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A theoretical framework for computation of Burgers
vectors from strain and lattice rotation data in
materials with low dislocation density is presented,
as well as implementation into a computer program
to automate the process. The efficacy of the method
is verified using simulated data of dislocations with
known results. A three-dimensional dataset retrieved
from Bragg coherent diffraction imaging (BCDI)
and a two-dimensional dataset from high-resolution
transmission Kikuchi diffraction (HR-TKD) are used
as inputs to demonstrate the reliable identification
of dislocation positions and accurate determination
of Burgers vectors from experimental data. For
BCDI data, the results found using our approach
show very close agreement to those expected from
empirical methods. For the HR-TKD data, the
predicted dislocation position and the computed
Burgers vector showed fair agreement with the
expected result, which is promising considering the
substantial experimental uncertainties in this dataset.
The method reported in this paper provides a general
and robust framework for determining dislocation
position and associated Burgers vector, and can be
readily applied to data from different experimental
techniques.

1. Introduction
Crystal lattice defects such as dislocations play a key
role in controlling the properties of high-performance
materials central to modern life. Examples include alloys
for aerospace, and nuclear and automotive applications

2022 The Author(s) Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0909&domain=pdf&date_stamp=2022-07-06
mailto:jacques.cloete@trinity.ox.ac.uk
http://orcid.org/0000-0003-4864-2662
http://orcid.org/0000-0001-6725-9373
http://orcid.org/0000-0001-6111-339X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210909

..........................................................

[1–3]. Dislocations are also important in semiconductors, for example, in photovoltaic devices, for
they act as impurity segregation sites that are detrimental to solar cell performance [4–7].

To optimize material performance, a detailed understanding of dislocations is key. This is
particularly important for tuning materials in order to modify dislocation behaviour [8–10], e.g.
by modifying the microstructural landscape of the material. Indeed, this is one of the main ways
modern alloys are optimized [11–14].

Dislocations interact via the strain fields they cause [8,9]. As such, measurement techniques
that allow us to image strain fields are of great importance. It is possible to measure two-
dimensional (2D) strain fields surrounding dislocations at the nano-scale using high-resolution
transmission electron microscopy (HR-TEM) and scanning transmission electron microscopy
[15–17], as well as high-resolution transmission Kikuchi diffraction (HR-TKD) in the scanning
electron microscope (SEM) [18,19]. To measure three-dimensional (3D) strain fields and
morphology of microcrystals, Bragg coherent diffraction imaging (BCDI) has achieved successful
results [20–22].

A key challenge when characterising dislocations is the accurate determination of the Burgers
vector [23] for specific dislocations. A classic approach is to use g · b contrast, wherein dislocations
cause little diffraction contrast when the diffraction vector g is perpendicular to the Burgers
vector b, i.e. when the invisibility criterion g · b = 0 is met [9]. For materials with well-known
crystallography, multiple g-vectors are required in TEM as there are several possible directions
that the Burgers vector can take, and only by finding two g-vectors for which the invisibility
criterion is met can the Burgers vector direction be determined. Even then, there is ambiguity to
the sign of the Burgers vector as it could be positive or negative, and this ambiguity can only
be resolved by detailed comparison with diffraction image simulations [19,22]. There is also no
immediate indication of Burgers vector magnitude from these techniques, and one must refer to
the known crystallographic structure of the material to determine this. A further problem arises
where the preferred Burgers vector directions are not known a priori. In this case, g · b contrast
cannot be easily applied as there is no limited set of Burgers vectors to try.

Since measurements of the full lattice strain tensor are now readily possible in 2D and 3D, an
attractive idea is to use the measured strain fields at the continuum scale to directly determine
the Burgers vector of specific dislocations. Two methods present themselves: first, to integrate
the displacement gradient of the crystal lattice about a Burgers circuit enclosing the dislocation;
and second, to integrate the computed Nye tensor (proposed by Nye [24]) of the crystal across a
surface through which the dislocation passes [25].

Here, we first lay out the underlying theory and concepts used, before presenting a framework
for determining dislocation Burgers vector direction and magnitude from experimentally
measured strain and lattice rotation fields. We also cover the key concepts for implementation
of this framework into a program. The Nye tensor approach is initially investigated, but this
method turns out not to be suitable for the task at hand. Thus, the framework presented in this
paper relies on integration of the displacement gradient around a Burgers circuit. Initially, we
consider a mathematical model of the displacement gradient surrounding an infinite straight
mixed dislocation of configurable sense ξ and Burgers vector b. This is used to verify the
efficacy of the method and reliability of the approach, as well as its sensitivity to factors such
as noise. Experimental datasets from BCDI and HR-TKD techniques are then used to locate and
characterize dislocations in real material specimens. Comparisons to known results found from
techniques such as g · b contrast are then made. It should be noted that the focus of this paper is
to compute the Burgers vector for individual dislocations in materials where dislocation densities
are sufficiently low that voxel spacing is much smaller than the spacing between dislocations.

2. Theory and methodology

(a) Mathematical definition of a Burgers vector
A Burgers vector describes the discontinuity in a material structure due to the presence of a
dislocation [8,9]. A mathematical definition for the Burgers vector b of a dislocation is the line
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integral of the elastic displacement gradient β = ∇u (where u is the elastic displacement field of
the material) along the closed loop C that encloses the dislocation (also known as the Burgers
circuit, defined in the original undistorted coordinate system) [8];

b =
∮

C
β · dl (2.1)

where

dl =

⎡
⎢⎣dx

dy
dz

⎤
⎥⎦ . (2.2)

(Note that β = ε + ω, where ε is the elastic strain field and ω is the lattice rotation field [25,26].)
This means that as long as we know the strain and lattice rotation fields within a material, the

Burgers vector b for dislocations enclosed within some Burgers circuit C can be calculated.

(b) The Nye tensor approach
On the continuum scale, Nye defined the dislocation tensor (or ‘Nye tensor’) αNye as a geometrical
relation between lattice curvature and the distribution of geometrically necessary dislocations
(GNDs), i.e. dislocations required to accommodate the plastic strain gradients in a material
[8,24,25].

