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ABSTRACT

DNA hypermethylation is a common finding in
malignant cells and has been explored as a
therapeutic target for hypomethylating agents
(e.g., decitabine). Detection of changes in DNA
methylation might serve as a pharmacodynamic
endpoint to establish the biological activity of
these agents and predict clinical response. We
developed and validated a rapid, sensitive and
specific LC-MS/MS method for determination of
global DNA methylation (GDM) in vitro and in vivo.
Ratios of 5-methyl-20-deoxycytidine (5mdC) to the
internal standard 2-deoxyguanosine (2dG) in mass
signal were used to quantify GDM levels. The assay
was validated in a linear range from 40 fmol to
200 pmol 5mdC. The intra-day precision values
ranged from 2.8 to 9.9% and the inter-day values
from 1.1 to 15.0%. The accuracy of the assay varied
between 96.7 and 109.5%. This method was initially
applied for characterization of decitabine-induced
GDM changes in in-vitro-treated leukemia cells.
Following exposure to 2.5 kM decitabine, GDM
decreased to �50% of the baseline value. The
clinical applicability of this method was then
demonstrated in bone marrow samples from
patients with acute myeloid leukemia treated
with decitabine. Our data support the use of our
LC-MS/MS method for clinical pharmacodynamic
determination of changes in GDM in vivo.

INTRODUCTION

DNA methylation of the cytosine residues within
the 50-cytosine-guanosine (CpG) dinucleotides is an
epigenetic change that controls gene transcription,
genetic imprinting and perhaps genome stability (1).
This process is regulated by DNA methyltransferases
(i.e., DNMT1, DNMT3a and DNMT3b) in the presence
of s-adenosyl-methionine (SAM), which serves as a
methyl donor for C-5 methylation of the cytosine residues
(2,3). While DNMT3a and 3b are considered initiators
of de novo DNA methylation, DNMT1 is involved in
the ‘maintenance’ of an acquired methylation status. In
normal cells, methylated CpG dinucleotides are usually
found in the untranscribed pericentromeric heterochro-
matin regions, which associate with deacetylated histones
in a condensed conformation. In contrast, in the promoter
sequences of transcribed genes, CpG dinucleotides are
usually hypomethylated and associated with acetylated
histones and open chromatin (euchromatin) in a status
relatively accessible to the transcriptional machinery.
Aberrant DNA methylation patterns are commonly

found in malignant cells (4). Hypermethylation of gene
promoter sequences in cancer cells results in transcrip-
tional silencing of tumor suppressor genes and contribute
to malignant transformation. Therefore, hypermethyla-
tion has long been explored in cancer patients, including
those with acute myeloid leukemia (AML) and myelo-
dysplastic syndrome (MDS) as a therapeutic target
for hypomethylating compounds such as decitabine and
azacitidine (5,6). Despite encouraging clinical results,
a direct correlation among drug plasma levels, DNA
hypomethylation and disease response remains to be fully
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demonstrated. This could be attributed at least in part to
lack of standardized analytical methods that accurately
assess the pharmacokinetic and pharmacodynamic end-
points in patients treated with decitabine or azacitidine.
Recently, different groups have proposed assessing

global genomic DNA methylation (GDM), in addition
to methylation of individual gene promoters, as a
surrogate endpoint to demonstrate the pharmacological
activity of decitabine. Issa et al. (7) employed a bisulfite-
and pyrosequencing-based method to characterize
decitabine-induced GDM in chronic myelogenous leuke-
mia; Mund et al. (8) used a capillary electrophoresis assay
to measure the hypomethylating effect of decitabine in
MDS, in which derivatization with 4,4-difluoro-5,7-
dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl ethy-
lenediamine hydrochloride (Bodipy FL EDA; Molecular
Probes) to generate fluorescence and 45min running time
are required; Samlowski et al. (9) adopted an HPLC-UV
assay (10) to explore the hypomethylating effect of
decitabine in refractory solid tumor patients. Each of
these previously reported methods, albeit useful, present
some disadvantages, including long running times and
low sensitivity, which might limit their applicability to
large-scale clinical trials. Compared to these assays,
LC-MS/MS methods offer a more sensitive and specific
tool for global DNA methylation determination due to
the advantage provided by mass differentiation of mass
spectrometric detectors.
Herein, we report on a validated, rapid, specific and

sensitive LC-MS/MS method that measures ratios of
5-methyl-2-deoxycytidine (5mdC) to 2-deoxyguanosine
(2dG), used as an internal standard (I.S.) to quantify
GDM levels. We showed the clinical applicability of this
method by measuring GDM changes in bone marrow
(BM) samples from AML patients treated with low-dose
decitabine on a Phase I clinical trial conducted at our
institution.

