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ABSTRACT
Advances in next generation sequencing technologies provide approaches 

to comprehensively determine genomic alterations within a tumor that occur as 
a cause or consequence of neoplastic growth. Though providers offering various 
cancer genomics assays have multiplied, the level of reproducibility in terms of the 
technical sensitivity and the conclusions resulting from the data analyses have not 
been assessed. 

We sought to determine the reproducibility of ascertaining tumor genome 
aberrations using whole exome sequencing (WES) and RNAseq. Samples of the same 
metastatic tumors were independently processed and subjected to WES of tumor 
and constitutional DNA, and RNAseq of RNA, at two sequencing centers. Overall, the 
sequencing results were highly comparable. Concordant mutation calls ranged from 
88% to 93% of all variants including 100% agreement across 154 cancer-associated 
genes. Regions of copy losses and gains were uniformly identified and called by each 
sequencing center and chromosomal plots showed nearly identical patterns. Transcript 
abundance levels also exhibited a high degree of concordance (r2 ≥ 0.78;Pearson). 
Biologically-relevant gene fusion events were concordantly called. Exome sequencing 
of germline DNA samples provided a minimum of 30X coverage depth across 56 genes 
where incidental findings are recommended to be reported. One possible pathogenic 
variant in the APC gene was identified by both sequencing centers. 

The findings from this study demonstrate that results of somatic and germline 
sequencing are highly concordant across sequencing centers that have substantial 
experience in the technological requirements for preparing, sequencing and annotating 
DNA and RNA from human biospecimens.  
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INTRODUCTION

Rapid advancements in next generation sequencing 
(NGS) technologies have provided a means to 
comprehensively determine the constitutional genome of 
an individual, and all genomic aberrations within a tumor 
that occur as a cause or consequence of malignant growth. 
This information, when integrated with an understanding 
of disease mechanism, disease behavior, and response to 
therapeutics underlies the concept of precision oncology: 
a refinement of disease taxonomy based on molecular 
features [1]. A practical consequence of this approach 
is the development of a more specific categorization of 
cancers with congruent behaviors and with predictable 
responses to therapies. 

The Cancer Genome Atlas (TCGA) and other large-
scale molecular profiling studies of human malignancies 
have identified common and rare genomic alterations, a 
subset of which are recurrent across different tumor types 
and several of which have clear therapeutic implications 
[2, 3]. It is now evident that carcinomas typically contain 
thousands of mutations and a spectrum of structural 
chromosomal rearrangements and epigenomic alterations, a 
subset of which alter gene function and influence malignant 
growth [4]. While only a few molecular alterations have 
clearly-defined implications for selecting specific therapies, 
these are none-the-less notable, and foreshadow the future 
where new treatments are developed and deployed based 
on targeting key causal aberrations [5–7]. 

The field of medical genetics is currently grappling 
with the opportunities and challenges of integrating 
genomic sequencing data into clinical practice [8, 9]. 
Most commonly, whole genome sequencing (WGS) or 
whole exome sequencing (WES) strategies have been 
employed to identify sequence variants shown in clinical 
research to cause or associate with a disease. Setting 
standards for methods, determining which disease-
associated variants should be reported, and establishing 
how to communicate incidental or opportunistic findings 
have been the subject of several consensus panels 
[10, 11]. Less attention has been given to specifically 
establishing standards for assessing and reporting 
somatic events in patients with cancer, which provide 
many additional challenges [12, 13].  

In addition to the issues faced in interpreting and 
reporting germline WGS/WES data, cancer genomics 
must consider tissue quality and quantity, intra-tumor 
heterogeneity, inter-tumor heterogeneity, gains and losses 
of chromosomal regions, and variation in the admixture 
of neoplastic versus benign cells in the tissue sample. The 
addition of complementary NGS assays such as RNA 
sequencing (RNAseq) for the analysis of gene expression 
adds additional variables. If comprehensive genome-
scale assessments will be used as the basis for cancer 
classification and consequent treatment decisions, then 
accurate molecular assessments are essential. 

Although providers offering cancer genomics assays 
have proliferated, the level of reproducibility in terms of 
the technical sensitivity and the resulting conclusions 
stemming from the data analysis has not been evaluated. 
In this study, we sought to determine the reproducibility of 
NGS-based assessments of tumor genome mutations and 
gene expression using WES and RNAseq, respectively. 
Samples of the same metastatic tumors were independently 
processed and subjected to WES and RNAseq at two 
sequencing centers. We compared the determinations of 
somatic DNA point mutations, indels, and copy number 
variants identified by WES, germline variants assessed by 
WES, and transcript abundance and gene rearrangements 
identified by RNAseq.