Nye related αNye to the dislocation distribution inside a material [8,24,25]; for each possible
slip system λ, given q dislocations per unit area each with Burgers vector b and sense ξ threading
the plane,

α
Nye
km = qbkξm. (2.3)

Let GND density ρ be defined such that ρm = qξm; therefore,

αNye =
λ∑

i=1

(bi ⊗ ρi). (2.4)

One might argue that if αNye can be found, the Burgers vector b can be evaluated using
the surface integral as opposed to the line integral. An immediate benefit would be improved
numerical integration, as one could integrate across an entire surface of voxels rather than just a
line. The significantly increased number of data points used would hopefully reduce error due to
noise and discretization of the data.

However, upon further investigation, it has been deduced that the Nye tensor approach
to calculating the Burgers vector is not feasible for the applications covered in this paper.
This is because, for the case of individual dislocations, αNye vanishes everywhere except at
the dislocation core, where it is instead undefined, meaning that the surface integral cannot
be evaluated to find the Burgers vector. This is a result of the discontinuity associated with
the individual dislocation being confined to the dislocation core, such that dislocation density
is infinite at the core and zero elsewhere. In addition, the Nye tensor at a point essentially
corresponds to having an infinitesimally small Burgers circuit at that point. As a result, the
Nye tensor evaluated for the elastic distortions associated with a single dislocation is undefined
at the origin and zero everywhere else. A full demonstration and explanation are provided in
appendix B.

The rest of this paper will explore the method of integration of the displacement gradient
around a Burgers circuit to compute the Burgers vector.

(c) Numerical computation
Elastic strains and lattice rotations obtained experimentally are measured as discrete voxels
of data rather than being defined by algebraic functions (as with the mathematical model).
Therefore, rather than integrating analytically, we must make use of numerical techniques.
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Figure 1. (a) A dislocation line of Burgers vector b and direction defined by sense ξ enclosed by Burgers circuit C.
(b) Integration loopC, now in a form suitable for numerical computation of Burgers vectorb. (Online version in colour.)

To compute Burgers vector b, we perform the line integral in equation (2.1). Note that in
Cartesian coordinates, β · dl can be written as

β · dl =

⎡
⎢⎢⎢⎣
β11 β12 β13

β21 β22 β23

β31 β32 β33

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

dx

dy

dz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
β11 dx + β12 dy + β13 dz

β21 dx + β22 dy + β23 dz

β31 dx + β32 dy + β33 dz

⎤
⎥⎥⎥⎦ (2.5)

Therefore, integrating β with respect to l requires integrating each of the nine components of β

with respect to either x, y, or z. The limits for, and equations relating, these three variables are
determined by the choice of Burgers circuit C.

The simplest Burgers circuit design that will be effective for dislocations in any orientation
in 3D space is the loop C shown in figure 1b. The Burgers circuit encloses a cube (or cuboid),
and is designed such that a right-hand screw dislocation pointing in the direction of a positive
coordinate axis gives a positive result for b (this should be borne in mind when considering the
signs of computed Burgers vector directions).

For integration along loop C shown, along each of the six straight lines, two of dx, dy, or dz
will be zero. Thus, the line integral of displacement gradient β is reduced to a total of 18 integrals
of one variable (six for each of the x-, y-, and z-components of b) that can each be computed
individually. This is ideal for numerical integration.

For data that is discrete and exists across a set of voxels, we can define a Burgers circuit as
described above that passes through the centres of a chain of voxels to form integration loop C.
The discrete displacement gradient can then be integrated numerically; for example, by using
MATLAB’s trapz function or a variation thereof, and travelling along this loop of voxels. This
numerical approach was used to produce a MATLAB program that computes Burgers vectors
from arrays of 3D or 2D elastic strain and lattice rotation data. The specific numerical method
used for the results in this paper was an implementation of Simpson’s rule with error of order
O(h4). Further information on implementation can be found in appendix C.

3. Tests: mathematical models

(a) Test methodology
To test the reliability of Burgers vector determination, we initially consider a mathematical model
of an infinite, straight, mixed dislocation. Nine cases were chosen and used to confirm that the
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Figure 2. Integration loop C, now with vertex coordinates defined by the coordinate limits in the x, y, and z directions. The
dislocation line for case 8 is also present, passing through the origin andwithb andξ as shown. Note that in this particular case,
the dislocation line passes through the edges of the integration loop, which causes an error in computation. (Online version in
colour.)

program can accurately compute the Burgers vector for dislocations of various orientations. The
vertices of Burgers circuit C are defined by the coordinate limits shown in figure 2.

A set of parameters must be chosen not only to generate the mathematical model of the
dislocation, but also to prepare the program for the specific set of input data, as the size of the
voxel spacing must be taken into account for numerical integration.

The parameters for the test cases were as follows:

— Burgers Vector Magnitude, b = 1 Å
— Voxel Size = 5 nm (cube)
— Poisson’s Ratio, υ = 0.3
— Noise Coefficient, η= 0
— Burgers Circuit limits = [−102.5 nm, 102.5 nm] (except for case 9).

Note that the voxel spacing and coordinate limits used were such that the Burgers circuit C
was defined around a cube with a side length of 42 pixels and centred on the origin. Each of
the dislocations also passed through the origin. The voxel size, Burgers vector magnitude, and
Poisson’s ratio were chosen to be representative of those found in experimental datasets [19,22].

The following cases were considered, where the angles α, ψ , θ , and φ define the directions of
Burgers vector b and sense ξ , as depicted in figure 11 in appendix A(d):

1. Z-Screw; ξ = ez, b = bez (α = 0◦ , ψ = 0◦, θ = 0◦, φ = 0◦)
2. X-Screw; ξ = ex, b = bex (α = 0◦ , ψ = 0◦, θ = 90◦, φ = 0◦)
3. Y-Screw; ξ = ey, b = bey (α= 0◦ , ψ = 0◦, θ = 90◦, φ = 90◦)
4. Z-Edge; ξ = ez, b = bex (α = 90◦ , ψ = 0◦, θ = 0◦, φ = 0◦)
5. Mixed 1 (α = 45◦ , ψ = 90◦, θ = 90◦, φ = 45◦)
6. Mixed 2 (α = 45◦ , ψ = 0◦, θ = 0◦, φ = 45◦)
7. Sum of Three Screws (Z-Screw + X-Screw + Y-Screw)
8. Error Case (α = 0◦ , ψ = 0◦, θ = 135◦, φ = 0◦)
9. Error Case (α = 0◦ , ψ = 0◦, θ = 135◦, φ = 0◦), new z-axis limits = [−122.5 nm, 122.5 nm]
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Figure 3. A visualization of cases 5 (a) and 6 (b), each with the dislocation line, sense ξ , and Burgers vector b shown. (Online
version in colour.)