MATERIAL AND METHODS

Material

Methanol, acetonitrile (HPLC grade), ammonium
formate, ammonium acetate, ammonium bicarbonate,
5mdC, 2dG and other nucleotides, nucleophosphatase
(NP1), snake venom phosphatase, alkaline phosphatase,
deoxrnucleotide triphosphate (2.5mM), AmpliTaqGold
polymerase and 10�PCR buffer were all purchased
from Sigma (St. Louis, MO). The primers for amplifica-
tion of the promoter of C-myc oncogene myc-lucP1-2F
50tgcgagggtctggacggctga30 and myc-lucP0-3R 50actacagc
gagttagataaagc30 were purchased from Integrated
DNA Technology (Coralville, IA). M. SssI methylase,
s-adenosyl-methionine (SAM, 3.2mM) and 10� incuba-
tion buffer were purchased from New England Biolab.
Inc. (Beverly, MA). Decitabine and FK-228 were obtained
from The National Cancer Institute (NCI).

PCR amplification and purification of C-myc promoter

PCR was performed in a 100ml reaction containing 100 ng
genomic DNA, 10�PCR buffer (166mMammonium

sulfate/670mMTris at pH 8.8/67mMMgCl2/100mM
2-mercaptoethanol), primers for the C-myc promoter,
deoxynucleotide triphosphates (2.5mM). Reactions
were hot started at 958C for 10min before adding 1.5 ml
AmpliTaqGold (7.5 units). PCR conditions were as
follows: 35 cycles of 948C for 30 sec, 588C for 30 sec,
728C for 45 sec, followed by one elongation cycle of 728C
for 7min. PCR products were purified using the QIAquick
PCR Purification kit (Qiagen, Minneapolis, MN), accord-
ing to the manufacturer’s instructions.

In-vitromethylation

A 500 ng aliquot of the C-myc promoter amplicon was
incubated with 25UM. SssI and 320 mM of SAM solution
(pH 7.9) containing 50mMNaCl, 10mMTris-HCl,
10mMMgCl2, 1mMdithiothreitol and 5 ml NE buffer
and H2O in 50 ml final volume for 90min. The fully
methylated C-myc promoter amplicon was purified using
the QIAquick PCR Purification kit (Qiagen, Minneapolis,
MN), according to the manufacturer’s instructions.

Cell culture and DNA isolation

K562, Kasumi-1, THP1 and Jurkat cell lines were cultured
at 378C in a 5% CO2 incubator using an RPMI medium
(VWR International, Inc., West Chester, PA) supplemen-
ted with 10% fetal bovine serum (Invitrogen, Carlsbad,
CA). Cell lines were treated with decitabine ranging from
0.01 to 2.0mM or with 5 nM of the histone deacetylase
inhibitor depsipeptide, used as a control. Genomic DNA
was isolated from the above cells using DNeasy tissue kit
(Qiagen, Minneapolis, MN), according to the manufac-
turer’s instructions.

DNA hydrolysis

DNA hydrolysis was performed as previously described
(11). Briefly, 1 mg of genomic DNA was first denatured by
heating at 1008C for 3min and then chilling on ice. After
adding a 1/10 volume of 0.1M ammonium acetate
(pH 5.3) and two units of nuclease P1, the mixture was
incubated at 458C for 2 h. One-tenth volume of 1M
ammonium bicarbonate and 0.002 unit of venom phos-
phodiesterase I were added, and the mixture was
incubated at 378C for 1 h. Next, 0.5 unit of alkaline
phosphatase was added, and the mixture was incubated
at 378C for 1 h.

Instrumentation

For quantification, the LC-MS system used consisted of
a Perkin-Elmer Sciex API 300 triple-quadrupole mass
spectrometer (Thornhill, Ontario, Canada) coupled to
a Shimadzu HPLC system (Shimadzu, Columbia, MD).
The HPLC system was equipped with an SCL-10A system
controller, a LC-10AD pump and a SIL-10A auto-
sampler (Shimadzu, Columbia, MD).

