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1  | INTRODUC TION

Organisms are regularly exposed to several environmental stress-
ors that can interact with each other to affect individual fitness. 
Predicting the magnitude and direction of these effects is diffi-
cult because different stressors can have additive, synergistic and 
even antagonistic effects (Coors & Meester, 2008; Crain, Kroeker, 

& Halpern, 2008; Galic, Sullivan, Grimm, & Forbes, 2018; Heugens, 
Hendriks, Dekker, Straalen, & Admiraal, 2001). For example, varia-
tion in food availability and temperature can either increase or de-
crease the toxicity of many substances (Boone & Bridges-Britton, 
2006; Heugens et al., 2001) and a recent meta-analysis showed 
that, in freshwater organisms, responses to different stressors 
tend to be antagonistic or additive, in contrast with the prevalence 
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Abstract
Reduced body size and accelerated life cycle due to warming are considered major 
ecological responses to climate change with fitness costs at the individual level. 
Surprisingly, we know little about how relevant ecological factors can alter these 
life history trade-offs and their consequences for individual fitness. Here, we show 
that food modulates temperature-dependent effects on body size in the water flea 
Daphnia magna and interacts with temperature to affect life history parameters. We 
exposed 412 individuals to a factorial manipulation of food abundance and tempera-
ture, tracked each reproductive event, and took daily measurements of body size 
from each individual. High temperature caused a reduction in maximum body size 
in both food treatments, but this effect was mediated by food abundance, such that 
low food conditions resulted in a reduction of 20% in maximum body size, compared 
with a reduction of 4% under high food conditions. High temperature resulted in an 
accelerated life cycle, with pronounced fitness cost at low levels of food where only 
a few individuals produced a clutch. These results suggest that the mechanisms af-
fecting the trade-off between fast growth and final body size are food-dependent, 
and that the combination of low levels of food and high temperature could potentially 
threaten viability of ectotherms.
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of synergistic effects seen in marine systems (Jackson, Loewen, 
Vinebrooke, & Chimimba, 2016). Thus, it is essential that we assess 
the different ways by which organisms respond to multiple stressors.

Increases in average temperature, as well as in the magnitude and 
timing of temperature variation, are important ecological stressors 
related to climate change that affect all levels of biological organiza-
tion. Warmer temperatures can advance reproductive maturation, 
increase reproduction frequency and shorten life span, leading to 
an accelerated life cycle (Bestion, Teyssier, Richard, Clobert, & Cote, 
2015). These individual effects have been shown to scale up to de-
stabilize population dynamics and increase the risk of extinction 
(Bestion et al., 2015). High temperature can also lead to a decline 
in mean body size of a given population (Atkinson & Sibly, 1997), 
which has been considered a general response to global warming, 
especially in ectotherms (Daufresne, Lengfellner, & Sommer, 2009; 
Ohlberger, 2013; Sheridan & Bickford, 2011). However, the effect of 
temperature on organismal fitness often depends on several other 
ecological factors. For example, many studies have shown that body 
size shrinkage is mediated by genetic background (Cambronero, 
Beasley, Kissane, & Orsini, 2018; Hoefnagel, Vries, Jongejans, & 
Verberk, 2018), pesticides (Cambronero et al., 2018), and food avail-
ability (Cambronero et al., 2018; Heugens et al., 2001; Orcutt & 
Porter, 1984).

Variation in food availability is particularly important because it 
can also influence final adult body size (Atkinson, 1994; Atkinson 
& Sibly, 1997; Kooijman & Kooijman, 2010; Vidal, 1980) and de-
mographic parameters, with important consequences for the resil-
ience of populations (Gardner, Peters, Kearney, Joseph, & Heinsohn, 
2011; Hoy, Peterson, & Vucetich, 2017; Sheridan & Bickford, 2011; 
Yom-Tov, Yom-Tov, Wright, Thorne, & Feu, 2006). Organisms often 
experience wide seasonal variation in food availability, and cli-
mate change is altering the timing, amount and variation of many 
resources (Williams et al., 2017). For example, global warming can 
have a negative impact on consumer resource due to mismatches be-
tween seasonal resource peaks and consumer breeding phenology 
(Both et al., 2010; Cahill et al., 2012; Parmesan, 2006). In some sys-
tems, food is becoming more abundant (Cox, Betts, Jones, Spall, & 
Totterdell, 2000; Parton, Scurlock, Ojima, Schimel, & Hall, 1995) due 
to positive temperature-dependent effects on primary productivity 
(Taucher & Oschlies, 2011), while many organisms are experiencing 
higher variation in food availability (Kraemer, Mehner, & Adrian, 
2017; O’Reilly, Alin, Plisnier, Cohen, & McKee, 2003; O’Reilly et al., 
2015GL). Although many studies have demonstrated significant in-
teractions between temperature and food stress (Cambronero et al., 
2018; Heugens et al., 2001; Jackson et al., 2016; Orcutt & Porter, 
1984), it is not clear whether high levels of food abundance could 
compensate for the negative effects of high temperature on body 
size imposed by an accelerated pace of life (Gardner et al., 2011) or if 
low levels of food could inhibit an accelerated life cycle.