Cases 1 through 4 as well as 7 should be straightforward to visualize, and visualizations of
cases 5 and 6 are provided in figure 3 and case 8 in figure 2.

The robustness of the program was also tested. Using case 7 as a basis, three tests were
performed. In Test 1, the Burgers circuit side length was decreased, two voxels at a time, from
42 to 2. In Test 2, the fractional distance of the dislocation line from the Burgers circuit centre
was increased from 0 (centre) to 1 (Burgers circuit edge). In Test 3, the noise coefficient η was
exponentially increased from 1 × 10−6 to 7.86 × 10−4 and the number of concentric Burgers
circuits used for the removal of outliers (with x-, y-, and z-components beyond a certain number
of standard deviations from the mean values) and computation of a mean average Burgers vector
was increased from 1 to 10. This average Burgers vector was computed by separately averaging
the x-, y-, and z-components from the results of the integrals around the concentric Burgers
circuits. For each of the tests, the change in computed Burgers vector is reported as the angular
error and percentage magnitude error compared to the ground truth.

Experimental noise/uncertainty was modelled using a standard Gaussian distribution
multiplied by the noise coefficient η and superposed onto each element of the strain and lattice
rotation tensors. The distribution was truncated to within the limits of 1 standard deviation, as
otherwise unrealistically large magnitudes of noise may appear in the data. The noise applied to
one element of data was independent to the noise applied to adjacent elements of data.

(b) Results
From table 1, we see that in all cases (bar number 8), the computed Burgers vector is virtually
identical to the expected result. Both magnitude percentage error and angular error between the
computed and expected results are negligible for the input parameters given. This is as expected
for the ‘noise-free’ case, where the strain and lattice rotation fields had been mathematically
determined such that the expected Burgers vectors would be computed exactly. Obviously, this is
not the case for experimental data, where the program can only provide an estimate of the Burgers
vector given the measured strains and lattice rotations.

An interesting error case (8) arises when the dislocation line intersects the closed loop that
defines the Burgers circuit. Upon adjusting the Burgers circuit such that the z-axis coordinate
limits are [−122.5 nm, 122.5 nm] (such that the cuboid was 50 voxels wide in the z-direction), this
intersection no longer occurs and the Burgers vector is computed correctly. Therefore, care must
be taken to ensure that the Burgers circuit limits are defined such that the intersection with the
dislocation line is avoided, as well as ensuring that the dislocation line does indeed pass through
the chosen Burgers circuit.

Figure 4 shows the results of Test 1 when applied to case 7. It was seen that decreasing
Burgers circuit size did not inherently increase angular error but did increase percentage error
in magnitude. This effect was small for larger circuits but reached 1% error at around 5 voxels
wide and increased to 10% at around 3 voxels wide. It should be noted that linear elasticity
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Table 1. Results for the input cases using the simulated strain and lattice rotation data. Note that zero noise is present for any
of these cases.

case no.

true
magnitude
(Å)

true
direction

computed
magnitude
(Å)

computed
direction

magnitude
percentage
error (%)

angular
error (◦)

0 0

1. 1 0 1.0000 0 2.4620 × 10−6 0.0000

1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1

2. 1 0 1.0000 0 2.4620 × 10−6 0.0000

0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0

3. 1 1 1.0000 1 2.4620 × 10−6 0.0000

0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1

4. 1 0 1.0000 0 2.4620 × 10−6 0.0000

0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0.0000

5. 1 1 1.0000 1.0000 7.4046 × 10−6 3.0783 × 10−6

0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 0.5000

6. 1 0.5 1.0000 0.5000 2.4620 × 10−6 0.0000

0.7071 0.7071
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5774 1.7321 0.5774

7. 1.7321 0.5774 0.5774 2.4620 × 10−6 0.0000

0.5774 0.5774
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.7071 NaN

8. 1 0 0 NaN N/A N/A

−0.7071 NaN
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.7071 0.7071

9. 1 0 1.0000 0 3.1500 × 10−5 0.0000

−0.7071 −0.7071
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

theory is valid at distances beyond a few Burgers vectors from the dislocation centre [9], and
because voxel spacing is typically in the range of several nanometres, we can assume that linear
elasticity is valid for all voxels (unless the dislocation passes through the centre of one). Given
this understanding, the reason for the deterioration in Burgers vector magnitude must be due to
the numerical integration.

Reducing Burgers circuit size means that there are fewer voxels of data across which to
integrate, and thus the integral is of a lower resolution. This will result in more substantial
changes in strain and lattice rotation between adjacent voxels, leading to more significant error
from numerical integration. This has a more severe impact for Burgers circuits that are small in
size, as a single voxel has a proportionally greater contribution to the integral.
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Figure 4. Test 1 (applied to case 7)—Variation of computed Burgers vector with Burgers circuit size. Angular error was found
to be 0 for all sizes tested. (Online version in colour.)

Additionally, and perhaps more importantly, smaller Burgers circuits will have their sides
closer to the dislocation centre, and so the changes in value from voxel to voxel will be larger.
Therefore, the spatial gradients of the strains and lattice rotations at voxels on the Burgers circuit
will tend to be steeper and are not properly captured when performing numerical integration. As
a result, the error in the numerical integration will be greater in magnitude.

