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Abstract

Receptors of the leukocyte receptor cluster (LRC) play a range of important functions in the human immune system. However, the

evolution of the LRC remains poorly understood, even in m\ammals not to mention nonmammalian vertebrates. We conducted a

comprehensive bioinformatics analysis of the LRC-related genes in the publicly available genomes of six species that represent

eutherian, marsupial, and monotreme lineages of mammals. As a result, the LRCs of African elephant and armadillo were charac-

terized, twonewgenes, IGSF1andA1BG,wereattributed to theLRCofeutherianmammals, theLRCgenecontentwas substantially

extended in the short-tailedopossumandTasmaniandevil and,finally, four LRCgeneswere identified in theplatypusgenome.These

findings have for the first time provided a solid basis for inference of the LRC phylogeny across mammals. Our analysis suggests that

the mammalian LRC family likely derived from two ancestral genes, which evolved in a lineage-specific manner by expansion/

contraction, extensive exon shuffling, and sequence divergence. The striking structural and functional diversity of eutherian LRC

moleculesappears largely lineagespecific. Theonly familymember retained inall the threemammalian lineages is a collagen-binding

receptorOSCAR.Strongsequenceconservationofa transmembranedomainknowntoassociatewithFcRc suggestsanadaptive role

of this domain subtype in the LRC evolution.
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Introduction

The leukocyte receptor cluster (LRC) is a family of structurally

related genes for immunoregulatory receptors. Originally, the

term LRC was introduced to emphasize the linkage of the

genes encoding killer immunoglobulin-like receptors (KIRs),

leukocyte Ig-like receptors (LILRs), and FcaR on human chro-

mosome 19q13.4 (Wagtmann et al. 1997; Wende et al.

1999). Subsequently, it has been found that the region con-

tains some other structurally related genes, such as NCR1,

GPVI, LAIR1, LAIR2, and OSCAR (Meyaard et al. 1997; Sivori

et al. 1997; Clemetson et al. 1999; Kim et al. 2002). Most

recently, the LRC has been further extended by adding two

more genes named VSTM1/SIRL1 and TARM1 (Steevels et al.

2010; Radjabova et al. 2015). These were found to be closely

related to each other and linked to OSCAR.

Except for LAIR2, which is a secreted protein, all human

LRC products are type I cell surface receptors with extracellular

regions composed of 1–4 C2-type Ig-like domains. The func-

tional properties of these proteins are strikingly diverse.

Human KIRs play a crucial role in the regulation of NK cell

activity by binding to MHC class I molecules on target cells

(Bottino et al. 1995; Lanier and Phillips 1995). In humans, KIR

and HLA class I genotypes are associated with various diseases

( reviewed by Parham et al. [2010] and Trowsdale et al.

[2015]). The LILR function is less clear although interaction

with classical and nonclassical MHC has been shown for

some human and mouse (where they are designated PIRs)

LILRs (Borges et al. 1997; Liang et al. 2002; Willcox et al.

2003; Takai 2005; Shiroishi et al. 2006). Additionally, a broad

range of non-MHC ligands have been reported for human

and mouse members of the LILR family (reviewed by

Trowsdale et al. [2015]). NCR1 recognizes membrane-

associated heparan sulfate proteoglycans (Hecht et al. 2009)

and has been described as an influenza virus hemagglutinin

receptor (Mandelboim et al. 2001). Human FcaR is a receptor

for IgA (Maliszewski et al. 1990), whereas GPVI, LAIR1, LAIR2,

and OSCAR bind to collagen (Moroi et al. 1996; Meyaard

et al. 1997; Lebbink et al. 2008; Barrow et al. 2011).

According to their signaling properties, LRC receptors are

generally subdivided into two major forms—inhibitory or
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activating. The inhibitory forms are expressed as monomers

bearing the ITIM motifs in their cytoplasmic tails. The activat-

ing forms usually have short cytoplasmic regions and associate

with ITAM-containing signaling transmembrane (TM) subu-

nits, such as DAP12 (activating KIRs) or FcRc (activating

LILRs, NCR1, FcaR, GPVI, OSCAR, and TARM1), on the cell

surface. The association is facilitated by the presence of as-

partate residue in the TM regions of the signaling subunits

and positively charged residue in the TMs of LRC molecules.

Activating KIRs have lysine residue in their TMs. Except for this

feature, TMs of activating and inhibitory KIRs are highly similar

suggesting that the activating forms of KIRs have evolved

from the inhibitory ones (Abi-Rached and Parham 2005).

The TMs of all other activating LRC members contain the

arginine residue embedded into the NxxR motif (fig. 1).

Notably, this TM subtype is strongly conserved. It has been

recognized in the LRC molecules from as distant species as

amphibians and birds (Guselnikov et al. 2010).

Studies of the LRC and, in particular, KIR family significantly

contributed to such important immunological concepts as

“missing self-recognition” (K€arre et al. 1986) and

“immunoregulation through a balance of positive and nega-

tive signals” (Ravetch and Lanier 2000). That is why it was of

particular interest to understand the evolution of this group of

molecules. Unexpectedly, the comparative studies revealed

that, despite its proposed functional importance, the LRC is

a highly diverse and rapidly evolving gene family.

Simultaneously with the identification of KIRs, it has been

found that, in mice, the function of MHC class I-specific rec-

ognition on NK cells is carried out by the Ly49 receptor family

that belongs to the C-type lectin superfamily (Karlhofer et al.

1992). Subsequent studies have demonstrated that the ex-

pansion of the KIR family is specific for primates and many

other mammals possess just one or a few KIR-like molecules

(Kelley et al. 2005; Hammond et al. 2009). A similar lineage-

specific evolution has been shown in the case of the LILR

family (Hoelsbrekken et al. 2005; Hogan et al. 2012).

