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Background. Cardiovascular diseases have been always the most common cause of morbidity and mortality worldwide. Health
monitoring of high-risk and suspected patients is essential. Currently, invasive coronary angiography is still the most direct
and accurate method of determining the severity of coronary artery lesions, but it may not be the optimal clinical choice for
suspected patients who had clinical symptoms of coronary heart disease (CHD) such as chest pain but no coronary artery
lesion. Modern medical research indicates that radial pulse waves contain substantial pathophysiologic information about the
cardiovascular and circulation systems; therefore, analysis of these waves could be a noninvasive technique for assessing
cardiovascular disease. Objective. The objective of this study was to analyze the radial pulse wave to construct models for
assessing the extent of coronary artery lesions based on pulse features and investigate the latent value of noninvasive detection
technology based on pulse wave in the evaluation of cardiovascular disease, so as to promote the development of wearable
devices and mobile medicine. Method. This study included 529 patients suspected of CHD who had undergone coronary
angiography. Patients were sorted into a control group with no lesions, a 1 or 2 lesion group, and a multiple (3 or more) lesion
group as determined by coronary angiography. The linear time-domain features and the nonlinear multiscale entropy features
of their radial pulse wave signals were compared, and these features were used to construct models for identifying the range of
coronary artery lesions using the k-nearest neighbor (KNN), decision tree (DT), and random forest (RF) machine learning
algorithms. The average precision of these algorithms was then compared. Results. (1) Compared with the control group, the
group with 1 or 2 lesions had increases in their radial pulse wave time-domain features H2/H1, H3/H1, and W2 (P < 0:05),
whereas the group with multiple lesions had decreases in MSE1, MSE2, MSE3, MSE4, and MSE5 (P < 0:05). (2) Compared
with the 1 or 2 lesion group, the multiple lesion group had increases in T1/T (P < 0:05) and decreases in T and W1 (P < 0:05).
(3) The RF model for identifying numbers of coronary artery lesions had a higher average precision than the models built with
KNN or DT. Furthermore, average precision of the model was highest (80.98%) if both time-domain features and multiscale
entropy features of radial pulse signals were used to construct the model. Conclusion. Pulse wave signal can identify the range
of coronary artery lesions with acceptable accuracy; this result is promising valuable for assessing the severity of coronary
artery lesions. The technique could be used to development of mobile medical treatments or remote home monitoring systems
for patients suspected or those at high risk of coronary atherosclerotic heart disease.

1. Introduction

Cardiovascular diseases (CVD) are the highest cause of
mortality and morbidity all over the world [1]. In the United

States, one person dies from CVD every 33 seconds, and 70%
of those deaths are from coronary heart disease (CHD). In
China, the number of patients with CHD rose to 11 million
in 2019, and the CHD mortality rate continues to rise [2].
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CHD is now a significant and global public health problem that
has attracted the attention of medical researchers worldwide.

Coronary angiography can determine the position and
number of coronary artery lesions to assess the severity of
a patient’s condition [3]. However, research has demon-
strated [4–6] that, among patients with suspected CHD
who have symptoms of chest pain, coronary angiography
did not identify CHD in numerous cases. The prevalence
of coronary artery stenosis was more likely to be overesti-
mated among elderly patients. Furthermore, coronary angi-
ography is an invasive operation and is correlated with
death, myocardial infarctions, and other severe complica-
tions such as vascular injury or hematoma [7, 8]. Therefore,
noninvasive methods of detecting the severity of coronary
artery lesions in patients with suspected CHD have received
substantial recent attention.

A pulse wave is excited by cardiac ejection. The fluctua-
tion of the radial artery pulse wave corresponds to the events
constituting the cardiac cycle [9]. The pressure pulse wave
can be measured at the radial artery, because the radial
artery is shallow and its diameter is relatively thick, which
is easy to touch and is not easily disturbed by subcutaneous
tissue, fat, and other factors. Modern research has indicated
that features of the pressure pulse wave in the radial artery
can reveal arterial stiffness and indicate cardiovascular func-
tion [10, 11]. It is recognized that atherosclerosis affects blood
vessels throughout the body; coronary atherosclerosis has the
same pathological mechanism as large- and medium-sized
elastic arteries. Therefore, arteriosclerosis indicators can be
used to assess the degree of coronary atherosclerosis [12];
thus, assessing the extent of coronary arterial lesions based
on pulse wave analysis techniques is feasible.