This effect is also evident when considering the case where the distance between the
dislocation lines and the edge of a Burgers circuit with constant size is varied, such as when
Test 2 was applied to case 7 (figure 5). Here, despite the number of voxels contributing to the
Burgers circuit (and therefore input data) staying the same, there was an increase in percentage
magnitude error similar to that observed in Test 1 as the dislocation is moved closer to one side
of the Burgers circuit. There was also an increase in angular error (reaching 0.1◦ at a ratio of
around 0.9), which is likely due to an asymmetry in strain and lattice rotation magnitudes on
opposite sides of the Burgers circuit. The side closer to the dislocation suffers from large changes
in magnitude between adjacent voxels and therefore steeper spatial strain and lattice rotation
gradients, resulting in greater error in the numerical integral. Meanwhile, the farther side benefits
from smaller voxel-to-voxel changes in the strain and lattice rotation components.

From these observations, it should be noted that, for an accurate computation of the Burgers
vector, one must ensure that the dislocation is close to the centre of the Burgers circuit and that
the Burgers circuit is of a sufficiently large size. The requirements will ultimately depend on the
quality of the input data, as discussed in §§4 and 5.

Figure 6 shows the variation of computed Burgers vector with noise, with results produced by
applying Test 3 to case 7. It was found that increasing noise magnitude caused a roughly linear
increase in both percentage error in magnitude and angular error, with the line of best-fit gradients
of the log–log graphs being 0.927 and 0.971, respectively. Note that the slight deviation of these
gradients from 1 has resulted from the inherent randomness of the noise. At η= 1 × 10−4, there
was roughly 3% error in magnitude and 4◦ angular error, increasing to 6% error in magnitude
and 8◦ angular error at η= 2 × 10−4. These are realistic levels of uncertainty in experimental data
(see §§4 and 5). It should be noted that the simulated noise is defined entirely by the truncated
Gaussian distribution, and the noise magnitude at one voxel is entirely independent of that in
adjacent voxels.

As the noise magnitude approached η= 1 × 10−3, the computed Burgers vector deteriorated
to the point that it had little relation to the expected result, likely as a result of the magnitudes
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of the strain field components becoming negligible compared with the noise itself. For very noisy
data, it can be beneficial to use smaller Burgers circuits in order to reduce the accumulation of
noise in the numerical integration.

Figure 7 shows a general trend that increasing the number of concentric Burgers circuits
decreased the errors caused by noise. The concentric Burgers circuits are all arranged such that
they lie within surfaces Sx, Sy, and Sz in figure 1b, and are as large as possible without crossing
or overlapping at any points. The results obtained are as expected, as more computations of
the Burgers vector allow for greater confidence that an individual result may be anomalous



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210909

..........................................................

10–3

10

10–1

10–2

1

10–3

10

10–4

10–5 10–1

10–2

1

10–6

10–4

10–5

no
is

e 
co

ef
fi

ci
en

t (
st

ra
in

)

er
ro

r 
in

 m
ag

ni
tu

de
 (

%
)

no
is

e 
co

ef
fi

ci
en

t (
st

ra
in

)

an
gu

la
r 

er
ro

r 
(°

)

10–6

0 5 10 15
no. concentric Burgers circuits

0 5 10 15
no. concentric Burgers circuits

(a) (b)

Figure 7. Test 3(B) (applied to case 7)—Variation of computed Burgers vector with noise and number of concentric Burgers
circuits. The percentage error in magnitude (a) and angular error (b) tend to increase as the noise magnitude increases and
number of concentric Burgers circuits decreases. (Online version in colour.)

due to excessive noise (with x-, y-, and z-components beyond a certain number of standard
deviations from the mean values) and so can be discarded before averaging. Additionally, as the
theoretical mean of the noise is zero, increasing the number of computed Burgers vectors to use for
determination of a mean average Burgers vector should also generally result in a reduction in the
effects of noise. However, due to the inherently random nature of the noise, these trends are never
ideal and introducing another Burgers circuit that happens to be more significantly influenced by
noise can actually worsen the final result. An example of this would be the fluctuation between
high and low percentage error in magnitude as the number of concentric Burgers circuits is
increased at the highest noise coefficient used in Test 3, i.e. the top row of elements in figure 7a.

4. Tests: BCDI data
BCDI allows the 3D-resolved experimental characterization of morphology and lattice strain
in microcrystals [20,21]. Lattice reflections of a microcrystal illuminated with a coherent X-ray
beam are used to measure coherent X-ray diffraction patterns (CXDPs), which are in turn used
to determine the effective (complex) electron density in the sample. The phase of the complex
electron density of a reflection in the hkl direction, φhkl(r), is related to the displacement field of
the crystal lattice structure, u(r), by the expression φhkl(r) = qhkl · u(r), where qhkl is the reflection
Bragg vector [27]. By measuring at least three linearly independent crystal reflections, u(r) can
be recovered, and the displacement gradient β and thus the strain and lattice rotation fields
calculated.

The data used for this test were taken from a micrometre-sized sample of high-purity tungsten
containing a set of five dislocations and measured using BCDI. Six crystal reflections of type {110}
were measured and their CXDPs recorded. Phase retrieval was then used to recover the complex-
valued electron density for each reflection. This was projected back into a common, orthogonal
sample coordinate frame with 5 × 5 × 5 nm3 voxel size. Spatial resolution was quantified by
differentiating line profiles of electron density amplitude across the object–air interface and fitting
these with a Gaussian profile. The average 3D spatial resolution, taken as 2σ of the fitted Gaussian,
was 22 nm. The data were processed to determine the strain and lattice rotations ε and ω. For
further information on the manufacture of the material specimen, the BCDI measurements, the
processing of the data, and the strain and lattice rotation fields, refer to Hofmann et al. [22].
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The locations of the five dislocations were first determined and plotted using a standard
Burgers circuit size of 5 × 5 × 5 voxels rastered over the 3D sample volume. Figure 8 shows the
specimen shape and known dislocations superposed on the field of quivers, with the quivers
depicting the direction and magnitude of the computed Burgers vector at each point.