Investigation of the chicken and marsupial genomes

revealed a dramatic expansion of the LRC-like genes in both

lineages. However, members of the chicken and marsupial

LRC families, designated CHIRs and MAIRs, respectively,

showed only weak similarity to the LRC genes of eutherian

mammals (Dennis et al. 2000; Nikolaidis et al. 2005;

Viertlboeck et al. 2005; Laun et al. 2006; Belov et al. 2007;

van der Kraan et al. 2013). The CHIR genes were found as a

separate cluster on microchromosome 31. One more chicken

gene for the LRC-related receptor designated ggFCR has been

mapped to the region syntenic to human 20q13 (Viertlboeck,

Schmitt, et al. 2009). Functional studies have demonstrated

that ggFcR and some CHIRs are chicken IgY receptors

(Viertlboeck et al. 2007; Viertlboeck, Schmitt, et al. 2009;

Viertlboeck, Schweinsberg, et al. 2009). No LRC-like genes

have been found in a monotreme platypus and in avians

duck and zebra finch (Wong et al. 2009; Windau et al.

2013). The amphibian Xenopus tropicalis has been shown

to possess four LRC-related genes all encoding activating

receptors with the NxxR-motif-containing TMs (Guselnikov

et al. 2010). The extracellular domains of Xenopus LRC pro-

teins showed only a weak similarity to those of the chicken

and human members of the family. In bony fishes, several

gene families encoding paired Ig-like receptors expressed in

lymphoid tissues have been described and suggested to play a

role in NK cell mediated immunorecognition (reviewed by

Yoder and Litman [2011] and Montgomery et al. [2011]).

However, it remains uncertain if any of these genes are di-

verged counterparts of LRC or represent other subsets of IgSF.

Therefore, after two decades since the LRC definition, it is

still unclear as to when this family might have arisen, what the

function of the primordial LRC genes was, why they evolved

so rapidly, and whether there is any functional activity shared

by the LRC proteins from different vertebrates. To begin

addressing these questions, we have analyzed LRC-like genes

in the sequenced genomes of six mammalian species, repre-

senting placental mammals (humans, elephant, and arma-

dillo), marsupials (short-tailed opossum and Tasmanian devil)

and monotrems (platypus). We found that the eutherian LRC

family, in addition to commonly recognized members,

includes two new, IGSF1 and alpha-1-B glycoprotein

(A1BG). This finding facilitated more accurate characterization

of the LRC genes in marsupials and platypus and ultimately

uncovered the structural relationships among the LRC mem-

bers in the three mammalian lineages.

FIG. 1.—Alignment of amino acid sequences of the TM regions of

human (Hs) FcRc-associating LRC members and the predicted LRC mem-

bers from Tasmanian devil (Sh), opossum (Md), and platypus (Oa).

Attribution of opossum and platypus OSCAR, as well as devil GPVI is based

on the results of phylogenetic analysis. Other opossum sequences are

designated according to the gene position in the current version of the

genome (fig. 6A). Identical and similar residues are shown by white letters

on black background or black letters on gray background, respectively.

Consensus (>50%) sequence is shown below. Asterisks indicate invariant

residues.
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Materials and Methods

Genomic Analysis

In this study, the genomes of five mammalian species were

searched: African elephant (Loxodontra africana), nine-

banded armadillo (Dasypus novemcinctus), gray short-tailed

opossum (Monodelphis domestica), Tasmanian devil

(Sarcophilu sharrisii), and duck-billed platypus

(Ornithorhynchus anatinus) (Mikkelsen et al. 2007; Warren

et al. 2008; Murchison et al. 2012). The genome assembly

versions were Loxafr3.0, Dasnov3.0, MonDom5, Devil_ref

v7.0, and OANA5 according to the Ensembl designations

(www.ensembl.org). Preliminary analysis showed the pres-

ence of numerous automatically generated models for the

LRC-like genes in the annotations to these genomes.

However, we had to disregard these models because of the

known poor capacity of automatic gene prediction algorithms

to recognize multiple structurally related genes. The species-

specific pattern of gene and exon organization in such fam-

ilies, subdivision of the encoded proteins into various forms,

such as secreted proteins, activating and inhibitory receptors,

profoundly impede the automatic gene prediction. The most

common output errors are gene truncation or fusing of two

or more genes into a single one because of poor recognition

of short exons coding for TMs or cytoplasmic tails.

Furthermore, an automatic mode of homology attribution

in the genome annotations is often misleading, as it relies

solely on which protein in the protein database produced

the highest matching BlastP score without careful structural

considerations of such matching.

The approach for gene identification and prediction that

was used in this series of articles has been described in our

earlier publications (Fayngerts et al. 2007; Guselnikov et al.

2008, 2010, 2011). It is based on the identification of sepa-

rate exons for the Ig-like and TM domains in the genomic

sequences followed by feeding the groups of such exons

into gene prediction pipelines. To minimize ambiguity, we

did not consider exons for the signal peptides and intracellular

regions unless their existence was supported by the EST data

or by high similarity. The preliminary subdivision of the pre-

dicted receptors into activating or inhibitory was based on the

presence or absence of the positively charged residues in their

TMs.

Phylogenetic Analysis

Phylogenetic analysis was performed with the MEGA6

software (Tamura et al. 2013) using nucleotide sequences

of individual exons or sequences encoding N-terminal Ig

domain pairs. Alignment of the nucleotide sequences was

guided by the amino acid sequence alignment generated

by either Clustal or Muscle utilities of the MEGA6 soft-

ware. For each data set, different variants of alignment

including those corrected manually or with the certain

part removed were tested in the phylogenetic analysis.

Phylogenetic trees were constructed using the bootstrap

tests of the Neighbor-Joining (NJ) method with p-distan-

ces (proportion of differences). The trees shown in this

article were selected because of the topology that was

the most tolerant to the variations in alignment and the

tree generation settings. The corresponding alignments

are available upon request. Nucleotide sequences were

retrieved and analyzed using utilities at the NCBI

(https://www.ncbi.nlm.nih.gov/, last accessed May 20,

2019) and Ensemble (http://www.ensembl.org, last

accessed May 20, 2019) websites. Amino acid sequence

alignments were shaded using the BoxShade program

(https://embnet.vital-it.ch/software/BOX_form.html, last

accessed May 20, 2019). GenScan program (Burge and

Karlin 1997, http://hollywood.mit.edu/GENSCAN.html,

last accessed May 20, 2019) was used for the automated

gene structure prediction. The LRC-flanking non-LRC

genes were generally identified according to the genomic

annotations. However, in some cases, such annotations

were verified by sequence comparisons at the NCBI web-

site using BlastP.