RESULTS

Clinical samples, pathology, and sequence 
analysis pipelines

Tumor and benign tissue samples were obtained 
from three men with widely metastatic prostate cancer 
[14, 15]. Tumor sections were assessed to confirm a 
composition of > 70% tumor cells, and benign tissues were 
evaluated to establish the absence of neoplastic cells. A 
metastasis from each patient, designated SC_9008 (liver), 
SC_9009 (lymph node) and SC_9010 (lymph node) was 
partitioned and one representative tumor sample from each 
metastasis with a corresponding benign tissue sample was 
shipped to the University of Michigan (UM) and the Broad 
Institute (Broad) for sequence analysis (Figure 1). 

Each sequencing center processed the tissue 
samples using institutional protocols (see Methods). 
Exome libraries were sequenced using Illumina HiSeq 
instruments with a target of 50 million paired-end reads 
per sample. The actual number of reads ranged from 110 to 
250 million (Table 1). RNAseq libraries were constructed 
from both PolyA+ selected and total RNA libraries (UM) 
or total RNA alone (Broad) and sequenced using Illumina 
HiSeq 2500 instruments with a target of 50 million paired-
end reads per sample. The actual number of reads ranged 
from 100 to 134 million (Table 1). 

Sequencing coverage

A mixture model was used to estimate the tumor 
cell content of each sample (eMethods). Histological 
assessments estimated that each tumor comprised > 70% 
neoplastic cells. The sequence-based estimates of tumor 
content were 86%, 76% and 58% for SC_9008, SC_9009 
and SC_9010, respectively (Supplementary Figure 1). 
Mean target coverage and additional sequencing metrics 
are in Table 1 and Figure 2A–2C. 

To compare the biological utility of exploring 
prostate cancer metastasis by WES, we assessed the mean 
sequencing depth of coverage for 11 genes shown in 
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Figure 1: Flow of experiments and analyses. Representative histology images from the tumor samples included in this study (A). 
Overview of sample processing, sequencing, and analysis pipelines used at the two sequencing centers (B).
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previous studies of prostate carcinoma to be recurrently 
mutated (Figure 2D) [16–18]. Each gene had a minimum 
of 50 reads spanning each nucleotide across the targeted 
exons. For the androgen receptor (AR) the coverage 
exceeded 150X; the UM bait design included additional 
sequencing specifically for AR and FOXA1, which resulted 
in enhanced coverage of these genes.  We also assessed 
a panel of 134 cancer genes that, when altered, may be 
clinically actionable: defined as predictive for response or 
resistance to therapy, and/or with prognostic or diagnostic 
relevance [19].  Though read depth varied substantially, 
with some genes exhibiting deeper coverage in UM 
sequencing and others exhibiting deeper coverage in 
Broad sequencing, for all but two genes in the UM set 
(NPM1, RHEB) and five genes in Broad set (NKX2-1, 
STK11, MAP2K2, CEBPA, ARAF), read-depths exceeded 
50X (Figure 2E).

Tumor exome analysis: Mutations

The tumors evaluated in this study varied 
substantially in the number of non-synonymous somatic 
mutations ranging from 852B/1203UM in SC_9008, which 
harbors an MSH2 mutation that likely underlies this 
hypermutation phenotype [20], to 42B/57UM in SC_9009 
(Supplementary Tables 1, 2). Since mean target coverage 
was different at the two sites, which impacts power to 
detect mutations at lower allelic fractions and thus can 
confound comparison analyses, mutation comparisons were 
performed with a focus on adequately powered genetic loci 
[19, 21]. Of the mutations originally called in the SC_9008 

tumor in the UM analysis, 88.5% of adequately powered 
events were concordantly called in the Broad-sequenced 
tumor, whereas 11.5% were powered to detect a mutation 
but the mutation was not identified (Figure 2F). In this 
tumor, 93% of the mutations originally called in the Broad 
analysis were adequately powered and validated in the UM 
analysis with 7% of the mutations adequately powered but 
not identified (Figure 2G). Analyses of the mutations in the 
other two tumors yielded similar rates of reproducibility. 
Collectively, these results may reflect differences in 
capture reagents, depth of coverage, analytical methods 
used for variant identification, or true biology in terms of 
intra-tumor heterogeneity. 