As can be seen in figure 8, the approach was able to reliably identify the 3D path of dislocations
in an automated fashion. Increasing the size of the standard Burgers circuit that iterates through
the data resulted in more accurate Burgers vectors near the centres of the dislocation lines at the
cost of thicker regions of computed Burgers vectors around each dislocation line. The reasoning
for the latter effect is that because the Burgers circuit is larger, it catches dislocations from a greater
distance away. Note that the size of 5 × 5 × 5 voxels was used to achieve thin regions of computed
Burgers vectors at the expense of accuracy, and increasing the size to 9 × 9 × 9 would significantly
reduce the magnitude and angular errors.

The field of Burgers vectors is stored in one array, and it is straightforward to use the position
of a computed Burgers vector in the array to determine the Cartesian coordinates of the centre of
the Burgers circuit used to calculate it. Another (preferably larger) Burgers circuit that surrounds
this point can then be manually chosen to allow for closer inspection of the Burgers vector.

Upon initial inspection on the resulting 3D plot, the dislocations were then examined more
carefully. Large limits for the Burgers circuit were used at first and they were then tightened over
a process of iteration to achieve a size of 9 × 9 × 9 voxels, which was still sufficient to produce
accurate results. The final size used for dislocation 3 was actually 8 × 9 × 9 voxels to better fit the
shape of the dislocation line.

Chosen Burgers circuit coordinate limits (as depicted in figure 2) for each dislocation (nm)
were:

1. x = [42.5, 82.5], y = [82.5, 42.5], z = [222.5, 262.5]
2. x = [−177.5, −137.5], y = [137.5, 97.5], z = [−72.5, −32.5]
3. x = [67.5, 102.5], y = [−317.5, −357.5], z = [52.5, 92.5]
4. x = [−92.5, −52.5], y = [−242.5, −282.5], z = [82.5, 122.5]
5. x = [−67.5, −27.5], y = [−257.5, −297.5], z = [152.5, 192.5]

It should be noted that the chosen Burgers circuit limits are merely examples, and in fact there
are a great many that can be chosen in order to achieve accurate computation of the Burgers
vectors.
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Table 2. Results for the five dislocations present in the microcrystal observed by BCDI.

dislocation

true
direction
(lattice
coordinates)

true
direction
(lab
coordinates)

computed
magnitude
(Å)

computed
direction

angular
error
(◦)

−0.2799 −0.2752

1 1
2 [111] −0.5126 2.7065 −0.5195 0.5027

0.8117 0.8090
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.7854 0.7841

2 1
2 [111] 0.5804 2.7143 0.5808 0.2205

0.2151 0.2187
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4405 0.4406

3 [100] 0.0587 3.0959 0.0507 0.4590

0.8958 0.8962
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.7854 0.7856

4 1
2 [111] 0.5804 2.7166 0.5787 0.2493

0.2151 0.2191
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.2799 −0.2760

5 1
2 [111] −0.5126 2.6977 −0.5150 0.2626

0.8117 0.8115
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Strain and lattice rotation data were also extracted by regions unaffected by the presence of
defects, and the standard deviation (and therefore effectively the noise magnitude) was computed
for each component of strain and lattice rotation.

From table 2, it can be seen that the computed directions for Burgers vectors are close to the
directions expected from qhkl · b analysis [22], with angular error being within half a degree for
all five dislocations. The computed magnitudes are also very consistent, and by taking a mean
(adjusted for relative Burgers vector magnitudes in crystal lattice coordinates), the results predict
a lattice parameter of a = 3.121 Å. This is 1.38% below the standard value of 3.1652 Å [28,29]. Using
the simple assumption of a Gaussian distribution for the noise, the average standard deviation
and therefore noise magnitude was found to be η= 1.0396 × 10−4 by sampling ‘empty’ regions
of the dataset, which would suggest an error of 6◦ in Burgers vector direction and a 3% error in
Burgers vector magnitude, given the results of figure 6. Thus, the Burgers vectors computed using
BCDI data are well within the expected uncertainty.

5. Tests: HR-TKD data
High (angular) resolution electron backscatter diffraction (HR-EBSD) allows the measurement
of strains and lattice rotations at the nano-scale. A SEM is used to record electron backscatter
diffraction (EBSD) patterns over an array of points to measure the crystallographic orientation
at each point [30,31]. A cross-correlation-based approach using a reference diffraction pattern
allows for a significant improvement in angular resolution, with small shifts of features in the
patterns relative to the reference used to determine lattice rotations and distortions [30,32–35].
This approach is referred to as HR-EBSD.

The transmission Kikuchi diffraction (TKD) variation of the technique operates by detecting
the Kikuchi pattern from the bottom surface of a thin foil, which allows for a significantly
improved spatial resolution over the conventional EBSD method [18].
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However, this method allows only for the measurement of the 2D in-plane deviatoric strain
tensor, and was taken as an average over a depth of half the foil thickness in the case of the
test data used [19]. Through the assumption of plane stress, the full strain tensor required for
computation of the Burgers vector can be calculated [26], which is reasonable given the specimen
thickness of 40 nm [19].

Here, we examine HR-TKD data that has been recently reported from a single dislocation in
tungsten [19]. The material used was a high-purity tungsten sample electro-polished to electron
transparency. The dislocation observed was assumed to be straight with sense normal to the
foil surface. A Zeiss Merlin SEM with a Bruker eFlash detector was used to carry out the
HR-TKD measurements, with a TKD pattern size of 800 × 600 pixels and a scanning step size
of 3.9 nm. Cross-correlation analysis of the Kikuchi patterns was then performed. The estimated
spatial resolution, due to the finite size of the electron interaction volume, was 12 nm. The
data were processed to generate maps for the components of the strain and lattice rotation
tensors. For further information on the manufacture of the material specimen, the HR-TKD
measurements taken, the processing of the data, and the strain and lattice rotation fields, refer
to the associated paper by Yu et al. [19]. It should be noted that a grain boundary is present
in the the top left of the dataset, manifesting as a diagonal line of significant strain and lattice
rotation.

As with the BCDI data, the position of the dislocation centre was first found by rastering a
7 × 7 pixel Burgers circuit over the domain to build up a Burgers vector map.

