Family Lachnospiraceae −0.113 0.2074

Lachnospira pectinoschiza −0.215 0.1731

Genus Roseburia −0.42 0.07802

Roseburia inulinivorans −0.299 0.1731

Genus Ruminococcus −0.457 0.1814

Blautia obeum −0.359 0.1440

Dorea longicatena −0.473 0.1626

Lawsonibacter asaccharolyticus −0.256 0.1854

Q-value is calculated from false discovery rate.

Hammond et al. 10.3389/fresc.2022.1017180
Bacteria are associated with dietary intake

Figure 4 shows the diet composition amongst the different

participant groups. The Stroke group ate significantly less fiber

(Figure 4A) and fruits and vegetables (Figure 4B) and more

sugar sweetened beverages (Figure 4C). We correlated diet

composition with microbial taxa in the Stroke group using

linear correlation (Table 3). We found that an increase of

fruits and vegetables was associated with a lower abundance

of the genus Bacteroides, Eisenbergiella massiliensis, and

Holdemania filiformis (Figures 5A–C) and a higher

abundance of Ruminococcus torques and Faecalibacterium

prausnitzii (Figures 5D,E). A higher intake of vegetables only

was associated with an increase in the relative abundance of

Clostridium bolteae (Figure 5F).
Functional changes induced by stroke
On the Self Care Assessment, the Stroke group reported an

average score of 25.4 out of 42 on admission to the hospital and

an average score of 36.6 on discharge from the hospital

(Figure 6A). On average, the Stroke group scored in the 35th

percentile on the picture vocabulary test, the At-Risk group

scored in the 52nd percentile, and the Healthy group scored

in the 53rd percentile (Figure 6B). On the list sorting test, the

Stroke group scored in the 38th percentile, the At-Risk group

scored in the 52nd percentile, and the Healthy group scored

in the 57th percentile (Figure 6C). On the pain questionnaire,

the Stroke group reported a 4.9 out of 10, the At-Risk group

reported a 2 out of 10, and the Healthy group reported a 3.25

out of 10 (Figure 6D).
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Microbiota are associated with markers of
stroke recovery

Table 4 shows the correlations. Collinsella aerofaciens was

positively correlated with self care scores. The genus

Roseburia was positively correlated with scores on the picture

vocabulary test for the Stroke group. Bacteroides uniformis

and Alistipes putredinis were positively correlated with self-

efficacy score and Escherichia coli was negatively correlated

with self-efficacy. From the Actinobacteria phylum, the class

Coriobacteriia is positively correlated with support. From the

Bacteroidetes phylum, the family Odoribacteraceae is positively

correlated with support. From the Firmicutes phylum, the

genus Eubacterium, the family Acidaminococcaceae, Roseburia

intestinalis, and Phascolarctobacterium faecium are positively

correlated with support. From the Bacteroidetes phylum,

Bacteroides ovatus is negatively correlated with support. From

the Firmicutes phylum, Erysipelatoclostridium ramosum and

Flavonifractor plautii were negatively correlated with support.

From the Proteobacteria phylum, the family Veillonellaceae

was negatively correlated with support. The family

Eubacteriaceae was positively correlated with scores on the

meaning and purpose questionnaire. In the Stroke group,

Alistipes shahii was positively correlated with pain scores.
Discussion

Here we measured the gut microbiome in the first three

weeks of rehabilitation following stroke and its associations

with leaky gut markers, dietary intake, and functional recovery

measures in 12 stroke participants, 18 control participants with

risk factors for stroke, and 12 Healthy participants. We found

significantly lower abundances of butyrate producers, secondary

bile acid producers, equol producers, and sulfate reducers in

the Stroke group and significantly higher abundances of pro-

inflammatory taxa. We found no differences between with the

At-Risk and Healhty groups, suggesting that the microbiome

differences are associated with the stroke itself and not the

underlying risk factors.

We found significant dissimilarity between the groups on beta

diversity which is consistent with previous human studies that

found high dissimilarity between ischemic stroke patients and

healthy (27, 28). A detailed analysis of the relative abundance of

the microbial taxa revealed several taxa that were lower in the

Stroke group compared to either of the control groups.