Here, we applied a factorial experimental design using the water 
flea Daphnia magna as a model system to disentangle the interactive 
effects of food and temperature on individual fitness. We exposed 
412 Daphnia magna individuals to either high or low levels of food 

abundance as well as either high or low temperature and tracked 
reproduction, survival, and somatic growth over their entire lifes-
pan. Daphnia is often promoted as an ideal model organism to in-
vestigate the effects of climate change (Scheffers et al., 2016). Like 
Daphnia, 99.9% of the species on Earth are ectothermic and their 
metabolic rates are expected to increase by 10%–75%, making them 
particularly vulnerable to global warming (Bickford, Howard, Ng, & 
Sheridan, 2010; Daufresne et al., 2009). Our dataset allowed us to 
investigate the combined effects of variation in temperature and/
or food abundance on adult body size and several life demographic 
parameters, such as size and age at first reproduction, lifetime repro-
ductive success, and life span.

2  | METHODS

Females for this study originated from a clonal population of 
Daphnia that was first raised in two 26,000 L tanks for 18 months, 
such that all individuals experienced wide variation in food abun-
dance caused by population fluctuations, but were exposed to 
either high or low levels of ambient temperature (Betini, Avgar, 
McCann, & Fryxell, 2017). After inoculation with algae and 
Daphnia, the tanks were not disturbed. Two tanks were first in-
oculated with a clonal population of D. magna that were kept in 
laboratory at 20°C with 12 hr:12 hr dark:light cycle. Females were 
collected from these two tanks whose mean temperature had 
been kept at either 15°C or 25°C (eight females from each tank), 
with temperature at different depths in the water column varying 
between 13 to 18°C (14.93°C, ±1.95; mean and SD) and 23 to 31°C 
(24.84°C, ± 3.10), respectively. Individuals from both tanks were 
brought to the laboratory and kept in incubators with constant 
temperature at either 15 or 25°C, according to the average tem-
perature they experienced in the mesocosm tanks. They were in-
dividually housed in vials with 12 ml of the same well water, under 
the same 12 hr:12 hr dark:light cycle used in the mesocosm tank, 
and fed ad libitum with C. vulgaris. The algae used in the laboratory 
experiment were also grown in the same well water at room tem-
perature and same light cycle. Because the well water did not con-
tain enough phosphorous to promote algal growth, we added 20% 
of COMBO to all algal cultures (Kilham, Kreeger, Lynn, Goulden, & 
Herrera, 1998).

First generation offspring was used in the experiments only 
after each of the 16 females (eight in each temperature treatment) 
had produced three clutches under laboratory conditions. Females 
were checked for new offspring every morning. Within 24 hr, all 
individuals (~24 individuals per female; see Figure 1 for sample size 
in each treatment) were measured and haphazardly assigned to 
one of the four treatment combinations in a factorial design: high 
or low level of food abundance and high or low temperature. All 
offspring were individually housed in vials of the same size and 
medium used for the adults and placed in incubators, at either 
15 or 25°C with a 12 hr dark:12 hr light cycle. We replaced 2/3 
of the medium of all individuals daily to maintain constant algal 
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concentration and replaced the whole vial once a week and when-
ever a female produced a new clutch. Food added was 6 × 105 
cells/ml for the high food treatment and 1 × 105 cells/ml for the 
low food treatment. The high food level was chosen to allow fe-
males to have an excess of food after 24 hr (as determined from 
preliminary trials), and the low level was chosen to represent one 
half of this amount.

To measure body and clutch size, all individuals were photo-
graphed daily with digital camera attached to a dissecting micro-
scope. Body size was measured from the anterior point of the eye 
to the base of the tail spine, and clutch size was estimated from the 
pictures as the number of eggs in the brood chamber.