The time-domain method, a most frequently used
method for pulse signal analysis, is able to extract ampli-
tudes and phases of a cardiac cycle of pulse signal. These
amplitudes and phases have specific pathophysiological
implication reflecting the cardiovascular status. Qi et al.
[10] incorporated radial pulse wave time-domain feature
H3/H1 reflecting peripheral vascular resistance and arterial
stiffness into a hypertension risk prediction model and com-
pared it with the model using Ba-PWV. The results revealed
that the model using time-domain H3/H1 of pulse signal as
a predicting factor had higher accuracy in predicting hyper-
tension risk. The human body is a complex system with
numerous coupling dynamics expressed in nonlinear forms.
Human physiological signals, such as pulse wave signals,
also have nonlinear features [13]. Nonlinear analytical
methods have become the primary method of analyzing bio-
medical signals. Wang et al. [14] used approximate entropy
to analyze the pulse signals of patients with cardiovascular
diseases. They observed that, compared with the pulse
signals of healthy individuals, the pulse signals of patients
with cardiovascular diseases had lower entropy and fewer
irregularities. Yan et al. [15] used Lyapunov indicators to
compare the pulse signals of patients with CHD and healthy
individuals and found differences that demonstrated this
nonlinear analysis can be used to detect CHD in patients.
Therefore, in this paper, linear and nonlinear analytical
methods were employed to extract pulse features for reveal-

ing the cardiovascular information hidden in pulse wave
from different perspectives.

Effective risk stratification can lower patient incidence of
disease and lower the possibility of the patient undergoing
invasive diagnostic procedures. However, precise risk strati-
fication prediction models require substantial amounts of
data and follow-up research to build, and the rapid develop-
ment of artificial intelligence has enabled machine learning
algorithms to convert small samples of clinical data into
more precise prediction models [16]. These models can be
used in long-term disease tracking, management, and feed-
back in mobile medical devices, enabling new options for
the early diagnosis of diseases and the management of
chronic diseases [17]. Research in applying machine learn-
ing methods has yielded some achievements in the establish-
ment of cardiovascular disease models based on radial pulse
wave signals [18, 19].

This study involves obtaining pulse wave signals from
the arterial artery by using noninvasive pulse detection
equipment, extracting the time-domain features and the
multiscale entropy features, and finally grouping patients
by number of coronary artery lesions in accordance with
coronary angiography results to identify differences in
time-domain features and multiscale entropy features of
pulse wave. Models for assessing the severity of coronary
artery lesions were also built on the basis of different datasets
and multiple machine learning algorithms to investigate the
latent value of radial pulse wave in assessing the extent of
coronary artery lesions as well as the potential of pulse waves
for individual medical monitoring of patients.

2. Methods

2.1. Research Participants. The research participants were
529 patients previously suspected to have CHD and who
underwent coronary angiography between December 2019
and December 2020 from departments of cardiology in
two hospitals in Shanghai, including Yueyang Hospital of
Integrated Traditional Chinese and Western Medicine, and
Shuguang Hospital, which are affiliated to Shanghai Univer-
sity of Traditional Chinese Medicine.

Based on the coronary angiographs, patients with lesions
of less than 50% diameter stenosis were assigned to the con-
trol group (Group 1), whereas patients with lesions of
greater than 50% diameter stenosis were further sorted by
the number of coronary artery lesions, specifically those with
1 or 2 lesions (Group 2) and multiple (3 or more) lesions
(Group 3) [20].

Participants were excluded if they had chest pains caused
by other heart diseases, severe neurosis, with atrial fibrilla-
tion/flutter or aortic valve stenosis, a history of percutaneous
coronary intervention surgeries or coronary artery bypass
surgery, or incomplete clinical medical records.

The Medical Ethics Committee of the Yueyang Hospital
of Integrated Traditional Chinese and Western Medicine
affiliated to Shanghai University of Traditional Chinese
Medicine approved the study (Approval number: 2020-
175), and written informed consent was obtained from all
included subjects according to the Declaration of Helsinki.
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2.2. Pulse Collection. The patients’ pulse waves were collected
using a ZBOX-I pulse detection equipment (product by:
Shanghai Asia & Pacific Computer Information System
Co., Ltd., Shanghai, China). This pulse detection equipment
was mentioned in our previous study [21] and has a wide
range of applications in the research of cardiovascular dis-
eases [22–24]. Each subject was instructed to relax for more
than 5min before pulse wave was recorded. The pulse wave
recordings of all subjects were measured in styloid process of
the radius where the radial artery pulsates of the left hand,
the best position to feel the pulse, and recorded for 60 sec
at a sample rate of 720Hz.