Examination of variant calls from each center was 
performed for variants with at least 30X depth and an allelic 
fraction of 0.1 or higher, acknowledging that a majority of 
alterations present in one set but not the other is a result 
of insufficient power to call the variant. In both cases, the 
majority of nonsynonymous alterations identified in one 
set but not the other (374/613 [61%] for UM and 206/294 
[70%] for Broad) were classified as short insertion/deletion 
events, consistent with prior reports that note challenges in 
reproducibly identifying this type of variant [22]. 

Several mutations were detected in genes with 
functional roles in prostate or other cancers. The exome of 
SC_9008 included an AR mutation, T878A that broadens 
ligand specificity, an inactivating TP53 mutation, and 
a recurrent mutation in SPOP. A frameshifting indel 
disrupting MSH2 was identified which likely contributed 
to the hyper-mutated genome of this tumor. The exome of 
SC_9010 had a point mutation in ZFHX3/ATBF1, a tumor 

Table 1: Sequencing metrics
Sequence Type Metric SC_9008 SC_9009 SC_9010

Broad UM Broad UM Broad UM
WES (somatic)

MTC 177.99 264.10 147.09 271.13 122.57 265.04
Selected bases (%) 0.83 0.75 0.84 0.76 0.85 0.72
Zero coverage targets (%) 0.014 0.018 0.015 0.019 0.015 0.017
NSV 852 1203 42 57 47 90
Point Mutations 652 811 38 47 45 82
Insertion/Deletions 200 392 4 10 2 8

WES (germline)
MTC 143.40 226.97 173.84 236.99 122.57 188.19
Selected bases (%) 0.85 0.79 0.86 0.81 0.85 0.75
Zero coverage targets (%) 0.014 0.020 0.013 0.021 0.015 0.020
ACMG 56 gene coverage > 30X (%) 100 100 100 100 100 100

RNAseq (somatic)
Aligned in pairs reads (%) 0.976 0.912 0.973 0.914 0.974 0.920
PF reads aligned (%) 0.938 0.821 0.948 0.819 0.940 0.812

MTC, mean target coverage; NSV, non-synonymous nucleotide variant. 
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suppressor gene previously reported to be recurrently 
inactivated in prostate cancers [23–25] [16]. Each of these 
pathogenic mutations was identified in both the UM and 
Broad analyses. A PTEN frameshift mutation (p.L296fs; 

allelic fraction 0.8) that accompanied a PTEN copy loss in 
SC_9008 was only identified in the initial UM insertion/
deletion analysis, but was confirmed following manual 
review in both sequence data sets.

Figure 2: Sequence coverage of comparisons of mutation calls in prostate cancer across sequencing centers.   The range 
of mean target coverage (A), selected bases (%) (B), and zero coverage targets (%) (C) for tumors sequenced at the two sequencing centers 
are shown. Mean target coverage for biologically relevant prostate cancer genes are from tumors sequenced in the two sites are shown (D). 
Using a larger panel of 130 clinically relevant genes, mean target coverage for UM and Broad tumors is plotted in (E), with designations 
for genes that had < 50 X mean target coverage for UM (blue) or Broad (red) platforms. The cross validation rates for UM to Broad and 
Broad to UM are shown in (F) and (G), respectively when accounting for whether there was adequate power to detect an alteration at both 
sites which corrects for the difference in sequencing depth achieved between the two centers.
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Tumor exome analysis: Genome structural 
alterations

To identify regions of the genome with allelic 
copy loss or gain, we assessed the exome sequence 
data using segmentation derived from copy ratios (See 
Supplementary Methods). Overall, there were substantial 
regions of copy gain and loss in each of the tumors. 
Overlays of the chromosome plots showed nearly 
identical patterns across the tumor genomes (Figure 3A; 
Supplementary Figure 3). Notable alterations in SC_9008 
included a single copy loss of APC, PTEN loss, RB1 loss, 
and focal amplifications of 8q that included the MYC 
locus. In SC_9010 notable alterations included JAK2 
loss on Chr9 and a copy gain of the AR. Each of these 
alterations was called in the UM and Broad analyses.