To understand the effect of temperature and food abundance on 
adult body size and other demographic parameters, we used a robust 
mixed effect linear model (a form of weighted mixed effect model) 
to reduce the influence of potential outliers and, at the same time, 

to control for the potential influence of the individual mother and 
maternal effects (mother ID was entered as a random effect). To ad-
ditionally control for maternal effects, we also included the tempera-
ture parents had been raised at as an explanatory variable. This was 
important, because the mothers we used could have experienced 
plastic changes caused by different levels of temperature they ex-
perienced in the mesocosm tanks. Body size, age and size at first 
reproduction, time between clutches, clutch size (mean of number 
of eggs produced), and lifetime reproductive success (total number 
of eggs produced) were used as response variables. The explanatory 
variables were temperature and food abundance (and their interac-
tion) for body size, and temperature for all other life history param-
eters. We did not include food in the analysis of most life history 
parameters because individuals exposed to high temperature and 
low levels of food did not reproduce. For model inference, we used 
Wald confidence intervals (CI) and evaluated whether the parameter 
estimate fell within the 95% confidence limits for the Wald test. We 
investigated the effects of food and temperature on survival proba-
bility using a robust Cox proportional hazards model with the same 
explanatory variables as above. To facilitate residual normality, we 
log transformed all response variables prior to analysis. The regres-
sions were fit with the robustlmm package (Koller, 2016), and the Cox 
model was fit with the coxrobust package (Bednarski & Borowicz, 
2006). We also tested at what age the average size individuals at low 
temperature exceeded those from high temperature by comparing 
the mean body size for each day of the trial with a Welsh t test.

3  | RESULTS

Experimentally imposed differences in food availability altered the 
magnitude of temperature-dependent effects (Table 1 and Table S1, 
Figure 2 and Figure S1): under low food conditions, high temperature 

F I G U R E  1   Schematic of the crossed design used to understand 
the effects of temperature on offspring size and life history. 
Numbers represent sample size (number of individuals) in each 
treatment

 

15°C 25°C

Low food (99) High food (102) Low food (111) High food (100)

Adult body size 
(mm)

2.19 (±0.66) 3.55 (±1.19) 1.78 (±0.36) 3.42 (±0.80)

Life span (days) 51.82 (±37.86) 55.09 (±29.24) 19.09 (±15.38) 35.14 (±16.71)

Age at 1st 
reproduction 
(days)

57.7 (±11.90) 14.96 (±2.47) - 8.61 (±1.65)

Size at 1st 
reproduction 
(mm)

2.58 (±0.13) 2.60 (±0.19) - 2.58 (±0.19)

Time between 
clutches (days)

58.37 (±37.60) 6.43 (±3.40) - 3.54 (±1.10)

Clutch size 
(number of 
eggs)

1.34 (±0.41) 15.89 (±3.95) - 10.30 (±2.61)

LTRS (number 
of eggs)

3.32 (±2.34) 196.56 (±85.91) - 130.29 (±70.91)

TA B L E  1   Average and ± standard 
deviation of demographic parameters 
obtained for individuals exposed to 
one of treatments: low (15°C) and high 
temperature (25°C) and/or low and 
high food availability. There was no 
reproduction when individuals were 
exposed to both 25°C and low food 
treatment. Numbers are parenthesis in 
the header represent sample size for each 
treatment (n = 412). LTRS refers to lifetime 
reproductive success
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resulted in a reduction of 20% in maximum body size, compared with 
a reduction of 4% under high food conditions (Figure 2; significant 
interaction between temperature and food; β  =  0.133, 95% Wald 
confidence interval = 0.042, 0.224; Table 1 and Table S2). Individuals 
exposed to low levels of food abundance were larger when raised 
at high temperature for about half of their life span (Figures 3 and 
4). In contrast, well-fed individuals raised at high temperature were 
larger than well-fed individuals raised at low temperature for most 
of their lives (Figures 3 and 4). Food abundance also mediated the 
temperature-dependent effect on survival probability: high levels of 
food abundance reduced survival probability in the low temperature 
treatment, whereas high levels of food abundance had the opposite 
effect at high temperature, resulting in increased survival probability 
(Figure 4; significant interaction between temperature and food; β = 
−0.558, SE = 0.035, p < .001; Table S3).