HPLC chromatographic and mass spectrometric conditions

5mdC and the I.S. 2dG were separated on a
250� 2.1mmHypersil Aquasil C18 5 mm stainless steel
column (Thermo Hypersil-Keystone, Bellefonte, PA),
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which was coupled to a 2 mm Aquasil pre-column (Thermo
Hypersil-Keystone, Bellefonte, PA), using the mobile
phase consisting of 30% methanol in 10mM ammonium
formate at the flow rate of 0.2ml/min. Pure methanol was
then added to the flow at 0.2ml/min via a separated
HPLC pump and mixed post-column prior to the entrance
to the ion source. The LC elute was introduced into the
API source at 20 ml/min after a 95:5 (LC/MS) split. The
mass spectrometer (Sciex API 300) was operated under
electrospray ionization (ESI) with an ion-spray voltage of
þ4700V. The positive ion multiple reaction monitoring
(MRM) mode analysis was performed using nitrogen as
the collision gas. The curtain gas (nitrogen) and the
nebulizer gas (nitrogen) flow rates were set at 0.6 l/min and
1.1 l/min, respectively. The pressure in the collision cell
was set at 0.29 Pa. The orifice voltage and ring voltages
were set to þ30 and þ300V, respectively. A dwell time of
600ms and a pause time of 5ms between scans were used
to monitor the following precursor/product ion pair of
m/z 268.1/152.2 for 2dG and m/z 242.1/126.1 for 5mdC.
The mass spectrometer was tuned to its optimum
sensitivity and mass accuracy by infusion of a fresh
standard solution of 5mdC at 5 ng/ml. Data acquisition
was performed using the PE Sciex software Sample
Control 1.2, and the data were analyzed by PE Sciex
software MacQuan 1.4.

Sample preparation and method validation

Stock solutions of 5mdC and 2dG were prepared by
dissolving the accurately weighed drug in 10ml of
methanol and methanol containing 0.2% NH4OH,
respectively, to a final concentration of 1mg/ml and
stored in a glass vial at �808C. Working solutions were
freshly prepared daily by diluting the stock solution with
methanol. Volumes of 5mdC working solution were added
into working solution of 2dG to prepare calibration
standards at the following concentrations: 2 (8), 5 (20),
10 (40), 20 (80), 50 (200), 100 (400), 200 (800) and
500 (2000) ng/ml (nM). The enzymatic digestion solutions
of the unmethylated and methylated PRC products of
the C-myc and genomic DNA of Kasumi-1 and K562
were reconstituted in 200 ml water at 48C and analyzed
immediately by LC-MS. The between-day precision
was determined for three quality control (QC) samples
at six different days, and the mean concentrations and %
coefficients of variation (CV) were calculated. The
accuracy of the assay was determined by comparing the
nominal concentrations with the corresponding calculated
concentrations via linear regression.

Patient samples and DNA extraction

Aspirated BM mononuclear cell samples were obtained
from AML patients treated with decitabine under the
NCI-sponsored OSU Protocol 0336, approved by the
Institution Review Board of The Ohio State University.
Samples were obtained with the patients’ informed
consent. Patients received 15 or 20mg/m2 decitabine
intravenously over 1 h for 10 consecutive days.
Treatment was repeated every 28 days for responding
patients. BM samples were collected before treatment and

on days 4 and 11 of the first cycle of treatment. DNA was
extracted using a trizol protocol, according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA).
DNA was enzymatically hydrolyzed to nucleosides as
described above, and 5mdC was determined using the
LC-MS/MS method.

Immunoblotting

Fresh cells (106–108 cells) in culture medium, or frozen cell
pellets thawed on ice and resuspended in 1ml ice-cold
PBS, were centrifuged at 1000 g for 5min at 48C, and the
supernatant was removed and discarded. The pellet
was resuspended in 100–200ml ice-cold lysis buffer
(20mMpH 7.0 HEPES, 150mMNaCl, 0.1% NP40
supplemented with 1mMb-glycerophosphate, 1mM
Na3VO4, 1mMNaF, 1mMBenzimedin and 1mM
phenylmethylsulfonyl fluoride and protease inhibitors;
protease inhibitor cocktail set III) (Calbiochem-
Novabiochem Corporation, La Jolla, CA) and incubated
on ice for 40min. The lysate was centrifuge at 16,000 g for
15min at 48C. The supernatants were frozen in liquid
nitrogen and stored at �808C. Equal amounts of protein
for each sample were then separated on 4–15%
SDS-polyacrylamide gels and then transferred onto
PVDF membrances (Amersham, Piscataway, NJ). The
blots were blocked in TBST (10mMTris-HCl, pH 8.0,
150mMNaCl, 0.1% Tween 20) containing 5% non-fat
milk and subsequently incubated with anti-DNMT1
(New England Biolabs; 1:250). Protein recognized by the
antibody was detected using Chemiluminescent
detection kit (Pierce, Rockford, IL). Equal loading was
confirmed by probing for b-actin.