As depicted by figure 9, our approach was able to discern the location of the dislocation
as well as the grain boundary nearby. The region of black quivers identifies the position of
the dislocation, as well as estimates for the direction of the computed Burgers vector. Also
visible is a magenta quiver representing the expected Burgers vector direction from experimental
measurement (and true magnitude from reference data). There is good agreement in direction
and magnitude amongst the estimates, and fair agreement in direction between the estimates and
the result expected by g · b contrast [19].

Upon determination of the dislocation coordinates, a closer inspection was performed. The
outermost Burgers circuit had the limits x = [20, 40], y = [33, 13] in nanometres. Several concentric
Burgers circuits were used and the variations of percentage error in magnitude and angular error
with Burgers circuit side length were recorded.
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Figure 10. Variation of computed Burgers vector with Burgers circuit size (HR-TKD Data). The values of percentage error in
magnitude (a) and angular error (b) at 17 pixels wide roughly match the values anticipated from figure 6. (Online version in
colour.)

Strain and lattice rotation data were also extracted from regions unaffected by the presence of
the dislocation or grain boundary, and the standard deviation (and therefore effectively the noise
magnitude) was computed for each component of strain and lattice rotation.

Figure 10 shows that angular error tended to reduce with Burgers circuit side length to a
minimum of 4.12◦ (with percentage error in Burgers vector magnitude of 42% below the expected
result of 2.7411 Å for tungsten [28,29]) at a Burgers circuit width of 9 pixels before increasing
rapidly. There is also a local minimum of 16.9◦ angular error at 17 pixels. Meanwhile, the
percentage error in magnitude was a minimum of 5.88% at 17 pixels wide before increasing
steadily as side length decreased (note that the magnitude of the Burgers vector decreased with
decreasing side length). The significant percentage magnitude error for small Burgers circuit
side length (for this dataset, roughly 13 pixels and below) agrees with previously discussed
observations (figure 4). Assuming a Gaussian distribution for the noise, the average standard
deviation and therefore noise magnitude was found to be η= 2.7071 × 10−4 by sampling ‘empty’
regions of the dataset, which is considerable. Observing figure 6, this would predict a percentage
error of magnitude of at least 8% and angular error of at least 12◦. This roughly agrees with the
results for the Burgers circuit of 17 pixels wide, which is an apparent ‘sweet spot’ in Burgers
circuit size for this specific case.

Upon further observation of the original strain and lattice rotation data [19], it was found
that the grain boundary nearby had significant influence, especially on the ε13 field. Increasing
Burgers circuit size caused the integration loop to pass over the regions of intense strain and
lattice rotation close to the grain boundary, almost crossing the grain boundary itself. Although
theoretically this should not have affected the Burgers vector calculation as the displacement field
of the grain boundary was continuous across the path of integration, the discretization of the data
and numerical integration cause errors that worsen when the changes in magnitudes between
adjacent pixels (i.e. the strain and lattice rotation gradients) increase. Therefore, in this case, it is
not necessarily true that a larger Burgers circuit improves the result for computed Burgers vector,
as illustrated by figure 10. The low angular error for smaller Burgers circuits of 7–9 pixels wide
may support this also.

It was also noted that there was poor agreement of the measured ε23 and ω23 components with
simulated distortion fields for the known dislocation [19].
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Thus, even for this rather noisy experimental dataset, the approach presented in this paper can
provide reasonable values for Burgers vector magnitude and direction.

6. Conclusion
We have presented an approach for determining dislocation Burgers vector magnitude and
direction from experimentally measured lattice strain and rotation data in materials with low
dislocation density. Applying this approach using simulated data worked flawlessly, except for
extreme cases where the Burgers circuit is very small or the dislocation line is very close to the
integration loop. The addition of noise causes a degradation of the result that is proportional to
the noise magnitude, though the computed Burgers vector still shares good agreement with the
expected result with simulated noise at magnitudes typically found in experimental data. The use
of concentric Burgers circuits can help to reduce errors in cases of very high noise.

For the BCDI data, the approach was able to reliably identify the 3D paths of all five
dislocations in an automated fashion as well as accurately compute Burgers vectors with
directions within half a degree of angular error to those expected (given appropriate Burgers
circuit inputs). The computed magnitudes also showed good agreement with the standard value
for the lattice parameter of tungsten.

The results using the HR-TKD data were also promising, as although deviation from the
expected Burgers vector was much greater than for the BCDI data, there were a number of
significant detrimental factors affecting computation and a result that still shows fair agreement
was recovered. For these data also, the rastering of a Burgers circuit across the sample space could
be used to successfully identify the dislocation position.

Thus, it has been demonstrated that the determination of Burgers vectors using strain and
lattice rotation fields is a promising technique and is feasible not only for simulated data but
also for a wide range of experimental data such as BCDI and even HR-TKD. It should be noted,
however, that the resolution and noise of the data can have a significant impact on the results
due to the numerical integration required for this technique. Furthermore, in order to study
experimental data where the Burgers vector is unknown, clear and reliable bounds for the error in
computed Burgers vector direction and magnitude will need to be developed. This will depend
significantly on the data itself, in particular the presence of other crystal defects, experimental
uncertainty, and the spatial resolution of the data. As a rudimentary estimate, we computed noise
magnitude η for the datasets investigated and used this value to predict the uncertainty in Burgers
vector magnitude and direction.
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Appendix A. Mathematical models of singular dislocations
It should be noted that the mathematical dislocation model used in this paper is singular, meaning
that the discontinuity associated with the dislocation is confined to an infinitesimal line (that
being the dislocation line). Note also that the displacement gradient β is given by

β = ∇u =

⎡
⎢⎢⎢⎢⎣

∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

⎤
⎥⎥⎥⎥⎦ . (A 1)

(a) Infinite straight edge dislocation
Let x, y, and z be the three dimensions in a Cartesian coordinate system, with respective unit basis
vectors ex, ey, and ez. The constant v is the hypothetical Poisson’s ratio of the material, and b is
the magnitude of the Burgers vector.

Consider an infinite straight edge dislocation, with sense ξ = ez and Burgers vector b = bex.
The discontinuity of the dislocation is present at x = 0.