High temperature resulted in a faster life cycle for individuals 
with high food abundance, with earlier age at first reproduction (β 

F I G U R E  2   Body size of 412 Daphnia 
magna individuals, measured daily 
throughout their entire lives. Red and 
blue represent individuals exposed to 
high and low temperature, respectively. 
Horizontal lines represent average size 
of first reproduction for all treatment 
where at least one individual reproduced 
(~2.58 mm; size at first reproduction 
was not statistically different between 
treatments). Red and blue lines represent 
fitted values obtained by the equation 
y = a + b × log (x) where y is size, x is age, 
and a and b are parameters estimated 
from the data (see Table S3 for parameter 
values). Inset figures represent maximum 
body size of 412 Daphnia magna 
individuals. White points and lines beside 
the violin plots represent the mean ± 1 
standard deviation

F I G U R E  3   Difference in body size 
between temperature treatments, 
calculated as the mean body size of 
individuals exposed to high temperature 
minus the mean body size of individuals 
exposed to low temperature. We only 
compared means if treatments had at least 
10 individuals. Positive values indicate 
that individuals at high temperature were 
larger than individuals at low temperature. 
Shaded gray areas indicated that there is 
no statistical difference between the daily 
mean body size at α = 0.05

F I G U R E  4   Survival probability of Daphnia magna individuals 
in high vs. low temperature and high vs. low food treatments, 
estimated using a Cox proportional hazards regression model. 
Shaded areas represent 95% confidence intervals
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= −0.548, CI = −0.585, −0.511; Figure 5a, Table 1 and Table S2) and 
shorter time between clutches (β = −0.553, CI = −0.588, −0.517; 
Figure 5b, Table 1 and Table S2). This “live fast, die young” life history 
response, however, came at the cost of reduction in average clutch 
size (β = −0.453, CI = −0.514, −0.393; Figure 5c, Table 1 and Table 
S2) and diminished lifetime reproductive success (β = −0.469, CI = 
−0.658, −0.280; Figure 5d, Table 1 and Table S2). This cost was most 
extreme in the treatment combining low food with high tempera-
ture, in which no individuals reproduced. Size at first reproduction 
(~2.58 mm) was the same for all treatments where females produced 
at least one clutch (there was no effect of temperature on size at 
first reproduction; β = −0.009, CI = −0.062, 0.044; Figure 2 Table 1 
and Table S2).

4  | DISCUSSION

Our experimental results show that the shrinking effect caused by 
high temperature in Daphnia was food-dependent, indicating that 
high levels of food intake can partially compensate for tempera-
ture-dependent constraints on body size. Moreover, accelerated 
life history responses were observed only under high levels of food 
abundance. At low levels of food, individuals did not reproduce 
when exposed to high temperature, even though their life span 
was similar to those individuals exposed to high temperature and 
high food concentration. This indicates that the fast life cycle due 
to warming was most pronounced when energy intake exceeded 
the amount required to meet metabolic demand. This could have 
important consequences for the resilience of ecosystems, because 

fast life cycles are hypothesized to promote rapid rates of popula-
tion growth, and hence instability (Bestion et al., 2015). On the other 
hand, the combination of high temperature and low levels of food 
abundance, leading to compromised reproduction, would obviously 
have a negative impact on population growth rate. Consequently, 
populations exposed to extended periods of both high temperature 
and low levels of food abundance could be particularly vulnerable to 
population collapse and perhaps even extinction.

Size at first reproduction was the same for all treatments where 
individuals were able to reproduce. Even at low temperature, 
Daphnia individuals had an extended life span and many of them 
achieved the minimal size to reproduce, but a few were able to pro-
duce a clutch. This suggests a relocation of resources toward growth 
that compromises reproduction. In many species, including Daphnia 
magna (Ebert, 1992), individuals must achieve a threshold size to re-
produce. When exposed to low food conditions, some individuals 
might relocate resources toward growth at the cost of reproduction. 
Finding enough resources for maintenance and reproduction is a 
common challenge for many species during the breeding season. A 
combination of high ambient temperature due to global warming and 
low food abundance, caused for example by mismatches between 
resources and consumers (Both et al., 2010; Cahill et al., 2012), 
could be particularly lethal. It could even create an ecological trap 
because of the dissociation between the reliable cue to invest in re-
production under warming seasonal conditions and the fitness costs 
that this strategy would result under low levels of food abundance 
(Schlaepfer, Runge, & Sherman, 2002).