RESULTS

Mass spectrometric characterization of 5mdC and 2dG

A mixture of 5mdC (1 mg/ml) and the I.S. 2dG (1 mg/ml) in
50% acetonitrile and 5mMammonium formate solution
was infused into the quadrupole mass spectrometer at a
flow rate of 10 ml/min for 1min. The average mass
spectrum as acquired under positive ion ESI exhibited
two major ions at m/z 242.1 and 268.1 (Figure 1A). These
ions correspond to the protonated molecular ions (MHþ)
of 5mdC and 2dG, respectively. No 5mdC and 2dG
sodium adducts were observed, possibly due to the use of
an ammonium formate in the eluant, which enhanced the
mass signal of the protonated molecular ion of sugar-
containing compounds and suppress sodium adduct
formation (data not shown). The collision-assisted dis-
sociation (CAD) spectrum (Figure 1B) of the MHþ of
5mdC at m/z 242.2 exhibited a base fragment ion at m/z
126.1, corresponding to the protonated 5-methylcytosine
generated by glycosidic cleavage of the protonated 5mdC.
CAD spectrum of the MHþ of 2dG at m/z 268.1
(Figure 1C) exhibited a base fragment ion at m/z 152.2,
corresponding to the protonated guanosine formed by
glycosidic cleavage of protonated 2dG. Therefore, the
ion transition of m/z 242.14126.1 and the ion transition
of m/z 268.14152.2 were selected for monitoring 5mdC
and 2dG, respectively.
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For assay validation, we utilized serial dilutions of
5mdC into 2dG standards. The assay was found to be
linear from 40 fmol to 200 pmol of 5mdC (equivalent to
approximately 1 to 5 ngDNA, respectively) on column
using aqueous buffer solution (Figure 2A). The precision
and accuracy of the assay were assessed within the
physiologic range of GDM from 80 fmol to 40 pmol.
Levels of methylation were calculated using a calibration
curve where the area ratios of the mass signal of 5mdC to
2 dG were plotted against known weight/weight ratio of
5mdC and 2 dG, which allows conversion to % DNA
methylation (40 fmol 5mdC is equivalent to approxi-
mately 5% DNA methylation of 1 ngDNA) (12).
Importantly, linearity and slope of calibration curve did

not change when assessed in solution containing a variety
of nucleotides (i.e., 2-deoxycytidine (2dC), 2-deoxyadeno-
sine (2dA) and thymidine (T) cytidine (C), 5methyl-
cytidine (5mC) adenosine (A), uridine (U) and guanosine
(G)) that are commonly found in in vivo samples in
addition to 5mdC and 2 dG (Figure 2B). The slopes and
the intercepts of the standard curves were 0.0023 and
0.0002 in the presence of 1000 ng/ml 2 dG only and 0.0024
and 0.0014 in the presence of 1000 ng/ml of 2dG, dC, dA,
T, C, A, U, G and 5mC, respectively, thereby indicating
no interference by these moieties.

Validation of the LC-MS/MSmethod

The inter-day and intra-day precision and accuracy of our
method to assess GDM levels are summarized in Table 1.
The intra-day precision expressed as CV ranged from 2.78
to 9.86%, and the inter-day precision values ranged from
1.1 to 15.0%. The accuracy values of the assay varied
from 96.7 to 109.5%. All these values were within the
commonly accepted guidelines. (Guidance for Industry
Bioanalytical Method Validation, p.5, available from the
website: http://www.fda.gov/cder/guidance/4252fnl.pdf)