Results

A1BG and IGSF1 Are LRC-Related Genes

In our previous studies, it was observed that the Ig-like

domains of the frog and chicken LRC proteins reproducibly

showed homology not only to known LRC members but also

to the products of four mammalian genes that to our knowl-

edge have never been considered in the phylogenetic analyses

of LRC. These genes are VSTM1, TARM1, A1BG, and IGSF1.

VSTM1 and TARM1 are the most recently identified members

of the human LRC (Steevels et al. 2010; Radjabova et al.

2015). A1BG encodes alpha-1 B glycoprotein, a soluble com-

ponent of mammalian blood plasma that is known for half a

century (Schultze et al. 1963). The protein is composed of five

Ig-like domains and has been shown to bind to CRISP-3, a

small polypeptide that is present in exocrine secretions of

neutrophilic granulocytes and that is believed to play a role

in innate immunity (Udby et al. 2004). In the human genome,

A1BG maps to 19q13.4 some 3.3 Mb away from GPVI

(fig. 3A). Finally, IGSF1 codes for a large surface protein whose

extracellular region consists of 12 Ig-like domains with a

spacer between the fifth and the sixth domains (Frattini

et al. 1998; Mazzarella et al. 1998). As a result of posttrans-

lational cleavage, two TM forms of IgSF1 are produced

encompassing domains 1–5 and 6–12, respectively (Robakis

et al. 2008). The protein is mainly expressed in adult testes

and nervous tissues. Its ligand is unknown. Loss-of-function

IGSF1 mutations cause an X-linked syndrome of central hy-

pothyroidism and testicular enlargement (Sun et al. 2012).

Human IGSF1 is mapped to Xq25.
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To examine the relationships between these four genes/

proteins and the previously described LRC members, individ-

ual Ig-like domains of VSTM1, TARM1, A1BG, and IGSF1

were compared against the known proteins by means of

BlastP and PSI-BlastP analyses. All of the sequences were

found to match known LRC proteins with scores much higher

than those for other IgSF families (data not shown). The attri-

bution of IGSF1 and A1BG domains to the LRC was supported

by their 3D structures predicted using homology modeling

(data not shown). In the case of TARM1 and IGSF1, an addi-

tional argument was that both of them contained the LRC-

characteristic conserved TM region with the NxxR motif

(fig. 1) that is known to facilitate an association with the

FcRg subunit. Indeed, the ability of TARM1 to transmit signals

through FcRc has been recently demonstrated by Radjabova

et al. (2015). As for IGSF1, this feature remains to be explored

in functional studies.

As for the next step, phylogenetic analysis of individual

Ig-like domains was conducted using various algorithms

available in the MEGA6 package. A representative NJ tree

is shown in figure 2. In agreement with the results

obtained previously (Hughes 2002; Nikolaidis et al.

2005), the domains of LILRs, KIRs, FcaR, NCR1, GPVI,

and LAIR1/2 (herein referred to as the A group) fall into

two main clusters supported by high bootstrap values.

Here, we designate these clusters as A1 and A2. The A1

cluster includes the N-terminal domains (d1) of LILRs,

NCRI, FcaR, GPVI, as well as the LAIR1 and LAIR2 domains.

The A2 includes KIR domains, which are subdivided into

three separate subtypes (KIR D0, D1, and D2), the remain-

ing LILR domains with three subtypes designated here as

LILR D2, D3, and D4 and, finally, the membrane-proximal

domains (d2) of FcaR, GPVI, and NCR1.

The relationships of OSCAR, IGSF1, A1BG, TARM1, and

VSTM1 domains with each other and with those from the

A group could only partially be resolved. High bootstrap

values suggested close homology of the EC domain of

VSTM1 to the N-terminal (D1) domain of TARM1 (cluster

B3). The tree also showed high statistical support of close

relationships of some IgSF1 domain to each other. Thus,

the IGSF1 d1 domain is close to d6, d2 is close to d7, d3 to

d9 and d11, d4 to d10, d5 to d12. This branching pattern

suggests that IGSF1 might have originated by fusion of

two highly similar ancestral genes. Noteworthy is that the

D1 and D6 domains of IgSF1 fall into one clade with the

N-terminal (d1) domains of A1BG and OSCAR (cluster B1).

Closer relationship of A1BG and OSCAR was supported

by clustering of the d2–d5 domains of A1BG with mem-

brane-proximal (d2) domain of OSCAR (cluster B2). It

might be inferred, therefore, that A1BG and OSCAR

had a common origin and that A1BG evolved from an

ancestral two-domain protein by loss of TM and quadru-

plication of its C-terminal domain. Finally, the membrane-

proximal domain (d2) of TARM1 demonstrated closer

relationships with IGSF1 d3, d9, and d11 (B4). Although

bootstrap values for the B1, B2, and B4 clusters were not

high, this branching pattern was reproduced at various

tree generation settings. Altogether, these results support

the attribution of IGSF1 and A1BG to the LRC and suggest

their relatedness to OSCAR, TARM1, and VSTM1. To em-

phasize the relationships of these proteins and their dif-

ference from the group A members, we tentatively joined

them into a distinct group B.
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FIG. 2.—Evolutionary relationships of human IGSF1 and A1BG with

known LRC members. Unrooted NJ tree for nucleotide sequences encod-

ing individual Ig-like domains is shown. Bootstrap values greater than 50%

are shown at the nodes. Branch lengths depict evolutionary distance. The

trees were generated using MEGA6 software with p-distances for nucle-

otide sequence sites and pair-wise deletion option. To reduce the size of

the tree, the clusters for highly related Ig-like domains of various LILRs and

KIRs were compressed and designated according to the domain subtype

they represent (D1–D4 for LILRs and D0–D2 for KIRs).
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Similar LRC Content in Distant Species of Placental
Mammals

The monophyletic origin of both the A1 and A2 clusters in this

and the previous (Nikolaidis et al. 2005) analyses suggests that

the EC regions of LILRs, KIRs, NCR1, FCAR, GPVI, and LAIR1/2

might have descended from a single ancestral protein com-

posed of the A1 and A2 domain subtypes. We also hypoth-

esize that the complex branching pattern formed by the

individual domains of OSCAR, IGSF1, A1BG, TARM1, and

VSTM1 may be explained by their origin from different parts

of a common ancestral protein with the EC region composed

of multiple highly diverged domains. To test these sugges-

tions, we searched for the LRC genes in the genomes of

African elephant (Loxodontra africana) and armadillo

(Dasypus novemcinctus). These species represent the euthe-

rian suborders Afrotheria and Xenarthra that are generally

regarded as the most distant lineages of placental mammals

(O’Leary et al. 2013).