Agathobaculum butyriciproducens is a strictly anaerobic and

butyric acid-producing bacteria that has had impressive success

in restoring cognition in Alzheimer’s disease mouse models (29).

Anaerostipes hadrus can produce butyrate from carbohydrates or

lactate (30, 31) and is often decreased in diabetes (32).

Eubacterium rectale is also a butyrate producer (33) responsible
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FIGURE 3

Microbial taxa associated with fecal alpha-1-antitrypsin. Blue pound signs indicate bacteria which were also associated with stroke. Negative
associations include (A) Adlercreutzia equolifaciens, (B) Lawsonibacter asaccharolyticus, (C) the genus Anaerostipes, (D) Blautia obeum,
(E) Coprococcus eutactus, (F) Dorea longicatena, (G) Lachnospira pectinoschiza, (H) the genus Roseburia, (I) Agathobaculum butyriciproducens,
and (J) the genus Ruminococcus. Positive associations include (K) Eggerthella lenta, (L) Clostridium bolteae, (M) Anaerotruncus colihominis, and
(N) Clostridium leptum.
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for metabolizing dietary plant polysaccharides (34); it is increased

in obesity (35) and reduces inflammatory dendritic cells (33).

Lawsonibacter asaccharolyticus is also a butyrate producer (36).

Blautia obeum is a natural producer of bile salt hydrolases (37)

as well as lantibiotics that inhibit the growth of pathogenic

bacteria (38); it has previously been shown to be decreased in

acute cerebral infarction (39). Roseburia is a butyrate producer
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(40) that utilizes acetate (31) and increases serotonin and

melatonin and is reduced in ulcerative colitis (41) and

hypertension (42); treatment with Roseburia hominis in

ulcerative colitis has been shown to strengthen gut barrier

function and enhance T regulatory cells (43). Ruminococcus

bacteria produce secondary bile acids (44). Adlercreutzia

equolifaciens is an equol producer (45) and low abundances
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FIGURE 4

Diet composition amongst the groups. Diet was compared between each of the groups using a Wilcoxon rank sum test in several components:
(A) fiber, (B) fruit and vegetables, and (C) sugar-sweetened beverages. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

TABLE 3 Microbial taxa associated with diet in stroke participants.

Stroke diet feature Microbial taxa Coef Q-
value

Fiber None

Calcium None

Whole grains None

Sugar None

Dairy None

Fruits and vegetables Ruminococcus torques 1.00 0.04917
Eisenbergiella massiliensis −0.301 0.05379
Faecalibacterium prausnitzii 0.0974 0.04917
Holdemania filiformis −0.385 0.04917
Genus Bacteroides −0.153 0.2464

Vegetables only Clostridium bolteae 0.578 0.1554

Sugar sweetened beverages None
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have been associated with primary sclerosing cholangitis (46).

Desulfovibrionaceae reduces sulfate, a compound causing

diarrhea and intestinal pain in overabundance (47).

Several bacterial taxa were significantly higher in the Stroke

group as compared to the control groups. Ruthenibacterium

lactatiformans is an obligate anaerobe that is a major lactate

producer and is also found to be increased in patients with

multiple sclerosis (48). Clostridium bolteae is an obligate

anaerobe commonly found to be increased in patients with

autism (49), neuromyelitis optica spectrum disorders (50),

multiple sclerosis (51, 52), and spondyloarthritis (53).

Acidaminococcus intestini has been associated with a pro-

inflammatory diet (54). Increased abundance of the genus

Lachnoclostridium is associated with ulcerative colitis (55) and

obesity (56). The genus Anaeromassilibacillus is associated

with malnutrition (57). These bacteria are all associated with

negative outcomes prevalent in stroke.

Importantly, the Stroke contained a significant percentage

of APOE ϵ2 carriers, which potentially shapes the gut
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microbiome characteristics for this group with a higher

relative abundance of Ruminococcaceae and Gemmiger species

and a lower abundance of Prevotellaceae species (58).

Alpha-1-antitrypsin can be a marker of increased

intestinal permeability when it is found in the stool.