To further confirm the precision and accuracy of the
method for the entire enzymatic procedure, a PCR
amplicon of the promoter of the C-myc oncogene
containing no 5mdC was methylated in vitro using M.
SssI in the presence of SAM. An unmanipulated,
unmethylated aliquot of this amplicon was used as a
negative control. Both methylated and unmethylated
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Figure 1. The average mass spectrums of (A) 2-deoxyguanosine
(1mg/ml) and 5-methyl-20-deoxycytidine (1 mg/ml) and collision-assisted
dissociation (CAD) spectrum of the protonated molecular ion of
(B) 5-methyl-20-deoxycytidine and (C) the protonated molecular ion
of 20-deoxyguanosine.
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Figure 2. Global DNA methylation calibration curves using (A) 5mdC
(2–100 ng/ml) spiked into a 1000 ng/ml solution of 2 dG and (B) 5mdC
(2–100 ng/ml) spiked into a 1000 ng/ml solution of 2 dA, 2 dC, T, A, G,
U, C and 5mC.
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amplicons were digested with NP1, snake venom phos-
phatase and alkaline phosphatase, respectively, and the
hydrolysis products were analyzed by the LC-MS/MS.
The absence of chromatographic peak at the retention
time of 5mdC (i.e., 5.1min) in the enzymatic hydrolysis of
the unmethylated PCR product of the C-myc promoter
confirmed the specificity of the method (Table 2). To
confirm the usefulness of 2dG as an I.S., we used 2dC ion
transition m/z 228.1/112.1 as a cross-reference. As the
sequence of the C-myc promoter amplified herein was
a 197 bp oligonucleotide with 36 CpG dinucleotides,
129 2dC and 129 2dG nucleotides, full methylation of all
2dCs in the CpG dinucleotides of this moiety should
return a value of 24.9% in weight ratio of 5mdC/2dG
and 29.1% in weight ratio of 5mdC/[5mdCþ 2dC]. The
actual measured value were 26.2� 2.4% in weight ratio of
5mdC/2dG (accuracy 105.2%) and 28.8� 0.49% in weight
ratio of 5mdC/[2dCþ 5mdC] (accuracy 98.9) following
enzymatic hydrolysis of in vitro methylated C-myc
promoter sequence, thereby confirming the accuracy of
our method (Table 2).

The applicability of this method was also assessed by
hydrolysis of genomic DNA extracted from two AML
cell lines (i.e., K562 and Kasumi-1) (Table 2). Using
5mdC/2dG weight ratio as an indicator of GDM, mean
value of three replicates of these samples showed 4.87%
baseline GDM level in Kasumi-1 cells with an inter-day
CV of 5.02% and 2.49% baseline GDM level in
K562 cells with an intra-day CV of 4.08%. When
5mdC/[2dCþ 5mdC] weight ratio was used as a cross-
reference, the mean value of three replicates of this
experiment in Kasumi-1 cells showed 5.8% baseline GDM
level with an intra-day CV of 3.69%, and in K562 cells

was 2.91% baseline GDM level with an intra-day CV of
3.63%. Similar results were also detected from inter-day
validation. Kasumi-1 cells were therefore used as a GDM
high quality control (HQC) and K562 as the GDM low
quality control (LOQ) for further assay validation.
We estimated the limit of detection (LOD) of the assay

by varying the input amounts of K562 DNA (20, 50, 100,
200, 500 ng) in the hydrolysis step. A 10 ml aliquot of each
digest was injected for analysis, and the peak areas of
5mdC and 2dG were found to be in a linear relationship
with DNA amounts (not shown). The 5mdC and 2dG
ratios remained essentially constant throughout the
assessed DNA concentration range (Figure 3) with less
than 10% variation. This data suggests that the recovery
of nucleosides from DNA digestion remains constant
even when the DNA amount is as small as 20 ng with
2.5% GDM.

Alterations of GDM in acute leukemia cells treated
with decitabine

We then asked the question of whether our assay could
reliably measure pharmacologically induced GDM
changes. Decitabine is a nucleoside analog that was
demonstrated to induce global DNA hypomethylation
both in vitro and in vivo (13,14). Four human acute
leukemia cell lines (i.e., Kasumi-1, K562, and THP -1 and
Jurkat) were treated with 2.5 mM decitabine for 48 h. Cells
treated with FK-228, a histone deacetylase inhibitor, were
used as a negative control. The mean baseline DNA
methylation values of Kasumi-1, K562, Jurkat, THP-1
were found to be 4.98, 2.43, 4.25 and 4.79%, respectively
(Figure 4A). Following treatment with 2.5 mM decitabine,
their GDM levels decreased to 71.0, 55.6, 64.8 and 60.3%

Table 1. Accuracy and precision of the LC-MS/MS method for the determination of percentage of 5mdC and 2 dG spiked in 25% methanol,

5mMammonium formate

% 5md/2dG Intra-day Inter-day

Ave.� S.D. C.V.% Accuracy% Ave.� S.D. C.V.%

0.2 0.219� 0.022 9.86 109.5 0.20� 0.03 15.0
2 2.05� 0.07 3.30 102.5 2.01� 0.12 6.0
10 9.67� 0.27 2.78 96.7 9.94� 0.11 1.1

Table 2. Accuracy and precision of the LC-MS/MS method for the determination of genomic DNA methylation in in vitro methylated PCR product

and genomic DNA extracted from cell lines

Sample type Intra-day (Ave.� S.D.) Inter-day (Ave.� S.D.)