Tumor RNAseq

RNAseq was performed to assess gene expression 
and identify gene rearrangements that encode fusion 
transcripts. Globally, gene expression concordance was 
significant between the transcriptomes from each tumor 
sample (r2  ≥ 0.78; Pearson)  (Figure 3B–3D). Each tumor 
was found to exhibit high levels of transcripts encoding 
the AR (Figure 3E–3G) and AR-regulated genes such 
as KLK3/PSA and TMPRSS2, indicating an active AR 
transcriptional program, an important clinical finding for 
prioritizing therapeutic options. 

Paired-end sequencing reads were used to identify 
fusion transcripts. Tumor SC_9009 expressed a fusion 
transcript involving the 5′ exons of TMPRSS2 and 3′ 
exons of ERG, consistent with the commonly observed 
TMPRSS2-ETS family rearrangements that occur in 
40– 60% of prostate cancers [26]. Both sequencing centers 
identified this rearrangement. To further investigate the 
concordance of fusion detection within and between 
samples, secondary multi-caller analysis was performed 
on transcriptome data from each tumor sample (see 
Methods). There was minimal overlap of fusion transcripts 
between two fusion callers applied to the same sample 
(See Supplementary Figure 4). Among putative fusions 
identified by both algorithms within a given sample 
from Broad (n = 12), the cross validation rate for the 
corresponding UM sample was 75% (9/12); among fusions 
identified by both callers in the UM samples (n = 18), the 
cross-validation rate for the corresponding Broad sample 
was 50% (9/18). However, in each tumor, numerous 
fusions were detected, the vast majority of which were 
unique to each tumor, have not been previously reported, 
and are of unclear significance.

Exome assessments of germ line variants

To facilitate the accurate determination of somatic 
mutations and copy number alterations in a tumor sample, 
sequencing of germline DNA is often performed in a 

parallel assay. Incidental but clinically-useful findings 
unrelated to the intended assessment of cancer-associated 
alterations may be identified. To address how these 
incidental or secondary findings are disseminated, the 
American College of Medical Genetics and Genomics 
(ACMG) has established a list of 56 genes associated with 
24 inherited conditions that should be reported [10]. Of 
these genes, 21 have clear causal roles in the inherited 
predisposition to neoplastic disease including BRCA2 and 
the Lynch Syndrome DNA mismatch repair genes MLH1, 
MSH2, and MSH6 [27–29].

We assessed each of the 56 ACMG genes in the 
whole exome data obtained from the corresponding 
benign tissue, and compared the read depth and sequence 
calls between the two sequencing centers (Table 1 and 
Supplementary Figure 2). Of the 56 genes, both the UM 
and Broad germline exomes provided > 50X coverage 
for all 56 ACMG genes, with only one exception (SDHC 
in UM exomes) (Supplementary Figure 2D). Since 
germline variant detection power does not require as 
substantial depth as tumor sequencing, this would not 
impact germline-focused clinical variant detection. 
One heterozygous variant, p.E1317Q, in the APC gene 
associated with a very modest 1.4-fold increased risk of 
colorectal cancer [30] was identified in the germline of 
SC_9010 by both sequencing centers (Supplementary 
Table 3).

DISCUSSION

Comprehensive genomic assessments are 
increasingly used in clinical oncology in order to provide 
an appraisal of molecular alterations that have the potential 
to influence therapeutic decisions involving the selection 
of treatment [15]. Though the concept of genomic 
sequencing is understood at a fundamental level by 
providers and well-informed patients, there are numerous 
variations in the actual methodology that can influence 
reportable results. These include depth of sequencing 
coverage, the type of capture reagents used for exome 
and RNA analyses, whether target-based approaches are 
employed, disparities in tumor purity, and the integrity of 
DNA and RNA. 

Our objective was to assess the consistency of 
ascertaining genomic information from tumors and 
corresponding germline DNA across different sequencing 
centers. We did not pre-specify the type of sequencing 
technology, the depth of sequencing, or any other 
parameter. Each of the two centers followed their standard 
operating procedures without an attempt to follow a 
common protocol. 

Overall, the concordance in identifying key putative 
oncogenic aberrations was extremely high with only a 
PTEN frameshift mutation and a MSH2 inactivating gene 
rearrangement identified by one center that accompanied a 
PTEN copy loss and MSH2 inactivating indel, respectively, 
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identified by both centers (Table 2 and Supplementary 
Table 4, 5). The consistency of reporting non-synonymous 
mutations ranged from 88.5% in a hypermutated tumor to 
96.1% in a tumor with 54 non-synonymous mutations.  Of 
the discordant mutations, the vast majority had sufficient 
depth of coverage to identify a mutation if present, and thus 
likely represents intratumoral heterogeneity. As two different 
portions of each particular metastasis were evaluated, rather 

than precisely the same tumor fragment, some degree of 
heterogeneity was expected. However, a focused analysis 
of 13 genes recurrently mutated in prostate cancer and 150 
others with known oncogenic roles across human cancers 
determined 100% concordant mutation calls, indicating that 
the practical implications of intratumoral heterogeneity in 
terms of driver mutations and actionable variants, may be 
limited, at least in the context of metastatic disease [18].