The elephant genome analysis revealed 83 exons for LRC-

like Ig-domains on the scaffolds 4 and 100. The schematic

map of the exon arrangement is shown in figure 3B. A sub-

stantial fraction of exons (25) was suggested to be aberrant as

they had stop codons, frameshifts, or disrupted splice-sites.

However, sequencing errors cannot be excluded and, for that

reason, we show the positions of all the exons. Additionally,

18 presumably functional exons for TM regions were

revealed. Half of these encode conserved TMs with the

NxxR motif. Yet, another half lack charged residues. Taking

into account the positions of the TM exons, it may be as-

sumed that the elephant LRC family includes at least 17 func-

tional genes encoding cell surface receptors. There are seven

putative genes in which TM exons were not detected.

According to the phylogenetic analysis data (see below),

one of them is the ortholog of human A1BG. As for the

rest, it remains to be determined whether they are aberrant

or encode secreted proteins or their TM exons for any reason

have eluded identification. The latter possibility is quite prob-

able because of multiple sequencing gaps in the examined

version of the elephant genome.

The search in the armadillo genome revealed 115 exons for

the LRC-like Ig-domains. Of these, 87 lacked frameshifts and

stop codons. The exons were scattered on 21 scaffolds of

varying length (4–2,649 kb) with 1–24 exons per scaffold.

Figure 3C illustrates the exon organization on the four longest

scaffolds. The predicted TM exons are also shown on this

map. As in the elephant, TMs of the predicted armadillo

LRC proteins fall into two types: with or without the NxxR

motifs.

Phylogenetic analysis of the individual exon sequences

demonstrated that the LRC gene content in armadillo, ele-

phant, and human is both conserved and heterogeneous. The

inclusion of the elephant and armadillo sequences into phy-

logenetic analysis resulted in a tree topology very similar to

that for the human LRC with higher bootstrap values for the

clusters B1–B4 (figs. 4 and 5). The tree shows that elephant

and armadillo possess orthologs of human FCAR, GPVI, NCR1,

TARM1, VSTM1, OSCAR, A1BG, and IGSF1. Both species also

possess the genes that are attributed to the KIR, LILR, and LAIR

families. Elephant seems to have fewer LILR genes compared

with humans. In contrast, the LILR family was expanded in the

armadillo lineage. There are 10, 11, 11, and 11 exons coding

for, correspondingly, the D1-, D2-, D3-, and D4-subtypes of

LILR domains in the armadillo genome. The branching pattern

observed is consistent with the species-specific expansion of

the LAIR, KIR, and LILR families. For instance, the elephant

sequences for LILR D2 subtype form a cluster separated

from its human and armadillo counterparts (fig. 4). Both the

elephant and armadillo genomes contain a GPVI-adjacent

gene for the protein composed of the A1 and A2 domain

subtypes (designated Lrcx in fig. 3), whose ortholog is absent

in primates and rodents.

Although human VSTM1 has a single EC domain, its arma-

dillo counterpart was predicted to have a two-domain EC

region with d2 highly related to the TARM1 d2 (figs. 3 and

5). This fact further supports a common origin of the TARM1

and VSTM1 genes. Similarly to the human LRC tree, the d2

sequences of armadillo TARM1 and VSTM1 cluster with the

d3, d9, and d11 domains of IGSF1 (fig. 5). Clustering of the

N-terminal domains of OSCAR, IGSF1, and A1BG with each

other and with IGSF1 d6 was also reproduced. Finally, the d2

domains of OSCAR cluster with the d2–d5 domains of A1BG

(fig. 5). These results further justify grouping IGSF1, A1BG,

OSCAR, TARM1, and VSTM1 into a distinct group B.

Taken together, the phylogenetic data show that the main

set of LRC genes described previously in primates and rodents

has emerged before the radiation of placental mammals. The

same is true for the organization of the LRC at the chromo-

some level. Like in the human genome, elephant LRC is ar-

ranged into three main clusters separated by conserved

groups of non-LRC genes. One such neighboring group

includes Ttyh1, Leng8, Leng9, and Cdc24ep5, whereas the

other includes Ndufa3, Tfpt, Prpf31, Cnot3, Leng1, Tmc4,

Mboat7, Tsen34, and Rps9 (fig. 3A and B). The LRC-

flanking genes are Cacng6 and Espl8l1. In the current version

of the armadillo genome, the LRC genes are scattered across

multiple scaffolds whose linkage with each other is unknown.

However, the localization of the Cacng6, Cdc42ep5, Ttyh1,

Ndufa3, Rps9, and Nlrp2 suggests a gene organization very

similar to that in humans and elephant. In the human and

mouse genomes, A1BG lays apart from the LRC on the same

chromosome, whereas IGSF1 gene maps to the X chromo-

some. This arrangement seems to be conserved in the ele-

phant and armadillo genomes. For instance, elephant A1bg

maps roughly 4.7 Mb from GpVI. The elephant and armadillo

Igsf1 are linked to the genes whose orthologs are localized on

the X chromosome in humans (data not shown).
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Expansion of the LRC in Marsupials

High similarity of the LRC gene content in placental mammals

showed that the clues for the evolutionary history of the fam-

ily should be sought in other mammalian lineages, such as

marsupials and monotremes. LRC homologs of two marsupial

species, the short-tailed opossum (Monodelphis domestica),

and the Tasmanian devil (Sarcophilus sharrisii), have been de-

scribed (Belov et al. 2007; van der Kraan et al. 2013). These

authors have reported, correspondingly, 157 and 43 open

reading frames (ORFs) for the LRC-like domains in these spe-

cies’ genomes. The relationships of the marsupial LRC genes

with the eutherian LILR or KIR families have not been resolved

and, for this reason, the family has been designated as MAIR

(Belov et al. 2007). With the finding that IGSF1, A1BG,

TARM1, VSTM1, and OSCAR represent a distinct structural

group of the eutherian LRC, it was of interest to reexamine

the opossum and devil genomes to see if the new genomic

and transcriptomic data may provide more accurate insight

into the evolution of the mammalian LRC.