5mdC/2dG 5mdC/[2dCþ 5mdC] (Te) C.V.% Accuracy% 5mdC/2dG 5mdC/[2dCþ 5mdC] (T) C.V.%

PCa NDc NAd NA NA NA
MPCb 26.2� 2.4 9.16 105.2 NA NA

28.8� 0.49 (29.1) 1.69 98.8
Kasumi-1 4.87� 0.24 5.02 NA 5.36� 0.70 1.30

5.82� 0.21 (5.72) 3.69 5.94� 0.14 (6.30) 2.37
K562 2.49� 0.10 4.08 NA 3.03� 0.34 11.3

2.91� 0.11 (2.93) 3.63 3.19� 0.28 (3.56) 8.74

aPC, PCR product of C-myc promoter; bMPC, Fully methylated PCR product of C-myc promoter; cND, Not detected; dNA, not available;
eT, Theoretical
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of the corresponding pretreatment values at 24 h and
55.6, 66.6, 36.5 and 53.9% at 48 h, respectively
(Figure 4A). In contrast, 5 nM FK228 showed no
significant alteration in GDM following 24 and 48 h
incubation (Figure 4B).
A dose-dependent hypomethylating effect of decitabine

was also observed with a maximum decrease in
GDM to approximately 40% of the pretreatment levels
following exposure to 2 and 5 mM decitabine for 48
(not shown) and 72 h (Figure 5A). Consistent with these
results, a decrease in DNMT1 was observed in cells
treated with� 100 nM decitabine (Figure 5B). The kinetics
of GDM changes following exposure to 0.5mM decitabine
was also studied. Following 48 h, GDM in decitabine-
treated cells decreased to approximately 40% of the
baseline levels (Figure 6A). Starting from day 6, GDM
increased again and returned to 70% of pretreatment
baseline level by day 8. Then it remained unchanged for
up to day 10. Interestingly, we also observed a concurrent
and persistent decrease in DNMT1 during the 10 days
of monitoring following the initial decitabine treatment
(Figure 6B).

GDMand DNMT1 alterations in AML patients
treated with decitabine

To test the applicability of our assay to clinical samples,
we measured changes in GDM of BM samples from AML
patients who received decitabine 15mg/m2/day i.v. for
10 days. As shown in Figure 7A, GDM in patient 1
decreased from a baseline level of 3.40% to 2.95% on
day 11 of decitabine treatment, while no change or a slight
increment was observed on day 4. In patient 2, the GDM
levels decreased from a baseline level of 3.70% to 3.3%
and 2.8% on days 4 and 11 of decitabine treatment,
respectively. Concurrent with these changes, DNMT1
protein levels became either undetectable or nearly
detectable (Figure 7B).

DISCUSSION

Low-dose decitabine has been recently approved for
treatment of patients with MDS (15). Alternative sche-
dules of low-dose decitabine are also being investigated in
clinical trials for hematopoietic malignancies including
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AML with encouraging clinical results. We have recently
reported preliminary pharmacokinetic data supporting
that levels that induce in vitro DNMT1 depletion and
DNA hypomethylation can be achieved in vivo in
AML patients treated with low-dose decitabine (i.e.,
15–20mg/m2/day over 1 h for 10 consecutive days) (16).
Despite these encouraging clinical and pharmacokinetic
results, it remains difficult to demonstrate a consistent
and direct correlation between the hypomethylating effect
of this agent and disease response. This is possibly due
to lack of standardized and reproducible methods for
pharmacodynamic analyses.

Recently, two LC-MS/MS-based methods for assessing
GDM have been reported (11,17). Friso et al. (17)
used (methyl-d3,ring-6-d1)-5-methyl–20-deoxycytidine and
[15N3]2

0-deoxycytidine stable isotopomer as I.S. for the
measurement of 5mdC and 2 dC in DNA hydrolyate
and estimated the amount of 5mdC relative to the total
amount of cytosine residues with 13min run time.
However, this method required complete elimination of
RNA contamination during the DNA purification and
could not differentiate 5mdC from 5mC and 2 dC from C.
Song et al. (11) employed 2-dG as I.S. in their LC-MS
method, which was based on the fact of the molarity of
2dC plus 5mdC equal to that of 2 dG in the double-strand
DNA. This method simplified the quantification process
and improved the accuracy of this approach (11) with a
low detection limit (i.e., 0.2 fmol) but also a relatively long
run time of 15min. Neither group validated their method
to assess GDM changes in patients treated with hypo-
methylating agents.