2.3. Method of Pulse Feature Extraction. In this study, the
features of the radial pulse wave signals were extracted using
time-domain analysis and multiscale entropy analysis.

2.3.1. Time-Domain Analysis. The time-domain analysis is a
method that mainly quantifies the characteristic points of
the pulse waveform in a single cardiac cycle. As shown in
Figure 1, in a cardiac cycle of pulse waveform, the peak point
and valley point of the waveform including the starting point
and ending point are feature points with physiological sig-
nificance. They are as follows: H1: the height of percussion
wave (main wave), H2: the height of main wave gorge, H3:
the height of tidal wave, H4: the height of dicrotic notch,
H5: the height of dicrotic wave, T1: main wave phase, T2:
main wave gorge phase, T3: tidal wave phase, T4: the
dicrotic notch phase, T5: the dicrotic notch phase, T: pulse
cycle, w1: the width of main wave in its 1/3 height position,
and W2: the width of main wave in its 1/3 height position.

The classical time-domain features were extracted in this
study, which were H2/H1, H3/H1, H4/H1, H5/H1, T1/T,
T1/T4, T, W1, and W2. Their physiological significances
are presented in Table 1.

2.3.2. Multiscale Entropy Analysis. Multiscale entropy analy-
sis is a nonlinear method. It was proposed by Costa et al. to
evaluate the complexity of time series by taking into account
the multiple time scales in physical systems, and soon, these
approaches have been used in biosignals to estimate the
degree of randomness or regularity in physiological pro-
cesses [25, 26]. Multiscale entropy analysis can determine
low self-similarity across scales and requires a coarse-
grained procedure of the signals and the entropy computa-
tion for the original signal and for the coarse-grained time
series (Figure 2). The method is as follows:

y sð Þ
j = 1

s
〠
js

i= j−1ð Þs+1
ui, 1 ≤ j ≤

N
s
: ð1Þ

Here, s denotes the scale factor, u is the initial signal to
be tested, and y is the coarse-grained signal. If the scale
factor is 1, y is equal to u. In this study, 5 was set as the
maximum scale factor. We averaged data for each scale fac-
tor (m = 1,⋯, 5), and we used the MSE method, as originally
proposed [21] for calculation of MSEi (i = 1,⋯, 5).

MSEi (i = 1,⋯, 5) were used to analyze the complexity of
the radial pulse wave signal at 5 scales.

2.4. Statistical Analysis. Analysis was performed using statis-
tical software SPSS 25.0 (IBM, Armonk, NY) to compare the
baseline features and radial pulse wave features of patients
with different groups.

Continuous variables were compared using the
Wilcoxon-Mann-Whitney nonparametric test, and categori-
cal variables were compared using the chi-squared test. The
continuous variables were expressed as median values and
quartile ([M (Q1, Q3)]), and the categorical variables were
expressed in percentages. All reported P values were 2-tailed,
and those <0.05 were considered statistically significant.

2.5. Machine Learning Methods. The 3 machine
algorithms—k-nearest neighbors (KNN), decision tree
(DT), and random forest (RF)—were used to build models.
KNN is a simple method of machine learning, which could
classify unlabeled observations by assigning them to the class
of the most similar labeled examples [27]. DT is a method of
classification and regression. In the DT, the tree models are
composed of nodes and directed edges, and optimal classifi-
cations are achieved through learning processes that involve
recursive feature selection, DT generation, and pruning [28].
RF uses a large series of decision trees with low reciprocal
correlation and randomly selected features using the method
of bagging to obtain more precise and stable classifications
and predictions [29].

3. Results

3.1. Baseline Information of Patients with Different Numbers
of Coronary Artery Lesions. The baseline characteristics of
529 participants is shown in Table 2.

3.2. Comparison of Time-Domain Features. The comparison
of time-domain features between groups with different
numbers of coronary artery lesions in the total studied
population is shown in Table 3. Compared with Group
1, Group 2 had increases in time-domain features H2/
H1, H3/H1, and W2 (P < 0:05); compared with group 2,
Group 3 had increases in T1/T (P < 0:05) and decreases
in T and W1 (P < 0:05).

3.3. Comparison of Multiscale Entropy Features. The com-
parison of multiscale entropy features between the three
groups is shown in Table 4. Table 4 indicates that, compared
with Group 1, Group 3 had lower MSE1, MSE2, MSE3,
MSE4, and MSE5 (P < 0:05).