The mechanisms linked to body size changes at different tem-
peratures may have differed between high and low food abundance 

F I G U R E  5   Distribution of age at 
first reproduction (a), time between 
clutches (b), mean clutch size (c), and 
lifetime reproductive success (d) for 
Daphnia magna individuals in the high 
food treatment. Only a few individuals 
reproduced in the low food treatment. 
White points and lines beside the violin 
plots represent the mean ± 1 standard 
deviation
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treatments. At high levels of food availability, individuals raised 
under high temperature conditions tended to be larger for most 
of their lives compared with individuals raised under cooler con-
ditions. Nonetheless, individuals raised at cooler temperatures, 
regardless of their food levels, tended to reach larger size before 
they died due to their extended life span. We speculate that this 
could be due to the high metabolic costs of maintaining an accel-
erated life cycle. At low food levels, growth patterns resembled 
those expected for the temperature-size rule, that is, fast growth 
at young ages, with a lower final body size than those observed 
at low temperature (Atkinson, 1996; Audzijonyte et al., 2017). 
Oxygen limitation has been hypothesized as a cause of the tem-
perature-dependent reduction in ectotherm body size (Atkinson, 
Morley, & Hughes, 2006). However, the oxygen hypothesis leads 
to the prediction that organisms relying on diffusive uptake should 
be particularly sensitive to temperature stress, regardless of food 
abundance (Rollinson & Rowe, 2018), a pattern that we did not 
observe in our experiments. Although we did not measure oxygen 
intake, our results suggest that changes in body size distribution 
are influenced by a complex mix of responses in growth, reproduc-
tion, and survival. System-specific variation in the relative degree 
of response in each of these variables might help to explain some 
of the conflicting results seen in the published literature on the 
effect of warming on mean adult body size (Atkinson et al., 2006; 
Audzijonyte et al., 2017; Kooijman & Kooijman, 2010; Rollinson & 
Rowe, 2018; Vidal, 1980).

ACKNOWLEDG EMENTS
We thank Maria Julia M. Rebouças, Leon Mayorga, Amber Lavictoire, 
Alyssa Robinson, Hannah Wynen, Megan Katsabouris and Kennedy 
Bucci for their help with the experiments and body size measure-
ments. Financial support for this research was provided by the Food 
from Thought program from the Canada First Research Excellence 
Fund and a NSERC Discovery Grant to JF.

CONFLIC T OF INTERE S T
None declared.

AUTHOR CONTRIBUTIONS
GSB conceived the idea with JMF; GSB ran the experiments and 
collected the data assisted by XW; GSB, TA, and MG analyzed 
the data; GSB wrote the first draft of the manuscript. All authors 
discussed the ideas and commented on subsequent drafts of the 
manuscript.

DATA AVAIL ABILIT Y S TATEMENT
The data are available at the Figshare Repository https​://10.6084/
m9.figsh​are.11116640.

ORCID
Gustavo S. Betini   https://orcid.org/0000-0003-0707-4128 
Tal Avgar   https://orcid.org/0000-0002-8764-6976 
Matthew M. Guzzo   https://orcid.org/0000-0001-9229-4410 

R E FE R E N C E S
Atkinson, D. (1994). Temperature and organism size: A biological law for 

ectotherms? Advances in Ecological Research, 25, 1–58.
Atkinson, D. (1996). Ectotherm life-history responses to developmen-

tal temperature. In I.A. Johnston & A. F. Bennett (Eds.), Animals and 
Temperature: Phenotypic and Evolutionary Adaptation, (pp.183–204). 
Cambridge, UK: Cambridge University Press.

Atkinson, D., Morley, S. A., & Hughes, R. N. (2006). From cells to colo-
nies: At what levels of body organization does the ‘temperature-size 
rule’ apply? Evolution & Development, 8(2), 202–214. https​://doi.
org/10.1111/j.1525-142X.2006.00090.x

Atkinson, D., & Sibly, R. M. (1997). Why are organisms usually bigger in 
colder environments? Making sense of a life history puzzle. Trends 
in Ecology & Evolution, 12(6), 235–239. https​://doi.org/10.1016/
S0169-5347(97)01058-6

Audzijonyte, A., Barneche, D. R., Baudron, A. R., Belmaker, J., Clark, T. D., 
Marshall, C. T., … vanRijn, I. (2017). Is oxygen limitation in warming 
waters a valid mechanism to explain decreased body sizes in aquatic 
ectotherms? Global Ecology and Biogeography, 28(2), 64–77. https​://
doi.org/10.1111/geb.12847​

Bednarski, T., & Borowicz, F. (2006). coxrobust: Robust Estimation in Cox 
Model. R Package Version, 1.