Calprotectin can be a marker of intestinal inflammation.

There was a large increase of fecal alpha-1-antitrypsin in

our participants with stroke. Gut inflammatory and

immune responses following stroke are central to this

increased gut permeability. The bacteria that we found are

disrupted following stroke that also correlate with alpha-1-

antitrypsin include increased Clostridium bolteae and

decreased Adlercreutzia equolifaciens, Anaerostipes,

Roseburia, Ruminococcus, Blautia obeum, Agathobaculum

butyriciproducens, and Lawsonibacter asaccharolyticus.

Roseburia has consistently been associated with intestinal

permeability both as a microbe that bolsters intestinal

permeability (59) and as a microbe that changes in

response to changes in the intestinal permeability (60–62).

We did not see a significant increase in calprotectin, likely

because it is less stable at room temperature (63).

We found that certain dietary features are associated with

the abundance of specific bacteria. This is congruent with

other groups who have found that dietary modification is

associated with gut microbiome composition (64). In our

study particularly, we found that most of the bacteria that

were affected by stroke were not affected by diet, with the

exception of a positive relationship between Clostridium

bolteae and vegetable intake. This is interesting since

Clostridium bolteae was increased in stroke. There are many

studies that describe the effects of a vegetarian diet on the

microbiome, noting its association with an increased

prevalence of anti-inflammatory species (65, 66). It is possible

that dietary elements could promote a microbiome favoring

functional recovery following stroke.
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FIGURE 5

Microbial taxa associated with diet in the stroke participants. Negative associations with fruits and vegetables are with (A) the genus Bacteroides,
(B) Eisenbergiella massiliensis, and (C) Holdemania filiformis. Positive associations with fruits and vegetables are with (D) Ruminococcus torques,
(E) Faecalibacterium prausnitzii, and (F) clostridium bolteae.
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Our results indicate that the participants performed

functionally better at discharge than at admission to the

hospital. This is expected in the rehab setting. The species

Collinsella aerofaciens was positively correlated with the Self-

Care Assessment. Collinsella aerofaciens is a natural bile salt

hydrolase producer (37, 67) that is naturally increased in

response to a cow milk supplemented diet (68, 69). While

Collinsella aerofaciens is generally considered to be a pro-

inflammatory species that increases gut permeability (70), it has

been associated with healthy clinical outcomes (71). While bile

acids do not normally cross the blood brain barrier, in the

context of a leaky blood brain barrier, they can accumulate in

the hypothalamus and inhibit the hypothalamic-pituitary-adrenal

axis, thereby suppressing the inflammatory response (72, 73).

Participants in the Stroke group perform more poorly on

cognitive tests compared to those in the control groups. Cognitive

impairment is common following stroke and is often the

precursor to dementia and cognitive decline (74). Amongst stroke
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participants, the genus Roseburia was positively correlated with

performance on the picture vocabulary test. Previous groups have

seen a correlation of memory performance with Roseburia (75,

76). It is possible that Roseburia enhances memory performance

through butyrate production since butyrate has been shown to be

a cognitive enhancer of a weak memory (77).

We found that the Stroke group reported lower self-efficacy

than the control groups. Bacteroides uniformis and Alistipes

putredinis were positively correlated with self-efficacy and

Escherichia coli was negatively correlated with self-efficacy. The

concept of self-efficacy encapsulates a person’s perception of

their capability for performance (78). Self-efficacy has been

shown to be a strong variable in impacting recovery following

stroke (79). While it is not known why these taxa correlate

with self-efficacy, it is possible that individuals with a higher

self-efficacy are more likely to make healthy choices following

stroke which would correlate with butyrate producing bacteria

like Bacteroides uniformis as opposed to inflammatory species
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FIGURE 6

Markers of stroke function at baseline and follow up for stroke, at-risk, and healthy participants. Assessments include (A) self-care assessment,
(B) picture vocabulary, (C) list sorting, and (D) pain intensity. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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like Escherichia coli (80). The Enterobacteriaceae family, which E.

coli is from, has previously been reported as being associated with

bad outcomes in the context of stroke (15, 81, 82).