Herein, we reported a modified sensitive and rapid
LC-MS/MS method for GDM determination in decita-
bine-treated patients. The run time of our assay is 6min
instead of 15min, and the LOD is 1 fmol 5mdC. By
taking advantage of the differentiating ability of mass

spectrometry, our assay can be easily adapted to a high-
throughput platform critical for large-scale studies.
Importantly, we showed that the presence of other
deoxynucleosides (2 dC, 2 dA and T) and ribonucleosides
[C, A, U, G and 5-methylcytidine (5mC)] do not interfere
with measurement of levels of 5mdC and the I.S. 2dG.
In fact, to rule out this possibility, we examine carefully
the mass spectra and tandem mass spectra of all these
nucleosides. The average mass spectra and their corre-
sponding CAD spectra for these nucleotides were at
228.1/112.1, 252.2/136.0, 243.3/127.2, 244.1/112.1,
268.2/136.1, 245.1/113.0, 284.1/152.2 and 258.2/
126.1m/z, respectively, and did not overlap with those of
5mdC and 2 dG. The presence of 2 dC, 2 dA, T, C, A, U,
G and 5mC did not affect the signal intensity of 5mdC
[2 ng/ml (8 nM) to 100 ng/ml (400 nM)] and 2 dG or
their ratio as demonstrated by the similar slope and
intercept of the calibration curves for measuring 5mdC
obtained in absence (Figure 2A) or presence of these
nucleotides (Figure 2B).
Furthermore, because GDM analysis is relevant to

patients treated with decitabine, a 2-deoxycytidine analog
readily incorporated in genomic DNA, it was also
important to exclude a potential interference of this
compound in the measurement of 5mdC changes. We
recently developed, validated and reported an LC-MS/MS
method for the quantification of decitabine (16). Herein,
we tested whether this compound could interfere with
GDM quantification. Under similar chromatographic
conditions for analysis, 5-mdC and 2 dG were eluted at
5.1min and 5.6min, respectively, while decitabine was
eluted at 8.2min. Therefore, decitabine did not pose
interference on the quantification of 5mdC and 2 dG due
to different retention time and a distinct mass spectro-
metry (2294113)(Figure 8). Consistent with this, we were
able to measure GDM changes in decitabine-treated
patients and support the applicability of this method
in vivo, in patients undergoing treatment with hypomethy-
lating agents.

CONCLUSION

A rapid, sensitive and specific LC-MS/MS method for
determination of GDM was modified, validated and
applied to measure the alteration of DNA methylation
levels induced by the hypomethylating agent decitabine in
AML treated in vitro and in vivo. The hypomethylating
effect of decitabine appears to be dose and time dependent
and was observed in both in vitro treated cell lines and
in AML patients following decitabine administration.
This method provides an efficient method for character-
ization of GDM and permits conversion to a high-
throughput platform that is critical for future clinical
research in this area.

ACKNOWLEDGEMENTS

This work was supported in part by the National Cancer
Research Institute, Bethesda, MD, grants CA102031.
Funding to pay the Open Access publication charge was

Global DNA Methylation Alteration in AML patients
Treated with Decitabine

0
1
2
3
4
5
6

Patient 1 Patient 2

Predose
Day 4
Day11

B

A

Patient 1 Patient 2

Figure 7. The time-dependent changes in (A) global DNA methylation
and (B) DNMT1 in BM mononuclear cells from AML patients treated
with decitabine.

PAGE 7 OF 8 Nucleic Acids Research, 2007, Vol. 35, No. 5 e31



provided by The Comprehensive Cancer Center, The Ohio
State University, Columbus OH.

Conflict of interest statement. None declared.

REFERENCES

1. Jones,P.A. and Baylin,S.B. (2002) The fundamental role of
epigenetic events in cancer., Nat. Rev. Genet., 3, 415–428.

2. Herman,J.G. and Baylin,S.B. (2003) Gene silencing in cancer in
association with promoter hypermethylation. N. Engl. J. Med., 349,
2042–2054.

3. Issa,J.P. (2004) CpG island methylator phenotype in cancer.
Nat. Rev. Cancer., 4, 988–993.

4. Esteller,M., Fraga,M.F., Guo,M., Garcia-Foncillas,J., Hedenfalk,I.,
Godwin,A.K., Trojan,J., Vaurs-Barriere,C., Bignon,Y.J. et al.
(2001) DNA methylation patterns in hereditary human cancers
mimic sporadic tumorigenesis. Hum. Mol. Genet., 10, 3001–3007.