Bestion, E., Teyssier, A., Richard, M., Clobert, J., & Cote, J. (2015). Live 
fast, die young: experimental evidence of population extinction risk 
due to climate change. PLOS Biology, 13(10), e1002281. https​://doi.
org/10.1371/journ​al.pbio.1002281

Betini, G. S., Avgar, T., McCann, K. S., & Fryxell, J. M. (2017). Daphnia 
inhibits the emergence of spatial pattern in a simple consumer–re-
source system. Ecology, 98(4), 1163–1170. https​://doi.org/10.1002/
ecy.1752

Bickford, D., Howard, S. D., Ng, D. J. J., & Sheridan, J. A. (2010). Impacts 
of climate change on the amphibians and reptiles of Southeast 
Asia. Biodiversity and Conservation, 19(4), 1043–1062. https​://doi.
org/10.1007/s10531-010-9782-4

Boone, M. D., & Bridges-Britton, C. M. (2006). Examining multiple sub-
lethal contaminants on the gray treefrog (Hyla versicolor): Effects of 
an insecticide, herbicide, and fertilizer. Environmental Toxicology and 
Chemistry, 25(12), 3261–3265. https​://doi.org/10.1897/06-235R.1

Both, C., Turnhout, C. A. M. V., Bijlsma, R. G., Siepel, H., Strien, A. J. V., 
& Foppen, R. P. B. (2010). Avian population consequences of climate 
change are most severe for long-distance migrants in seasonal habi-
tats. Proceedings of the Royal Society B: Biological Sciences, 277(1685), 
1259–1266. https​://doi.org/10.1098/rspb.2009.1525

Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., 
Karanewsky, C. J., Yeong Ryu, H., … Wiens, J. J. (2012). How does 
climate change cause extinction? Proceedings of the Royal Society B: 
Biological Sciences, 280(1750), 20121890–20121890. https​://doi.
org/10.1098/rspb.2012.1890

Cambronero, M. C., Beasley, J., Kissane, S., & Orsini, L. (2018). Evolution 
of thermal tolerance in multifarious environments. Molecular Ecology, 
27(22), 4529–4541. https​://doi.org/10.1111/mec.14890​

Coors, A., & Meester, L. D. (2008). Synergistic, antagonistic and additive 
effects of multiple stressors: Predation threat, parasitism and pes-
ticide exposure in Daphnia magna. Journal of Applied Ecology, 45(6), 
1820–1828. https​://doi.org/10.1111/j.1365-2664.2008.01566.x

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). 
Acceleration of global warming due to carbon-cycle feedbacks in a 
coupled climate model. Nature, 408(6809), 184–187. https​://doi.
org/10.1038/35041539

Crain, C. M., Kroeker, K., & Halpern, B. S. (2008). Interactive 
and cumulative effects of multiple human stressors in ma-
rine systems. Ecology Letters, 11(12), 1304–1315. https​://doi.
org/10.1111/j.1461-0248.2008.01253.x

Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warm-
ing benefits the small in aquatic ecosystems. Proceedings of the 

https://10.6084/m9.figshare.11116640
https://10.6084/m9.figshare.11116640
https://orcid.org/0000-0003-0707-4128
https://orcid.org/0000-0003-0707-4128
https://orcid.org/0000-0002-8764-6976
https://orcid.org/0000-0002-8764-6976
https://orcid.org/0000-0001-9229-4410
https://orcid.org/0000-0001-9229-4410
https://doi.org/10.1111/j.1525-142X.2006.00090.x
https://doi.org/10.1111/j.1525-142X.2006.00090.x
https://doi.org/10.1016/S0169-5347(97)01058-6
https://doi.org/10.1016/S0169-5347(97)01058-6
https://doi.org/10.1111/geb.12847
https://doi.org/10.1111/geb.12847
https://doi.org/10.1371/journal.pbio.1002281
https://doi.org/10.1371/journal.pbio.1002281
https://doi.org/10.1002/ecy.1752
https://doi.org/10.1002/ecy.1752
https://doi.org/10.1007/s10531-010-9782-4
https://doi.org/10.1007/s10531-010-9782-4
https://doi.org/10.1897/06-235R.1
https://doi.org/10.1098/rspb.2009.1525
https://doi.org/10.1098/rspb.2012.1890
https://doi.org/10.1098/rspb.2012.1890
https://doi.org/10.1111/mec.14890
https://doi.org/10.1111/j.1365-2664.2008.01566.x
https://doi.org/10.1038/35041539
https://doi.org/10.1038/35041539
https://doi.org/10.1111/j.1461-0248.2008.01253.x
https://doi.org/10.1111/j.1461-0248.2008.01253.x


762  |     BETINI et al.