Our analysis of the opossum genome led to the identifica-

tion of 233 exons for the LRC-like domains (fig. 6A and sup-

plementary table 1, Supplementary Material online). Of these,

176 are clustered on the fourth chromosome according to the

assembly annotation. Two exons map to the second chromo-

some and 55 to the regions with unknown (Un) chromosomal

localization. One hundred and ninety-three exons appear to

lack errors. The quantitative difference (193 vs. 157) in the

present and previous findings is likely attributable to the dif-

ferent approaches used for the genome analysis. Belov et al.

(2007) used a search with Markov’s models against LILRs and
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FIG. 3.—Schematic representation of the LRC organization in the human (A), elephant (B), and armadillo (C) genomes. Italicized numbers show the

position in a scaffold according to the current genome annotations at the Ensembl website. Exons for Ig-like domains are shown by triangles. The orientation

of the exon-designating triangles corresponds to the transcription orientation. The attribution of the predicted genes is based on the results of the

phylogenetic analysis (figs. 4 and 5). Non-LRC genes are shown by large black rectangles. Black bars show exons for TM regions without charged residues.

Empty bars show exons for the NxxR-motif-containing TMs. Pattern-filled shapes show partially sequenced or aberrant exons.
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KIRs, and they considered only the matches with scores above

the cutoff of 10. In this study, we selected LRC candidates

based on their individual BlastP examination rather than on

the matching scores. The accuracy of our approach was val-

idated by the subsequent phylogenetic analysis. The attri-

bution of the identified exons to the LRC was also

supported by the structure of adjacent TM exons. The

search revealed 74 TM exons (fig. 6A). Of them, 45

encoded TMs with the NxxR motif. Selected TM sequences

are shown in figure 1. TM exons were not found in some

of the predicted genes. Experimental examination is nec-

essary to determine if these genes encode secreted pro-

teins or their TM exons for any reason have eluded

identification.
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FIG. 4.—Evolutionary relationships between the human (Hs), elephant (La), and armadillo (Dn) LRC molecules. (Left) NJ tree for individual LRC domains

rooted with human CEACAM and CD22. To reduce the size of the tree, the clusters corresponding to certain domain subtypes were compressed and shown

separately: A1 and A2 clusters are shown on the right, whereas B1–B4 are presented in figure 5. The trees were generated using MEGA6 software with p-
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In opossum, the chromosomal region encompassing LRC

genes is partially syntenic to the human 19q13.42 (figs. 3A

and 6A). Two conserved gene groups, one consisting of

Ttyh1, Leng8, Leng9 and the other of Rps9, Tsen34,

Mboat7, Tmc4, Leng1, Cnot3, Prpf31, and Tfpt flank the

2.8-Mb region of the Chr4 containing 88 error-free LRC-re-

lated exons that may be organized into at least 39 genes

judging by the presence of the TM exons. This large cluster

is divided into two parts by a family of 26 genes encoding

seven-span TM proteins homologous to olfactory receptors. A

smaller cluster of 14 exons is present upstream of Ttyh1. It is

flanked by a large group of genes encoding ZFN proteins. One

more cluster of 39 exons is predicted further upstream at the

distance of 17 Mb. This cluster is flanked upstream by a group

of genes that map to the 19q13.3 region in the human ge-

nome (PPP5C, PTG1P, and GANG8) and downstream by the

genes whose human orthologs map to 1p36 (C1ORF159,

TTLL10, and TNFRSF18). A gene on the chromosome 2 is an-

notated as OSCAR-like by the sequencing consortium.

Interestingly, it is located in the region syntenic to the human

HLA.

The genome of the Tasmanian devil was found to contain

140 exons for the Ig-like LRC domains (supplementary table 2,

Supplementary Material online). Of these, 126 lacked visible

errors. In contrast to opossum, the current version of the

Tasmanian devil’s genome assembly consists mainly of short

scaffolds. Altogether we found 44 scaffolds ranging from 1.5

to 3.300 kb and containing 1–14 LRC-related exons (supple-

mentary table 2, Supplementary Material online). It is quite

likely that the actual size of the LRC in the Tasmanian devil’s

genome is even larger. The scattering of the LRC exons on

multiple scaffolds prevented accurate gene predictions.

However, examination of the scaffold gene content demon-

strated some signs of the conserved synteny. For instance, the

scaffold GL849774 contains Ttyh1 and Leng8 together with

seven predicted LRC genes. The scaffold GL850161, in addi-

tion to two LRC-like exons, contains a conserved group of

genes that neighbor LRC in placental mammals: Rps9,

Tsen34, Mboat7, Tmc4, Leng1, Cnot3, Prpf31, and Tfpt.

Phylogenetic analysis of individual exon sequences from

the opossum and the Tasmanian devil LRC showed their close

relationships and, on the other hand, species-specific expan-

sion/contraction in certain LRC subsets. For a couple of opos-

sum sequences, no closely related counterparts were

identified in the devil genome. The same was also true for

some devil sequences. Overall, the trees for marsupial LRC

demonstrated the presence of five large clusters designated

M1–M5 (fig. 7). Although bootstrap values for the M1 cluster

were not high, the relatedness of the M1 sequences was

supported by their position in the genome (fig. 6) and by

subsequent phylogenetic analysis (fig. 8).