3.4. Models Assessing Different Extents of Coronary Artery
Lesions Based on Pulse Wave. By using the demographics
of the patients (n = 529) suspected of having CHD—age,
sex, and BMI–as baseline dataset, their pulse wave time-
domain features and MSE features were used to form 3 sets
of feature dataset. These datasets were Dataset 1 (baseline
dataset and time-domain features), Dataset 2 (baseline data-
set and MSE features), and Dataset 3 (baseline dataset, time-
domain features, and MSE features). The performance of
each model was then assessed using its average precision.
Models for identifying different numbers of coronary artery
lesions were built, respectively, using KNN, DT, and RF
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machine learning algorithms for each dataset, as presented
in Table 5.

Table 5 indicates that, compared with KNN and DT, the
RF-based models had higher average precisions (74.25% for
Dataset 1, 80.15% for Dataset 2, and 80.98% for Dataset 3)
than the KNN-based model and DT-based model. For
another, compared with Dataset 1 and Dataset 2, the recog-
nition precision of Group 1 and Group 3 by the RF-based

model with Dataset 3 was the highest (89.16% for Group 1
and 86.65% for Group 2), respectively.

4. Discussion

CHD’s leading risk factors include age, sex, diabetes, hyper-
tension, and hyperlipidemia [30–34]. These risk factors
cause lipids to be continuously deposited along the inner
walls of blood vessels, forming plaque. Atherosclerotic
plaque on the inner membrane of the coronary arteries,
affected by vasoconstriction, manifests as crescent shapes
and is heavier on the myocardial side [35]. On the side with-
out plaque, the smooth muscle and elastic fibers within the
arterial wall can still maintain some constriction and elastic-
ity, which may have a compensatory effect on the blood
supply of the coronary arteries. Therefore, for coronary
arteries with few lesions, blockages in the coronary arteries
result in lower arterial compliance and increased peripheral
resistance. If the number of lesions in the coronary arteries
increases, long-term and chronic blockages result in weaken-
ing of the compensatory ability, reduced myocardial perfu-
sion reserve, and significantly lowered left ventricular
function; these lead to higher mortality [36, 37].
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Figure 1: A cardiac cycle of pulse waveform. Notes. The y-axis is the amplitude of the pulse signal whose unit is millimeter (mm). The x
-axis is the time whose unit is second (s).

Table 1: Physiological significances of time-domain features of pulse wave.

No. Parameters Physiological significance

1 H2/H1 It reflects the compliance and peripheral resistance of the vascular wall.

2 H3/H1 It reflects the compliance and peripheral resistance of the vascular wall.

3 H4/H1 It reflects peripheral resistance.

4 H5/H1 It reflects the compliance of the aorta and the function of the aortic valve.

5 T(s) It reflects the pulse wave period.

6 W1(s) It reflects the duration of high arterial pressure.

7 W2(s) The duration of maintaining high intravascular pressure.

8 T1/T It reflects the ejection function of the heart.

9 T1/T4 It reflects the rapid ejection of the heart.
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Figure 2: Signal coarse-grained procedure.
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In this study, the average age of the participants in
Group 3 was higher than that of the participants in Group
1(P < 0:05). Furthermore, group 2 and group 3 with coro-
nary artery lesions had fewer women and more men than
the control group (P < 0:05). These sex differences were
more evident with greater coronary artery lesions, and it
was consistent with the existing finding that the gender dif-
ference was also found in coronary calcification [38]. This

result may be partly due to the protective effects of estrogen
for atherosclerosis [39]. Complications such as hypertension
and diabetes were also more common in groups with more
coronary artery lesions (Groups 2 and 3) than those in the
control group (P < 0:05). Hypertension and diabetes are
both independent risk factors for CHD and exacerbate ath-
erosclerotic lesions. Prolonged hypertension and diabetes
aggravated CHD and increased its incidence. Participants

Table 2: Characteristics of the study subjects.