Figure 3: Comparison of DNA copy number assessments and RNAseq between sequencing centers. A representative 
copy number profile obtained from UM and Broad from one case is show in (A). Reads per kilobase per million (RPKM) values from 
transcriptome data derived at each sequencing center for the three tumors are shown in (B–D) RPKM values for AR from each of the tumors 
is shown in (E–G).
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Transcript levels measured by RNAseq were highly 
concordant across the sequencing centers. All tumors 
demonstrated high levels of AR-regulated transcripts 
including KLK3/PSA, TMPRSS2 and NKX3.1 in 
addition to the AR itself. RNAseq analyses in both 
centers identified fusion transcripts including a common 
rearrangement between TMPRSS2 and ERG in one 
tumor, though the detection of other fusion transcripts 
varied substantially depending on the algorithm used to 
identify such transcripts. Of interest, an MSH2 mutation 
was identified in one tumor by both sequencing centers 
and likely contributed to the hypermutated genome. 
One sequencing center also identified a rearrangement 
involving MSH2 predicted to inactivate the second MSH2 
allele. While alterations in MSH2 occur as a heritable 
influence on cancer development in Lynch Syndrome [31], 
a germline MSH2 mutation was not identified in the exome 
analysis from this patient. 

In contrast to assessments of somatic genomic 
events in tumors where variation in tumor purity and 

tumor heterogeneity have the potential for influencing 
sequencing results, the analyses of germline DNA should 
consistently identify genomic variants. Of the 56 genes 
with pathogenicity as determined by the ACMG, all 
exons were covered to 30X for single nucleotide variant 
discovery. One likely pathogenic mutation in the APC gene 
was identified. This result is consistent with the anticipated 
rate of reportable incidental findings approximating 1–3% 
for this cohort of genes [10, 32]. 

Collectively, the findings from this study demonstrate 
that the results of somatic and germline sequencing are 
highly concordant across sequencing centers that have 
substantial experience in the technological requirements for 
preparing, sequencing and annotating DNA and RNA  from 
human biospecimens. An aspect of genomic sequencing 
distinct from other assays used in clinical medicine is the 
breadth of data produced that encompasses anticipated 
drivers of disease as well as important incidental findings 
that may have health implications beyond the intended 
use of the original test. Further, a distinctive feature of 

Table 2: Comparative summary of cancer-associated findings from tumor SC_9008
EVENT UM BROAD

Gene Copy Number
APC Copy Loss Copy Loss
AR Amplification Amplification
8q Copy Gain Copy Gain
PTEN Copy Loss Copy Loss
RB1 Copy Loss Copy Loss

Mutation
Mutations 1203 NSVs 852 NSVs
AR p.T878A p.T878A
TP53 p.R273C p.R273C
SPOP p.F102C p.F102C
NCOR2 p.E1431K;indel p.E1431K
ASXL2 p.R591C p.R591C
PBRM1 p.Y1009H p.Y962H
ARID1B p.R1885H p.R1885H
ARID2 p.A1773V p.A1773V
MSH2 indel indel
APC indel indel
NCOR1 indel N.D.

Expression
AR High High
KLK2 High High
MSH2 MSH2-FSHR-fusion N.D.

Germline
56 AGMC Genes No Pathological Variants No Pathological Variants

N.D.; not detected; NSV; non-synonymous nucleotide variant.
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oncology involves the iterative sequencing of tumor DNA 
and RNA, either directly from biopsies or potentially from 
circulating tumor cells or cell-free DNA, repeatedly over 
time to evaluate mechanisms of treatment resistance and the 
emergence of new targets. Establishing the reproducibility 
of genome-based assays is an essential step in routine use 
of this technology in research and clinical care.