According to the results obtained, the vast majority of

predicted opossum LRC-encoded proteins may be subdi-

vided into two groups. The typical member of one of them
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FIG. 5.—Evolutionary relationships of the human (Hs), elephant (La), and armadillo (Dn) LRC molecules (continued from fig. 4). Uncompressed clusters

B1–B4.
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has an EC region composed of two domains, of which the

membrane-distal domain is attributed to the M1 and the

membrane-proximal domain belongs to the M2 subtype.

There are also genes in this group that encode proteins

with a single-domain EC (either M1 or M2) or an EC region

composed of two M1 domains. However, judging by the

distribution (fig. 6) and attribution (not shown) of the

pseudoexons, most of these might have derived from

the genes encoding the M1M2 forms. The members of

the second group have EC region composed of different

combinations of the M3–M5 domain subtypes (fig. 6).

Two more predicted marsupial LRC-like proteins cannot

be attributed to any of these groups. One of these is

encoded by the OSCAR-like gene on the opossum
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FIG. 6.—Schematic representation of the LRC organization in the short-tailed opossum (A) and the platypus (B) genomes. Italicized numbers

show position in a scaffold according to the current genome annotations at the Ensembl website. The colors of the opossum exons correspond to

the color scheme of the phylogenetic tree in figure 7. The orientation of the exon-depicting triangles corresponds to the transcription orientation.

Non-LRC genes are shown by large black rectangles. Black bars show exons for TM regions without charged residues. Empty bars show exons for

the NxxR-motif-containing TMs.
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chromosome 2. Its counterpart is absent in the current

version of the Tasmanian devil genome. Instead, the devil

genome has two exons for a protein which is similar to the

N-terminal part of A1BG (see below) and which is absent

in the opossum genome.

Reduction of the LRC in Platypus

In their analysis of the platypus (Ornithorhynchus anatinus)

genome, Wong et al. (2009) have revealed a large family of

C-type lectin-like receptors. However, LRC homologs have not

been found. The approach used in the present study made it

possible to identify 18 LRC-like exons on the contigs 110

(1,790 kb), 3488 (53 kb), 9988 (23 kb), and 13469 (17 kb)

(fig. 6B). The exon arrangement suggests the presence of

four genes, designated here as Lrc1, Lrc2, Lrc3, and Lrc4

(fig. 6B). Lrc3 and Lrc4 encode cell surface receptors. LRC3

has TM containing the NxxR motif (fig. 1). TM of LRC4 lacks

charged residues. Whether two other genes encode secreted

proteins or their TM exons somehow eluded identification
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FIG. 7.—Evolutionary relationships of the opossum (Md) and
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rooted with human CEACAM and CD22 sequences. To reduce the size of

the tree, the clusters with bootstrap values higher than 90% were com-

pressed. A number of the opossum and devil sequences in each com-

pressed cluster are shown at right.
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remains to be determined. The gene designated here as Lrc3

is described as OSCAR in the platypus genome annotation.

Indeed, the D1 and D2 domains of the deduced protein share

46 and 67% identical residues with the D1 and D2 domains

of human OSCAR, respectively.

Phylogenetic analysis of the platypus LRC single-exon

sequences showed that LRC1 and LRC2 are most probably

descendants of a common ancestor protein. Apart from the

LRC1 d5, their individual domains are closely related (supple-

mentary fig. 1, Supplementary Material online). LRC4 d1 and

d3 appear to be closer related to d4 of LRC1 and LRC2. The

relationships of the other sequences were poorly resolved.

The synteny analysis revealed the presence Cacng6 gene

linked with Lrc4 in the contig 13469. As mentioned above,

Cacng6 is a neighbor of Vstm1 and Tarm1 in the genomes of

placental mammals (fig. 3). The contig 110 contains Ptprt,

Slc32a1, Arhgap40, and Dhx35 whose orthologs map to

the 20q11-q13 region in the human genome. The contig

3488 contains three genes coding for proteins with zink fin-

ger (ZNF) and tripartite motifs in addition to Lrc2. One of these

genes is most similar to the human Rfpl4a which is localized

on 19q13.42. The contig 9988 appears to contain only Lrc3.

Phylogenetic Relationships of the Mammalian LRC
Members

At the final step of this study, the relationships of the human,

elephant, armadillo, opossum, devil, and platypus LRC

sequences were inferred. The main goal of this analysis was

to reveal if any domain subtypes are shared by eutherians,

marsupials, and monotremes. Because of the very large size of

marsupial LRC only a representative sample of the opossum

and devil sequences was taken for analysis. For this purpose,

the marsupial LRC tree was reduced by compression of clus-

ters with a bootstrap support�95% (fig. 7). Forty-six sequen-

ces representing compressed clusters and separate branches

were added to 18 platypus LRC sequences and to the above

eutherian LRC data set, composed of the human, elephant,

and armadillo sequences.

The trees generated at various software settings showed

poor resolution in some parts and high/moderate support in

others. Some sequences (IgSF1 d8, OaLRC1 d5, and OaLRC4

d2 and d4) reproducibly formed individual branches. The mar-

supial M3 subset, as well as the eutherian VSTM1 and TARM1

d1 sequences, was found to be lineage specific. However, the

analysis also revealed the domain subtypes shared by the LRC

molecules from all the three lineages. First of all, of impor-

tance was the clustering of the eutherian OSCAR sequences

with those of the platypus LRC3 and with the opossum LRC

gene from chromosome 2. In the case of OSCAR d2, this

clustering was supported by high bootstrap values. Two exons

from the Tasmanian devil contig GL849924 were found to

encode the N-terminal domains of the marsupial counterpart

of eutherian A1BG. However, no gene or gene fragments

closely related to A1BG were found in the opossum genome.

The d1 and d6 domains of IGSF1 demonstrated statistically

supported relationships not only with d1 of A1BG but also

with the d1 domains of platypus LRC1 and LRC2. The M4

subset of marsupial domains reproducibly fell into one clade

together with the eutherian IGSF1 (d3, d9, d11) and TARM1

(d2), as well as with OaLRC1 (d4), OaLRC2 (d4) and OaLRC4

(d1, d3). Finally, the M5 subset of the marsupial LRC sequen-

ces showed closer relationships with d4, d5, d10, and d12 of

eutherian IgSF1 (fig. 8). These results indicate that the group B

of eutherian LRC genes might have emerged before radiation

of the three mammalian lineages.