National Academy of Sciences, 106(31), 12788–12793. https​://doi.
org/10.1073/pnas.09020​80106​

Ebert, D. (1992). A food-independent maturation threshold and size at 
maturity in Daphnia magna. Limnology and Oceanography, 37(4), 878–
881. https​://doi.org/10.4319/lo.1992.37.4.0878

Galic, N., Sullivan, L. L., Grimm, V., & Forbes, V. E. (2018). When things 
don’t add up: Quantifying impacts of multiple stressors from indi-
vidual metabolism to ecosystem processing. Ecology Letters, 21(4), 
568–577. https​://doi.org/10.1111/ele.12923​

Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). 
Declining body size: A third universal response to warming? Trends 
in Ecology & Evolution, 26(6), 285–291. https​://doi.org/10.1016/j.
tree.2011.03.005

Heugens, E. H. W., Hendriks, A. J., Dekker, T., van Straalen, N. M., & 
Admiraal, W. (2001). A review of the effects of multiple stressors on 
aquatic organisms and analysis of uncertainty factors for use in risk 
assessment. Critical Reviews in Toxicology, 31(3), 247–284. https​://doi.
org/10.1080/20014​09111​1695

Hoefnagel, K. N., de Vries, E. H. J., Jongejans, E., & Verberk, W. C. E. 
P. (2018). The temperature-size rule in Daphnia magna across dif-
ferent genetic lines and ontogenetic stages: Multiple patterns and 
mechanisms. Ecology and Evolution, 8(8), 3828–3841. https​://doi.
org/10.1002/ece3.3933

Hoy, S. R., Peterson, R. O., & Vucetich, J. A. (2017). Climate warming is 
associated with smaller body size and shorter lifespans in moose near 
their southern range limit. Global Change Biology, 24(6), 2488–2497. 
https​://doi.org/10.1111/gcb.14015​

Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D., & Chimimba, C. T. 
(2016). Net effects of multiple stressors in freshwater ecosystems: 
A meta-analysis. Global Change Biology, 22(1), 180–189. https​://doi.
org/10.1111/gcb.13028​

Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E., & Herrera, L. 
(1998). COMBO: A defined freshwater culture medium for algae and 
zooplankton. Hydrobiologia, 377(1–3), 147–159.

Koller, M. (2016). robustlmm: An R package for robust estimation of lin-
ear mixed-effects models. Journal of Statistical Software, 75, 1–24. 
https​://doi.org/10.18637/​jss.v075.i06

Kooijman, B., & Kooijman, S. A. L. M. (2010). Dynamic energy budget the-
ory for metabolic organisation. Cambridge, UK: Cambridge University 
Press.

Kraemer, B. M., Mehner, T., & Adrian, R. (2017). Reconciling the op-
posing effects of warming on phytoplankton biomass in 188 large 
lakes. Scientific Reports, 7(1), 10762. https​://doi.org/10.1038/
s41598-017-11167-3

O’Reilly, C. M., Alin, S. R., Plisnier, P.-D., Cohen, A. S., & McKee, B. A. 
(2003). Climate change decreases aquatic ecosystem productivity 
of Lake Tanganyika, AfricaNature, 424(6950), 766–768. https​://doi.
org/10.1038/natur​e01833

Ohlberger, J. (2013). Climate warming and ectotherm body size – from in-
dividual physiology to community ecology. Functional Ecology, 27(4), 
991–1001. https​://doi.org/10.1111/1365-2435.12098​

Orcutt, J. D. Jr, & Porter, K. G. (1984). The synergistic effects of tempera-
ture and food concentration of life history parameters of Daphnia. 
Oecologia, 63(3), 300–306.

O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, 
R. J., … Zhang, G. (2015GL). Rapid and highly variable warming of 

lake surface waters around the globe. Geophysical Research Letters, 
42(24), 2015GL066235. https​://doi.org/10.1002/2015G​L066235

Parmesan, C. (2006). Ecological and evolutionary responses to recent 
climate change. Annual Review of Ecology, Evolution, and Systematics, 
37, 637–669.

Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Schimel, D. S., & Hall, D. O. 
(1995). Impact of climate change on grassland production and soil 
carbon worldwide. Global Change Biology, 1(1), 13–22. https​://doi.
org/10.1111/j.1365-2486.1995.tb000​02.x

Rollinson, N., & Rowe, L. (2018). Temperature-dependent oxygen limita-
tion and the rise of Bergmann’s rule in species with aquatic respira-
tion. Evolution, 72(4), 977–988. https​://doi.org/10.1111/evo.13458​

Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, 
J. M., Corlett, R. T., … Watson, J. E. M. (2016). The broad footprint of 
climate change from genes to biomes to people. Science, 354(6313). 
https​://doi.org/10.1126/scien​ce.aaf7671

Schlaepfer, M. A., Runge, M. C., & Sherman, P. W. (2002). Ecological and 
evolutionary traps. Trends in Ecology & Evolution, 17(10), 474–480. 
https​://doi.org/10.1016/S0169-5347(02)02580-6

Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological 
response to climate change. Nature Climate Change, 1(8), 401–406. 
https​://doi.org/10.1038/nclim​ate1259

Taucher, J., & Oschlies, A. (2011). Can we predict the direction of ma-
rine primary production change under global warming? Geophysical 
Research Letters, 38(2). L02603. https​://doi.org/10.1029/2010G​
L045934

Vidal, J. (1980). Physioecology of zooplankton. I. Effects of phytoplank-
ton concentration, temperature, and body size on the growth rate of 
Calanus pacificus and Pseudocalanus sp. Marine Biology, 56(2), 111–
134. https​://doi.org/10.1007/BF003​97129​

Williams, C. M., Ragland, G. J., Betini, G., Buckley, L. B., Cheviron, Z. A., 
Donohue, K., … Visser, M. E. (2017). Understanding Evolutionary 
Impacts of Seasonality: An Introduction to the Symposium. Integrative 
and Comparative Biology, 57(5), 921–933. https​://doi.org/10.1093/
icb/icx122

Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C., & Du Feu, R. (2006). 
Recent changes in body weight and wing length among some 
British passerine birds. Oikos, 112(1), 91–101. https​://doi.
org/10.1111/j.0030-1299.2006.14183.x

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.  

How to cite this article: Betini GS, Wang X, Avgar T, 
Guzzo MM, Fryxell JM. Food availability modulates 
temperature-dependent effects on growth, reproduction, 
and survival in Daphnia magna. Ecol Evol. 2020;10:756–762.  
https​://doi.org/10.1002/ece3.5925

https://doi.org/10.1073/pnas.0902080106
https://doi.org/10.1073/pnas.0902080106
https://doi.org/10.4319/lo.1992.37.4.0878
https://doi.org/10.1111/ele.12923
https://doi.org/10.1016/j.tree.2011.03.005
https://doi.org/10.1016/j.tree.2011.03.005
https://doi.org/10.1080/20014091111695
https://doi.org/10.1080/20014091111695
https://doi.org/10.1002/ece3.3933
https://doi.org/10.1002/ece3.3933
https://doi.org/10.1111/gcb.14015
https://doi.org/10.1111/gcb.13028
https://doi.org/10.1111/gcb.13028
https://doi.org/10.18637/jss.v075.i06
https://doi.org/10.1038/s41598-017-11167-3
https://doi.org/10.1038/s41598-017-11167-3
https://doi.org/10.1038/nature01833
https://doi.org/10.1038/nature01833
https://doi.org/10.1111/1365-2435.12098
https://doi.org/10.1002/2015GL066235
https://doi.org/10.1111/j.1365-2486.1995.tb00002.x
https://doi.org/10.1111/j.1365-2486.1995.tb00002.x
https://doi.org/10.1111/evo.13458
https://doi.org/10.1126/science.aaf7671
https://doi.org/10.1016/S0169-5347(02)02580-6
https://doi.org/10.1038/nclimate1259
https://doi.org/10.1029/2010GL045934
https://doi.org/10.1029/2010GL045934
https://doi.org/10.1007/BF00397129
https://doi.org/10.1093/icb/icx122
https://doi.org/10.1093/icb/icx122
https://doi.org/10.1111/j.0030-1299.2006.14183.x
https://doi.org/10.1111/j.0030-1299.2006.14183.x
https://doi.org/10.1002/ece3.5925