MATERIALS AND METHODS

Tissue acquisition and preparation

Metastatic tumor samples were obtained from 
patients with castration resistant prostate cancer following 
written consent [14]. All samples were reviewed by 
pathologists with expertise in interpreting prostate 
cancer histology (Xiaotun Zhang and Lawrence True). 
Frozen tumor pieces containing > 70% tumor cells were 
processed as follows: for each frozen tumor block, a 
frozen section was cut, stained with hematoxylin and 
eosin and the percentage of tumor cells was ascertained 
by microscopy. The tumor block was then trisected and 
a second frozen section was taken from the bottom of 
each specimen, stained with hematoxylin and eosin and 
tumor cell percentage was confirmed. One tumor sample 
(approximately, 1/3 of the original specimen) was then sent 
to the Broad Institute, one tumor block (1/3 of the original 
specimen) was sent to the University of Michigan, and the 
remainder was retained at the University of Washington. 

Library preparations and sequencing

Whole exome – Broad Institute

The preparation of libraries for massively parallel 
sequencing was performed as previously described 
[15, 33]. Detailed methods are provided in eMethods 
online. Each pool of whole exome libraries was subjected 
to paired 76 bp runs on a HiSeq 2000 sequencer. A BAM 
file was produced with the Picard pipeline (http://picard.
sourceforge.net/), which aligned sequences to the hg19 
human genome build. 
Whole exome – University of Michigan

Tumor genomic DNA and total RNA were purified 
from the same sample using the AllPrep DNA/RNA/
miRNA kit (QIAGEN). Libraries were sequenced with 
100 bp paired reads on an Illumina HiSeq 2500 and 
aligned to the hg19 human genome reference. 
Transcriptome – Broad Institute

RNA was extracted from frozen tissue using the 
miRNeasy Mini kit (Qiagen). An automated variant 
of the Illumina Tru Seq™ RNA Sample Preparation 
protocol (Revision A, 2010) was used. Flowcell cluster 
amplification and sequencing were performed according 
to the manufacturer’s protocols using either the HiSeq 

2000 v3 or HiSeq 2500. Each run was a 76 bp paired-end 
with an eight-base index barcode read. 
Transcriptome – University of Michigan

Transcriptome libraries were prepared using Agilent 
SureSelect Human All Exon V4 reagents and protocols. 
Libraries were sequenced using 100 bp paired-end reads 
on an Illumina HiSeq 2500.

Nucleotide variant detection

Broad institute

MuTect [21] was used to identify somatic 
single-nucleotide variants.  Indelocator (http://www.
broadinstitute.org/cancer/cga/indelocator) was applied 
to identify small insertions or deletions. Annotation of 
identified variants was done using Oncotator (http://www.
broadinstitute.org/cancer/cga/oncotator).
University of Michigan

Paired-end reads were aligned using Novoalign 
v 3.02.00 and sorted using Novosort (Novocraft 
Technologies). Variants in both normal and tumor libraries 
were identified using the local realignment haplotype-
based caller FreeBayes [34].

RNA/transcript abundance

Broad Institute

Gene expression was quantified using RNASeqQC [35]. 
University of Michigan

Gene expression, as fragments per kilobase of 
exon per million fragments mapped was calculated using 
Cufflinks [36].

Gene rearrangements/fusion transcripts

Broad Institute

Fusion transcripts were originally identified using 
Prada [37]. Resulting putative fusion transcripts were 
manually reviewed.
University of Michigan

Paired-end transcriptome sequencing reads were 
aligned to the human reference genome (GRCh37/hg19) 
using a RNA-Seq spliced read mapper Tophat2 [38] 
(Tophat 2.0.4). Fusion candidates were manually reviewed. 

Multi-caller comparisons were subsequently 
performed using STAR Fusion and Tophat-Fusion [39].

Copy number alterations

Broad Institute

Copy ratios were calculated by dividing the tumor 
coverage by the median coverage obtained in a set of 
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reference normal samples.  The resulting copy ratios 
were segmented using the circular binary segmentation 
algorithm (36).  Genes in copy ratio regions with segment 
means of greater than log2 (4) were evaluated for focal 
amplifications, and genes in regions with segment means 
of less than log2 (0.5) were evaluated for deletions. 
University of Michigan

Copy number aberrations were quantified and 
reported for each gene as the segmented normalized log2-
transformed exon coverage ratios between each tumor 
sample and matched normal sample [40]. The resulting 
copy ratios were segmented using the circular binary 
segmentation algorithm [41].

Germline mutation calls

Broad institute

Germline variants were identified using Unified-
Genotyper [42].
University of Michigan

Germline variants were identified using FreeBayes [34].
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