Anderson et al. [8] provide an apt derivation of the components of displacement field u, which
are found to be

ux = b
2π

[
tan−1

(y
x

)
+ xy

2(1 − v)(x2 + y2)

]
(A 2)

and

uy = − b
2π

[
1 − 2v

4(1 − v)
ln(x2 + y2) + x2 − y2

4(1 − v)(x2 + y2)

]
. (A 3)

Note that for this edge dislocation uz = 0.
To find the elastic displacement gradient β, the gradient of the displacement field, the spatial

partial derivatives are taken:

β11 = ∂ux

∂x
= −A

y
(x2 + y2)2 [(3 − 2v)x2 + (1 − 2v)y2], (A 4)

β12 = ∂ux

∂y
= A

x
(x2 + y2)2 [(3 − 2v)x2 + (1 − 2v)y2], (A 5)

https://github.com/JacquesCloete/Burgers-Vector-Calculator
https://github.com/JacquesCloete/Burgers-Vector-Calculator
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β21 = ∂uy

∂x
= −A

x
(x2 + y2)2 [(1 − 2v)x2 + (3 − 2v)y2], (A 6)

β22 = ∂uy

∂y
= A

y
(x2 + y2)2 [(1 + 2v)x2 − (1 − 2v)y2] (A 7)

and β13 = β23 = β31 = β32 = β33 = 0 (A 8)

where

A = b
4π (1 − v)

. (A 9)

With the elastic displacement gradient thus represented by

βedge =

⎡
⎢⎢⎢⎣
β11 β12 0

β21 β22 0

0 0 0

⎤
⎥⎥⎥⎦ (A 10)

(b) Infinite straight screw dislocation
Consider an infinite straight screw dislocation, with sense ξ = ez and Burgers vector b = bez

(note the dislocation is therefore right-handed). Let the plane of slip be confined to the positive
x-axis (this is an important clarification for when we combine our results to produce a mixed
dislocation).

Assuming that uz increases uniformly with angle θ about the dislocation core measured from
the positive x-axis, the components of the elastic displacement u can be found by inspection [9];

ux = 0; uy = 0 (A 11)

and

uz(r, θ ) = b
θ

2π
[0< θ ≤ 2π ]. (A 12)

Using the geometric relation between x, y, and θ , the third expression can be re-written as

uz(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b
2π tan−1

(
y
x

)
[0< θ ≤ π

2 ]

b
2π

[
π + tan−1

(
y
x

)] [
π
2 < θ ≤ 3π

2

]
b

2π

[
2π + tan−1

(
y
x

)] [
3π
2 < θ ≤ 2π

]
.

(A 13)

These all have the same partial derivatives, which are found to be

∂uz

∂x
= β31 = − b

2π
y

(x2 + y2)
(A 14)

and
∂uz

∂y
= β32 = b

2π
x

(x2 + y2)
. (A 15)

To find the elastic displacement gradient β, note that it will be the case that

β11 = β12 = β13 = β21 = β22 = β23 = β33 = 0 (A 16)

and thus

βscrew =

⎡
⎢⎣ 0 0 0

0 0 0
β31 β32 0

⎤
⎥⎦ . (A 17)
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(c) Infinite straight mixed dislocation
A mixed dislocation with sense ξ = ez and Burgers vector b constrained to the x−z plane can be
described by linear combination of the previously described edge and screw cases. Projection
of the Burgers vector onto the z-axis and x-axis gives bscrew = b cos(α) and bedge = b sin(α),
respectively, where α is the angle subtended from the z-axis to the Burgers vector, such that α= 0◦
corresponds to a screw dislocation and α = 90◦ to an edge dislocation. The displacement gradients
of the two cases can be superposed because they are independent of each other in linear isotropic
elasticity [9]. It follows, therefore, that the displacement gradient of the mixed dislocation is
given by

β = βedge sin(α) + βscrew cos(α) (A 18)

where βedge and βscrew are as described in the previous sections.
The result is the following tensor:

β =

⎡
⎢⎣β11 β12 0
β21 β22 0
β31 β32 0

⎤
⎥⎦ (A 19)

where

β11 = − b sin(α)
4π (1 − v)

y
(x2 + y2)2 [(3 − 2v)x2 + (1 − 2v)y2], (A 20)

β12 = b sin(α)
4π (1 − v)

x
(x2 + y2)2 [(3 − 2v)x2 + (1 − 2v)y2], (A 21)

β21 = − b sin(α)
4π (1 − v)

x
(x2 + y2)2 [(1 − 2v)x2 + (3 − 2v)y2], (A 22)

β22 = b sin(α)
4π (1 − v)

y
(x2 + y2)2 [(1 + 2v)x2 − (1 − 2v)y2], (A 23)

β31 = −b cos(α)
2π

y
(x2 + y2)

(A 24)

and β32 = b cos(α)
2π

x
(x2 + y2)

. (A 25)

Note that we can convert the result into strain and lattice rotation tensors using the definitions
ε = 1

2 (β + βT) and ω = 1
2 (β − βT) [25,26].

(d) Rotating the mixed dislocation
To rotate the mixed dislocation such that both ξ and b can take any orientation, it was found that
applying three consecutive rotations about coordinate axes performs this task effectively. Each of
the rotations causes a rotation of the entire displacement gradient field; however, they are applied
in an order such that the following procedure is effectively carried out:

1. Rotate b anticlockwise by angle ψ about the z-axis. This, paired with the aforementioned
use of angle α, allows b to take any orientation relative to ξ . Note ξ is unaffected.

2. Rotate ξ anticlockwise by angle θ about the y-axis. This allows ξ to take any orientation
within the x−z plane. Note both ξ and b are affected equally.