Of particular interest was the question whether platypus

and marsupials possess receptors structurally related to the

members of the “A” group of eutherian LRC, such as KIRs

and LILRs. As indicated herein, this group most probably

emerged by a series of duplications from a single ancestral

protein with the A1- and A2-subtype domains. It remained,

however, unclear as to which stage of the mammalian phy-

logeny these duplications might have occurred at. In the

mammalian trees generated, the marsupial M2 subset

showed reproducible clustering with the eutherian A2

sequences. Although the bootstrap values for this clustering

were not high (55–65%), it was noteworthy that the marsu-

pial M1 subset tended to associate with the eutherian A1

group sequences (not shown). As the M1 and M2 subsets

characterize domains of a distinct group of marsupial LRC

proteins (fig. 6), we suggested that this group is homologous

to the eutherian group “A.”

To test this suggestion, we collected a data set of sequen-

ces encoding N-terminal domain pairs from 22 opossum and

5 devil predicted LRC genes (supplementary data set 1,

Supplementary Material online). The choice was made on

the basis of initial phylogenetic analysis to include sequences

representing all the main branches of marsupial LRC (fig. 7).

The data set was extended by addition of two-exon sequen-

ces for N-terminal parts of platypus LRC1, LRC2, LRC3,

and LRC4 as well as of human and elephant FcaR, GPVI,

NCR1, LILR1, TARM1, OSCAR, A1BG, and IgSF1. In the

latter case, the sequence of a d6d7 pair of exons was

added. Human CEACAM and CD22 sequences were

used as an outgroup.

The representative NJ tree shows two main clusters (fig. 9).

One of them includes the eutherian group “A” members

(FcaR, GPVI, NCR1, and LILR1) and all the marsupial proteins

with the M1M2 architecture. High statistical support suggests

that the marsupial M1 domains are diverged counterparts of

the eutherian A1, whereas the M2 is the counterpart of the

A2. The results of this analysis also suggest that the devil gene

from the GL851019 scaffold is an ortholog of eutherian GpVI

in accordance with the notion by van der Kraan et al. (2013).

Chromosomal localization of the marsupial genes belonging

to the M1M2 subset is consistent with their closer relatedness

to the eutherian A group. Like in the human and elephant
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LRC, these genes are linked to the Ttyh1, Leng9, and Rps9

genes (fig. 6).

The remaining marsupial genes and all members of the

platypus LRC fall into one cluster together with the group

“B” eutherian sequences. This cluster is further subdivided

into two main subclades. One of them includes eutherian

TARM1, platypus LRC4 and all the marsupial proteins speci-

fied by the presence of M3–M5 domain subtypes. The second

includes eutherian A1BG, IGSF1, and OSCAR together with

the platypus LRC1, LRC2, LRC3, and the devil A1BG-like

sequences. Eutherian OSCAR is closely related to the platypus

LRC3/OSCAR and to the opossum OSCAR-like protein. Given

that all these receptors have a TM region with the NxxR motif,

they may be regarded as true orthologs. The reproducible

clustering of the OSCAR, IGSF1, and A1BG in all the data

sets analyzed strongly suggests their common origin.

Discussion

Despite a range of important functions served by mammalian

LRC members, the evolutionary history of this gene family

remains elusive. At the same time, genome annotations for

various nonmammalian vertebrate species frequently contain

gene names claiming attribution to the LRC. Although such

relatedness may be true in some cases, the exact designations

are usually misleading because they are generated in an au-

tomatic mode without taking into consideration the evolu-

tionary plasticity of the family. The previous studies of the

LRC evolution inferred a common origin of KIRs, LILRs,

LAIRs FCAR, GPIV, and NCR1 (Hughes 2002; Nikolaidis

et al. 2005). However, the relationships of these proteins

with such eutherian LRC members as OSCAR and the recently

described VSTM1 and TARM1 were unknown. Neither re-

solved were the relationships of human and rodent LRC mem-

bers with their marsupial, chicken, and Xenopus counterparts.

In this article, we present the results of the comprehensive

bioinformatic analysis of the LRC gene structure and relation-

ships in mammals as the first step in a study aimed at better

understanding of the LRC evolution in jawed vertebrates.

First of all, we showed that the previous descriptions of the

family in eutherian mammals were incomplete as they did not

consider such genes as Igsf1 and A1bg. These genes are not

closely linked to other LRC genes in the human, armadillo,

and elephant genomes. Nevertheless, their attribution to the

LRC is unequivocally supported by sequence comparisons, 3D

modeling and phylogenetic analysis. Actually, it was the in-

clusion of these genes into the study that made it possible to

uncover the structural links among the eutherian, marsupial,

and monotreme LRC. Second, we substantially revised the

LRC gene content in marsupial species. Previous reports de-

scribed 157 and 43 ORFs for LRC-like domains in the genomes

of the short-tailed opossum (Belov et al. 2007) and the

Tasmanian devil (van der Kraan et al. 2013), respectively.

The approach used in this study enabled the identification

of 199 and 123 error-free exons, respectively. The exhaustive

characterization of the marsupial LRC as well as the identifi-

cation of four platypus LRC genes for the first time provided a

solid basis for the inferences of the LRC phylogeny in

mammals.

Based on the phylogenetic analysis, the mammalian LRC

members can be classified into two groups, each presumably

derived from a single ancestor (figs. 9 and 10). The group A

members are distinguished by the presence of the A1- and/or

A2-like domain subtypes in their EC regions. In eutherians,

both domain subtypes are present in LILRs, NCR1, GPVI, and

FCAR. LAIRs encompass only A1 domains, and KIRs are
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FIG. 9.—Evolutionary relationships of the mammalian LRC members.

NJ tree of N-terminal Ig-like domain pairs rooted with human CEACAM

and CD22 sequences.
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composed of the A2 only. The marsupial A group includes

receptors composed of the A1 and/or A2 counterparts (M1

and M2 domain subtypes, respectively, in fig. 7).