5. Lubbert,M. (2000) DNA methylation inhibitors in the treatment of
leukemias, myelodysplastic syndromes and hemoglobinopathies:
Clinical results and possible mechanisms of action. Curr. Top
Microbiol Immunol., 249, 135–164.

6. Daskalakis,M., Nguyen,T.T., Nguyen,C., Guldberg,P., Kohler,G.,
Wijermans,P., Jones,P.A. and Lubbert,M. (2002) Demethylation of
a hypermethylated P15/INK4B gene in patients with myelodys-
plastic syndrome by 5-aza-2-deoxycytidine (decitabine) treatment.
Blood, 100, 2957–2964.

7. Issa,J.P., Gharibyan,V., Cortes,J., Jelinek,J., Morris,G.,
Verstovsek,S., Talpaz,M., Garcia-Manero,G. and Kantarjian,H.M.
(2005) Phase II study of low-dose decitabine in patients with
chronic myelogenous leukemia resistant to imatinib mesylate.
J. Clin. Oncol., 23, 3948–3956.

8. Mund,C., Hackanson,B., Stresemann,C., Lubbert,M. and Lyko,F.
(2005) Characterization of DNA demethylation effects induced by
5-Aza-2’-deoxycytidine in patients with myelodysplastic syndrome.
Cancer Res., 65, 7086–7090.

9. Samlowski,W.E., Leachman,S.A., Wade,M., Cassidy,P.,
Porter-Gill,P., Busby,L., Wheeler,R., Boucher,K., Fitzpatrick,F.
et al. (2005) Evaluation of a 7-day continuous intravenous infusion
of decitabine: inhibition of promoter-specific and global genomic
DNA methylation. J. Clin. Oncol., 23, 3897–3905.

10. Gehrke,C.W., McCune,R.A., Gama-Sosa,M.A., Ehrlich,M. and
Kuo,K.C. (1984) Quantitative reversed-phase high-performance
liquid chromatography of major and modified nucleosides in DNA.
J. Chromatogr., 301, 199–219.

11. Song,L., James,S.R., Kazim,L. and Karpf,A.R. (2005) Specific
method for the determination of genomic DNA methylation by
liquid chromatography-electrospray ionization tandem mass
spectrometry. Anal. Chem., 77, 504–510.

12. Cohen,N., Dagan,T., Stone,L. and Graur,T. (2005) GC composi-
tion of the human genome: in search of isochors. Mol. Biol. Evol.,
22, 1260–1272.

13. Bender,C.M., Pao,M.M. and Jones,P.A. (1998) Inhibition of DNA
methylation by 5-aza-2’-deoxycytidine suppresses the growth of
human tumor cell lines. Cancer Res., 58, 95–101.

14. Wirtz,M., Stach,D., Kliem,H.C., Wiessler,M. and Schmitz,O.J.
(2004) Quantitative analysis of DNA methylation in chronic
lymphocytic leukemia patients. Electrophoresis, 25, 839–845.

15. Kantarjian,H., Issa,J.P., Rosenfeld,C.S., Bennett,J.M., Albitar,M.,
DiPersio,J., Klimek,V., Slack,J., de Castro,C. et al. (2006)
Decitabine improves patient outcomes in myelodysplastic
syndromes: results of a phase III randomized study. Cancer, 106,
1794–1803.

16. Liu,Z., Marcucci,G., Byrd,J.C., Grever,M., Xiao,J. and Chan,K.K.
(2006) Characterization of decomposition products and
preclinical and low dose clinical pharmacokinetics of decitabine
(5-aza-20-deoxycytidine) by a new liquid chromatography/tandem
mass spectrometry quantification method. Rapid Commun. Mass
Spectrom., 20, 1117–1126.

17. Friso,S., Choi,S.W., Dolnikowski,G.G. and Selhub,J. (2002)
A method to assess genomic DNA methylation using high-
performance liquid chromatography/electrospray ionization mass
spectrometry. Anal. Chem., 74, 4526–4531.

Figure 8. The extracted ion chromatogram (XIC) for (A) 5mdC at m/z 242/126, (B) 2dG at m/z 268/152 and (C) decitabine at 229/113 in Mobile
Phase A spiked with 1 ng/ml 5mdC, 1000 ng/ml of the 2dG and 200 ng/ml decitabine, respectively.

e31 Nucleic Acids Research, 2007, Vol. 35, No. 5 PAGE 8 OF 8