Factors Group 1 (n = 115) Group 2 (n = 277) Group 3 (n = 137) x2/F P value

Male, n (%) 67 (58.261) 169 (61.011) 100 (72.993)
7.430 0.024

Female, n (%) 48 (41.739) 108 (38.989) 37 (27.00)

Age (years) 62:98 ± 11:372 66:56 ± 9:779▲ 66:79 ± 11:641▲ 4.798 0.009

BMI (kg/m2) 24:922 ± 3:461 24:408 ± 3:520 24:364 ± 3:290 1.063 0.347

SBP (mmHg) 135:65 ± 15:261 131:49 ± 16:008▲ 134:07 ± 14:780 3.293 0.038

DBP (mmHg) 78:58 ± 8:812 77:23 ± 9:049 77:69 ± 6:809 1.031 0.357

Pulse pressure difference (mmHg) 57:07 ± 12:634 54:26 ± 12:428 56:38 ± 13:536 2.490 0.084

History of smoking, n (%) 25 (21.740) 73 (26.354) 43 (31.387) 3.003 0.223

History of drinking, n (%) 24 (21.739) 33 (11.913) 20 (14.599) 5.241 0.073

Hypertension, n (%) 70 (60.870) 186 (67.148) 109 (79.562) 11.143 0.004

Type 2 diabetes, n (%) 19 (16.522) 84 (30.324) 72 (52.555) 38.664 0.001

Dyslipidemia, n (%) 45 (39.130) 112 (40.433) 70 (51.095) 5.111 0.078

Family history of cardiovascular diseases, n (%) 30 (26.087) 46 (16.606) 21 (15.328) 5.995 0.0499

Lack of exercise, n (%) 86 (74.783) 227 (81.949) 119 (86.861) 6.123 0.047

Abbreviation: BMI: body mass index; SBP: systolic pressure; DBP: diastolic pressure; definition: history of smoking was defined as subjects who smoked one
cigarette or more per day for over 6 months; history of drinking was defined as involving drinking for more than six months and drinking more than 10 grams
a day; hypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg; type 2 diabetes was defined as fasting blood
glucose ≥ 7mmol/L or postprandial blood sugar ≥ 11mmol/L; dyslipidemia was defined as total cholesterol ≥ 200mg/dL, or low-density lipoprotein
cholesterol ≥ 130mg/dL, or high-density lipoprotein cholesterol < 40mg/dL, or triglyceride ≥ 150mg/dL; lack of exercise was defined as exercise less than
three times a week, and each time less than half an hour; ▲compared with Group 1, P < 0:05; ∗compared with Group 2, P < 0:05.

Table 3: Comparison of time-domain features between groups with different numbers of coronary artery lesions.

Time-domain features Group 1 (n = 115) Group 2 (n = 277) Group 3 (n = 137) Z P values

H2/H1 0.881 (0.686, 0.954) 0.939 (0.846, 0.973)▲ 0.927 (0.742, 0.972) 11.690 0.002

H3/H1 0.753 (0.537, 0.842) 0.817 (0.718, 0.893)▲ 0.776 (0.609, 0.887) 12.448 0.002

T1/T 0.164 (0.130, 0.197) 0.156 (0.123, 0.192) 0.169 (0.141, 0.205)∗ 7.925 0.019

T 0.824 (0.721, 0.925) 0.851 (0.762, 0.945) 0.817 (0.731, 0.889)∗ 9.059 0.011

W1 0.199 (0.152, 0.228) 0.211 (0.171, 0.238) 0.194 (0.163, 0.227)∗ 8.696 0.013

W2 0.148 (0.110, 0.174) 0.164 (0.122, 0.194)▲ 0.143 (0.118, 0.183) 9.456 0.009

Data shown are M (Q1, Q3); ▲compared with Group 1, P < 0:05; ∗compared with Group 2, P < 0:05.

Table 4: Comparison of multiscale entropy features between groups with different numbers of coronary artery lesions.

MSE Group 1 (n = 115) Group 2 (n = 277) Group 3 (n = 137) Z P value

MSE1 0.045 (0.034, 0.08) 0.040 (0.032, 0.07) 0.039 (0.032, 0.049)▲ 7.524 0.023

MSE2 0.093 (0.070, 0.168) 0.082 (0.065, 0.145) 0.079 (0.065, 0.101)▲ 7.535 0.023

MSE3 0.143 (0.107, 0.264) 0.125 (0.099, 0.227) 0.121 (0.100, 0.156)▲ 7.516 0.023

MSE4 0.194 (0.145, 0.369) 0.171 (0.134, 0.315) 0.164 (0.135, 0.214)▲ 7.504 0.023

MSE5 0.248 (0.184, 0.484) 0.216 (0.170, 0.411) 0.208 (0.171, 0.272)▲ 7.344 0.025
▲compared with Group 1, P < 0:05; ∗compared with Group 2, P < 0:05.
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in Group 2 had lower systolic pressure than the control
group (P < 0:05). In fact, lower systolic pressure is associated
with poor outcomes of cardiovascular events [40].