3. Rotate ξ anticlockwise by angle φ about the z-axis. Note both ξ and b are affected equally.
This, paired with the previous rotation, allows ξ to take any orientation.
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The method is summarized visually in figure 11. The three rotations can each be described
separately by rotation matrices, which can be combined to form an overall rotation matrix

R1 =

⎡
⎢⎣cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎥⎦ , (A 26)

R2 =

⎡
⎢⎣ cos(θ ) 0 sin(θ )

0 1 0
− sin(θ ) 0 cos(θ )

⎤
⎥⎦ , (A 27)

R3 =

⎡
⎢⎣cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0
0 0 1

⎤
⎥⎦ (A 28)

and R = R3R2R1. (A 29)

R rotates a tensor expressed in the dislocation frame (x′, y′, z′) to the global frame (x, y, z). The
tensor field β(x, y, z) of a dislocation at arbitrary orientation is then found by rotating the field
expressed in the dislocation frame β ′(x′, y′, z′);

β(x, y, z) = Rβ ′(x′, y′, z′)RT. (A 30)

The variables x′, y′, and z′ are the field point coordinates in the rotated dislocation frame and
are found by rotating the field points in the global frame x, y, z in the opposite direction;⎡

⎢⎣x′
y′
z′

⎤
⎥⎦ = RT

⎡
⎢⎣x

y
z

⎤
⎥⎦ . (A 31)

Thus, the required expressions for an infinite straight mixed dislocation of any orientation have
been derived.

Appendix B. The Nye tensor approach: further detail
The net Burgers vector B for a set of dislocations passing through a surface S can be defined by
the surface integral

B =
∫∫

S
αNye · dS. (B 1)

One can apply Stokes’ Theorem to the line integral from equation (2.1), which results in the
following surface integral [25]:

b =
∫∫

S
(∇ × β)T · dS (B 2)

where S is the surface enclosed by Burgers circuit C.
The resulting integrand is in fact the negative of the Nye tensor, αNye = −(∇ × β)T, which can

be more easily interpreted as

αNye =

⎡
⎢⎢⎢⎢⎣
∂β12
∂z − ∂β13

∂y
∂β13
∂x − ∂β11

∂z
∂β11
∂y − ∂β12

∂x

∂β22
∂z − ∂β23

∂y
∂β23
∂x − ∂β21

∂z
∂β21
∂y − ∂β22

∂x

∂β32
∂z − ∂β33

∂y
∂β33
∂x − ∂β31

∂z
∂β31
∂y − ∂β32

∂x

⎤
⎥⎥⎥⎥⎦ . (B 3)

Note that the appearance of the minus sign is due to ambiguity caused by alternate conventions
used to define the Burgers vector. The Nye tensor is actually related to the plastic displacement
gradient (or slip tensor) βp via αNye = (∇ × βp)T [25], such that upon substitution into equation
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(B 1) and applying Stokes’ Theorem, we obtain

B =
∮

C
βp · dl. (B 4)

However, it must be true that ∮
C

(β + βp) · dl = 0, (B 5)

as total displacement around a closed loop C must be zero [25]. Therefore, it must be the case that
B = −b; in other words, the two expressions for the Burgers vector are opposite in direction. Since
the sign of the Burgers vector is determined by the sign of the sense ξ , which is itself arbitrary
[8,9], the impact of the conflicting definitions is minor but should be borne in mind for the sake
of clarity and consistency. In this paper, equation (2.1) as defined by Anderson et al. [8] is the
authoritative definition.

We shall now compute the Nye tensor for an infinite straight (singular) mixed dislocation.
Consider the result for β found in appendix A(c). To find αNye we populate equation (B 3) with
the elements of β. The only non-zero terms are

∂β11

∂y
= ∂β12

∂x
= − b sin(α)

4π (1 − v)
1

(x2 + y2)3 [(3 − 2v)x4 − 6x2y2 − (1 − 2v)y4], (B 6)

∂β21

∂y
= ∂β22

∂x
= − b sin(α)

4π (1 − v)
2xy

(x2 + y2)3 [(1 + 2v)x2 − (3 − 2v)y2] (B 7)

and
∂β31

∂y
= ∂β32

∂x
= b cos(α)

2π
(y2 − x2)
(x2 + y2)2 (B 8)

and these terms all cancel, resulting in αNye = 0. Note that an exception to this is at the origin, as
β is in fact non-differentiable there, so αNye is instead undefined.

In fact, the Nye tensor is always undefined at the origin and 0 everywhere else for individual
(singular) dislocations. This may at first seem counterintuitive, but the reason is that the Nye
tensor is evaluated at an infinitesimal point (as we are taking the curl of a tensor field, β), and all of
the discontinuities associated with the (singular) dislocation are confined to an infinitesimally thin
line (i.e. the dislocation core). Essentially, the Nye tensor corresponds to having an infinitesimally
small Burgers circuit. While this works mathematically across regions with dislocation presence
defined by a density per unit area, it cannot work when we consider individual dislocations such
that dislocation density is effectively zero everywhere and infinite at the dislocation cores.

Even for experimentally measured dislocations, deviations from linear elasticity theory will
be limited to a small region around the dislocation core [9], and thus using the Nye tensor to
determine the Burgers vector of an individual dislocation from experimental data is not feasible.

Appendix C. Implementation
The program is split into a Plotter and a Calculator:

(i) The Plotter iterates through a chosen set of data and computes an approximate Burgers
vector at every voxel/pixel position using a Burgers circuit of standard shape and size.
The set of Burgers vectors can then be plotted as quivers in a 3D or 2D space, and the
geometry of the material specimen itself, known dislocation lines, etc., can be superposed
onto the plot if implemented by the user.

(ii) The Calculator allows for manual input of Burgers circuit limits to target a dislocation or
group of dislocations and accurately compute the Burgers vector therein.

The two halves of the program can be used effectively in conjunction with each other, with the
Plotter able to find dislocations and give estimates of their Burgers vectors, and the Calculator
then being used to investigate the dislocations in detail. The Calculator may also be configured
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to iterate through several concentric Burgers circuits to remove outliers and find an average
computed Burgers vector.

The program can be adjusted to suit a wide variety of data; all it requires are the elastic strain
and lattice rotation fields (in the form of evenly spaced data arrays). The implementation of the
data will naturally have to be adjusted depending on how the data are originally stored.

As well as working with experimental data, the program features a mathematical model for an
infinite straight mixed dislocation with sense and Burgers vector being able to take any direction,
as described in appendix A(d).

Further information can be found within the supplementary repository containing the
program.
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