The class Coriobacteriia was positively correlated with

support. Social isolation stress has been shown to alter the gut-

brain axis (83). The class Coriobacteriia contains many species

which are equol producers. Since equol producers and butyrate

producers are associated with social support, it is possible that

one mechanism by which people who have strokes and who

have more support do better is mediated by the microbiome.

The Stroke group reported experiencing more pain than the

control groups. Pain is a very common phenomenon following

stroke and can include complex regional pain syndrome,

musculoskeletal pain, spasticity-related pain, and post-stroke

headache (84). In the Stroke group, Alistipes shahii was positively

associated with reported pain. The abundance of Alistipes shahii

is highly positively correlated with trimethylamine-N-oxide

(TMAO), a marker of poor cardiometabolic health (85). While it

is unknown how Alistipes shahii is associated with pain, many

other studies have linked the microbiome with pain (86),

including other species of Alistipes (87).
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While this study provides valuable insights into the

associations of the composition of bacterial communities in

the gut and various markers of stroke recovery, it has many

limitations. As a prospective case control study, it cannot

definitively say that the associations are causing stroke

recovery to be altered. Future experiments should test the

associations found here to determine causation. Further, we

did not have access to cognitive status prior to stroke or

baseline stroke severity due to the recruitment procedure

feasibility. We acknowledge that these are major limitation as

the previous cognitive status could influence the microbiome

composition and performance on post-stroke cognitive

assessments and the baseline stroke severity could impact

potential for recovery. Additionally, our sample consists

largely of older white adults from Kentucky. Larger studies

comprising more diverse populations are needed to see

whether these associations are generalizable. Furthermore, we

used a false discovery rate of q < 0.25. This means that up to

25% of our found associations may be false positives. More

targeted experiments are needed in the future to better

characterize these associations.
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TABLE 4 Microbial taxa correlated with markers of stroke recovery.

Marker of stroke
recovery

Bacteria Coefficient Q-value

Self-care assessment Collinsella aerofaciens 0.772 0.01921

Picture vocabulary test Genus Roseburia 0.593 0.1546

List sorting test None

Self-efficacy
questionnaire

Bacteroides uniformis 0.337 0.2202
Family Enterobacteriaceae −0.766 0.1747
Escherichia coli −0.483 0.2202

Sadness questionnaire None

Meaning and purpose
Questionnaire

Family Eubacteriaceae 1.29 0.1205

Support questionnaire Class Coriobacteriia 0.299 0.1691
Family Odoribacteraceae 0.215 0.1888
Genus Eubacterium 0.870 0.2258
Family

Acidaminococcaceae
0.133 0.2258

Roseburia intestinalis 0.0584 0.2258
Phascolarctobacterium

faecium
0.0505 0.1691

Bacteroides ovatus −0.238 0.1888
Erysipelatoclostridium

ramosum
−0.375 0.2258

Flavonifractor plautii −0.437 0.1580
Family Veillonellaceae −0.683 0.2258

Pain self-rating Alistipes shahii 0.311 0.04039
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Altogether, we found that stroke was associated with an

increase of pro-inflammatory bacterial taxa and a decrease in

taxa that produce butyrate and secondary bile acids necessary

for healthy metabolic function. This shift towards

inflammation is likely due to the activation of the sympathetic

nervous system and hypothalamic-pituitary-adrenal axis in

response to the stroke that increases gut permeability and

decreases gut motility. While this inflammatory shift can help

to mitigate the acute effects of stroke in the brain, the residual

inflammation in the weeks and months following the stroke is

likely undermining recovery. Previous studies have also found

that butyrate-producing bacteria were significantly reduced in

cerebral ischemia patients and that this reduction is associated

with poor outcomes (27, 88, 89). Future studies should

explore treatments targeting the composition of microbial

communities following stroke as a way to boost recovery from

stroke in combination with other rehabilitation therapies. It is

possible that optimizing butyrate producers, secondary bile

acid producers, equol producers, and sulfate reducers in the

gut through dietary interventions (90–93) could contribute to

creating a rehabilitation environment where recovery is boosted.
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