CHD occurs due to the combined effects of multiple risk
factors. Pulse waves include cardiovascular information
about cardiac ejection activity and the propagation of the
pulse along the vascular tree, and changes in of structure
and function of the coronary arteries inevitably lead to
corresponding changes of the pulse wave. Therefore, time-
domain features and MSE features of pulse wave could
indicate those changes in CHD.

Increases in H2/H1 and H3/H1 indicate that, as the
number of lesions in the coronary arteries increases, aortic
compliance decreases and peripheral resistance increases.
An increase in W2 indicates that high arterial pressure has
been maintained for a prolonged period of time. Compared
with Group 2, Group 3 with a greater number of lesions in
the coronary arteries had higher T1/T and lower T and
W1 (P < 0:05). Those outcomes indicated that Group 3 has
significantly weakened myocardial contractility, resulting in
limited cardiac ejection capacity and insufficient circulating
blood volume in the arteries, and the duration of intravascu-
lar hypertension in arteries is relatively shortened. The heart
rate increases to compensate for this phenomenon and
increase the total cardiac output.

MSE is a method of measuring the complexity of time
series. Entropy-based measurements are widely used to
quantify the complexity of various biomedical time-series
datasets [41]. The results of this study revealed that, com-
pared with Group 1, Group 3 had lower MSE1, MSE2,
MSE3, MSE4, and MSE5 (P < 0:05). Greater entropy values
indicate that the signals generated by the system are more
random and irregular, indicating that the system has lower
complexity. Furthermore, reduction of complexity is a com-
mon feature of pathodynamics [42]. Therefore, MSE features
reflect that, as the number of coronary artery lesions
increases, the regulatory ability of the cardiovascular system
worsens. As demonstrated in other studies, compared with
healthy people, people with cardiovascular diseases typically
have reduced entropy values, and changes in the entropy
value indicate changes in the cardiovascular regulatory sys-
tem mediated by the autonomic nervous system [25, 41,
43]. The complexity of cardiovascular systems of various

pathological states can be differentiated using pulse wave
MSE features.

Following technological advances, computing tools for
processing diagnostic information have been increasingly
used to study the biomedical information of patients with
cardiovascular diseases [44]. Existing research [36] has
demonstrated that machine learning algorithms can produce
accurate results when sorting epidemiological data. The
random forest, a key data mining method in machine learn-
ing field that depends on a computer to learn all the compli-
cated and nonlinear interactions among variables through
minimization of errors between observed and predicted
outcomes, can achieve a higher accuracy in the disease pre-
diction by using bootstrap aggregation and randomization
of predictors [29]. Besides, RF models are less prone to over-
fitting. In this study, the model built using RF algorithms
had a higher average precision than the models built with
KNN or DT algorithms. Furthermore, the model average
precision was highest when both the time-domain features
and multiscale entropy features were included.

Due to the high prevalence of CHD and the serious
harm it causes, the aim of this study is to assess the extent
of coronary artery disease through a noninvasive, traceable,
out-of-hospital method to help people at risk and patients
with CHD know their coronary condition and make timely
adjustments to their potentially modifiable risk factors. Over
the past few decades, wearable devices that monitor physio-
logical signals have been increasingly used in diagnostics
and treatments and have played an important role in
medicine and health care. This study may be a reference
for the development of wearable devices that can detect
cardiovascular lesions.

5. Conclusion

Radial pulse signals can be used as an indicator of the extent
of coronary artery lesions. Models for assessing coronary
artery lesions based on pulse detection techniques are useful
for determining the severity of coronary artery lesions.
Therefore, these models could be used to develop remote
health monitoring based on noninvasive and wearable radial
pulse wave signals and combined with actuators and modern
communication and information technology system for

Table 5: Average precisions of stratification models (%).

Classifier Datasets Group 1 (n = 115) Group 2 (n = 277) Group 3 (n = 137) Average precision

KNN Dataset 1 64.24 38.64 65.35 56.07

Dataset 2 67.51 40.42 61.34 56.44

Dataset 3 64.25 42.98 64.30 57.17

DT Dataset 1 75.11 44.06 67.51 62.21

Dataset 2 76.14 49.45 77.96 67.87

Dataset 3 78.65 50.50 76.18 68.45

RF Dataset 1 86.95 55.23 80.51 74.25

Dataset 2 87.38 72.21 80.86 80.15

Dataset 3 89.16 67.10 86.65 80.98
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monitoring of the suspected and high-risk patients of CHD
in real-time, from a distant facility.
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