The B group is characterized by the presence of multiple

domain subtypes. Some of them are strongly diverged and

could not be classified reliably. However, of importance is the

presence of at least three domain subtypes (B1, B2, and B4)

shared in the domain architectures of B group members from

different mammalian lineages. We suggest that the putative

ancestor of the B group had a long EC region composed of

several domain subtypes related to the B1-, B2-, and B4-like

domains. The diverse architectures of the modern B group

receptors may be explained by continuous exon shuffling

and accumulation of multiple mutations in the domains less

constrained by natural selection (fig. 10). One of the earliest

events in the expansion of the B group was the emergence of

OSCAR.

Both A and B groups evolved in a clear lineage-specific

manner in monotremes, marsupials, and eutherians. The

only member shared by all the three lineages is OSCAR. In

the B group, platypus LRC1 and LRC2 are paralogs of marsu-

pial and eutherian A1BG but domain architectures of these

molecules are different in the three lineages. Platypus seems

to have lost the A group genes (although assembly gaps in the

current version of the genome cannot be excluded).

Marsupials and eutherians share only GPVI in the A group.

Given that OSCAR and GPVI are receptors for collagen

(Clemetson et al. 1999; Barrow et al. 2011), it would be
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reasonable to suggest that mammalian LRC ancestors partic-

ipated in collagen recognition. As to other functions known

for eutherian LRC molecules, most of them might have

emerged as a result of the eutherian-specific diversification

of the family. For instance, we found no analogs of the lysine-

containing KIR TM domain in species other than primates. This

is in agreement with the proposed primate-specific emer-

gence of KIRs as MHC class I-specific NK cell receptors

(Parham et al. 2010).

Another highly probable neofunctionalization event in the

LRC evolution is the emergence of Igsf1. The search in

GenBank shows that numerous predicted genes from non-

mammalian species are designated either as Igsf1 or Igsf1-like.

However, our data indicate that Igsf1 is an eutherian-specific

gene. It seems to have emerged by the fusion of two highly

similar ancestor genes, which shared roots with the marsupial

and eutherian A1bg as well as with the monotreme Lrc1 and

Lrc2. Unlike other eutherian LRC members, IGSF1 is strongly

conserved (75–80% identity at the amino acid level) and,

most importantly, is predominantly expressed in the nervous

and testicular tissues. According to the recent reports, Igsf1

mutations are implicated in central hypothyroidism (Sun et al.

2012; Joustra et al. 2016).

While attempting to uncover the exact function(s) of

IGSF1, it would be important to keep in mind that its TM

region belongs to the subtype known to transmit signals

through the FcRc subunit. Our data show that this particular

TM domain is the most conserved structural element of the

LRC family. Its characteristic arginine residue has been shown

to be essential for functional association with FcRc (Morton

et al. 1995). However, there are other conserved features,

such as the invariable Asp at the position �2 to the Arg, a

consensus DYT motif at the N-terminus and rather unusual

(for TMs) negatively charged residue(s) at the C-end (fig. 1).

Interestingly, NxxR-containing TM subtype is also used by the

Xenopus FCRL- and SLAM-like receptors (Guselnikov et al.

2008, 2011). Similarly to the marsupial LRC, the Xenopus

FCRL and SLAM families are characterized by extraordinary

size (at least 70–75 genes per family) and structural diversity.

This striking parallelism argues in favor of advantageous role

of the NxxR-TM in expansion and diversification of various

receptor families.

The FcRc subunit is known to associate with numerous cell

surface molecules with highly diverged TM sequences. The

exact reasons for NxxR-TM sequence conservation remain

unclear. It is possible that this TM subtype has so far unknown

functional properties affecting either surface distribution of

the receptor, its mode of interaction with FcRc or downstream

signaling. Of relevance may be the fact that molecules con-

taining this TM do not usually require FcRc for surface expres-

sion and that, in certain circumstances, the FcRc ITAM may

fulfill the inhibitory function (Pasquier et al. 2005).

In summary, our study identifies IGSF1 and A1BG as mem-

bers of eutherian LRC and redefines the LRC gene content in

marsupial and monotreme genomes. The results of phyloge-

netic analysis show subdivision of the mammalian LRC into

two groups and infer their origin from two ancestral genes.

Rapid expansion/contraction accompanied by the extensive

exon shuffling resulted in strikingly different LRC families in

extant monotremes, marsupials, and eutherians. The only LRC

member shared by the three lineages is OSCAR. The mode of

the family evolution observed suggests that eutherian LRC

functions may mostly have a lineage-specific origin. Of note

is the strong conservation of a characteristic TM subtype

known to interact with FcRc. We suggest that the functional

role of this particular TM sequence is underappreciated and it

is worth further investigation.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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The chicken leukocyte receptor complex encodes a family of different

affinity FcY receptors. J Immunol. 182(11):6985–6992.

Guselnikov and Taranin GBE

1616 Genome Biol. Evol. 11(6):1602–1617 doi:10.1093/gbe/evz102 Advance Access publication May 20, 2019



Viertlboeck BC, et al. 2005. The chicken leukocyte receptor complex: a

highly diverse multigene family encoding at least six structurally distinct

receptor types. J Immunol. 175(1):385–393.

Viertlboeck BC, et al. 2007. The chicken leukocyte receptor complex enc-

odes a primordial, activating, high-affinity IgY Fc receptor. Proc Natl

Acad Sci U S A. 104(28):11718–11723.

Wagtmann N, Rojo S, Eichler E, Mohrenweiser H, Long EO. 1997. A new

human gene complex encoding the killer cell inhibitory receptors and

related monocyte/macrophage receptors. Curr Biol. 7(8):615–618.

Warren WC, et al. 2008. Genome analysis of the platypus reveals unique

signatures of evolution. Nature 453(7192):175–183.

Wende H, Colonna M, Ziegler A, Volz A. 1999. Organization of the leu-

kocyte receptor cluster (LRC) on human chromosome 19q13.4.

Mamm Genome 10(2):154–160.

Willcox BE, Thomas LM, Bjorkman PJ. 2003. Crystal structure of HLA-A2

bound to LIR-1, a host and viral major histocompatibility complex re-

ceptor. Nat Immunol. 4(9):913–919.
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