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Abstract
Bioactive compounds including anthocyanins and other polyphenols are associated 
with reduced lung inflammation and improved lung function in asthma and other lung 
diseases. This study investigated the effects of a Boysenberry and apple juice con-
centrate, high in cyanidin glycosides, ellagitannins, and chlorogenic acid, on a mouse 
model of allergic airways inflammation. Male C57BL/6J mice were orally gavaged 
with 2.5 mg/kg of total anthocyanins (TAC) from BerriQi® Boysenberry and apple 
juice concentrate (0.2 mg/kg human equivalent dose) or water control 1 hr before an 
acute intranasal ovalbumin (OVA) challenge and were gavaged again 2 days after the 
intranasal challenge. Consumption of BerriQi® Boysenberry and apple juice concen-
trate significantly decreased OVA-induced infiltrating eosinophils, neutrophils, and 
T cells in the lung, and mucous production. Quantification of gene expression for 
arginase (Arg1), chitinase 3-like 3 (Ym-1), found in inflammatory zone (Fizz1), which 
have been associated with an anti-inflammatory macrophage phenotype (M2), found 
significantly increased Arg1 expression in the lung in the Boysenberry and apple juice 
concentrate treatment group. There was also increased production of M2-associated 
cytokines C-X-C motif chemokine ligand (CXCL) 10 and C-C motif chemokine ligand 
(CCL) 4. These results suggest that consumption of BerriQi® Boysenberry and apple 
juice concentrate promoted a shift toward an anti-inflammatory environment within 
the lung leading to reduced immune cell infiltration and tissue damage.
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1  | INTRODUC TION

Asthma is a heterogeneous, chronic, inflammatory lung disease 
characterized by reversible airways obstruction, bronchospasm, 
and infiltration of immune cells (Agache & Akdis, 2016; Agrawal 
& Bharadwaj, 2005; Barnes, 1996). It is estimated that 150 million 
people are affected by asthma worldwide, with a 5%–15% preva-
lence in children (WHO, 2003), and there is evidence that early life 
exposure to air pollution caused by vehicle exhaust, environmental 
dust, and industrial processes increases the severity of asthma in 
children (Jung et al., 2015; Hsu et al., 2015; Miller & Peden, 2014). 
The respiratory symptoms such as cough and wheeze are worsened 
by exposure to pollution (Hoek et al., 2012). Proinflammatory cyto-
kine production in response to allergens by immune cells is further 
increased with concomitant pollution exposure (Acciani et al., 2013; 
Brandt et al., 2015; Carlsten et al., 2016; Kim et al., 2011; van Voorhis 
et al., 2013). Eosinophils, in particular, produce reactive oxygen spe-
cies and cytokines, leading to epithelial damage and contribute to 
mucosal inflammation and the recruitment of other proinflamma-
tory immune cells (Amin et al., 2016; Bossley et al., 2012; Brown 
et al., 1998; Trivedi & Lloyd, 2007). These repeated acute inflam-
matory responses lead to tissue damage and remodeling, contrib-
uting to airway hyperresponsiveness, mucus cell hyperplasia, fixed 
airway flow obstruction, and loss of lung function over time (Ahdieh 
et al., 2001; Al-Muhsen et al., 2011; Bergeron et al., 2009; Brightling 
et al., 2012).

Large-scale epidemiological studies have found that increased 
fruit and vegetable consumption correlates with reduced asthma 
symptoms (McKeever & Britton, 2004; Nurmatov et al., 2011; 
Okoko et al., 2007; Rosenlund et al., 2011). These dietary-related 
improvements in lung function benefits are also seen in people living 
in polluted environments (Burbank et al., 2018; Pounis et al., 2018; 
Stevens et al., 2019). Fruits and vegetables contain numerous bio-
active compounds, including anthocyanins and procyanidins, which 
have been shown to attenuate lung inflammation in cell and animal 
models of allergy and asthma (Coleman et al., 2016; Coleman & 
Shaw, 2017; Park et al., 2007; Sawyer et al., 2017; Shaw et al., 2016, 
2017). Human population studies have identified that dietary intake 
of foods high in polyphenols and tetraterpenes (Pounis et al., 2018) 
such as apples, pears (Garcia-Larsen et al., 2018), carrots, toma-
toes (Rosenlund et al., 2011), and citrus is inversely correlated with 
the frequency and severity of reported asthma symptoms, espe-
cially wheezing and coughing (Garcia et al., 2005; Garcia-Larsen 
et al., 2018; McKeever & Britton, 2004; Rosenlund et al., 2011). 
Previously, we have identified that Boysenberry consumption led to 
decreased chronic lung inflammation and improved lung tissue re-
pair in an animal model of chronic allergic lung inflammation (Shaw 
et al., 2016). Boysenberries contain high concentrations of antho-
cyanins (261 mg/g), ellagitannins, and other polyphenols (241 mg/g) 
(Cooney et al., 2004; Ghosh et al., 2006; McGhie et al., 2012). Apple 
contains approximately 120–200 mg/g total polyphenols (Paturi 
et al., 2014), and we have found that procyanidin-enriched apple ex-
tracts suppressed IL-4-mediated cytokine production in cell culture 

models of lung epithelial allergic inflammation (Coleman et al., 2016; 
Sawyer et al., 2017).

There is increasing interest in understanding the mechanisms of 
action that specific plant bioactives have in the human body. This 
is partially to better understand the benefits of consuming specific 
fruits and vegetables and partially to add value to specific foods 
through validated health claims. There is also interest in determin-
ing if combining specific plants containing different polyphenols can 
augment the health benefits above those seen with the individual 
plant. Use of animal models, where dietary intake can be tightly con-
trolled, is useful for both demonstrating/revealing the efficacy for 
identified compounds and determining the biological mechanisms of 
action. The aim of this study was to determine whether the combina-
tion of Boysenberries and apple, as found in BerriQi® Boysenberry 
and apple juice concentrate at a dose of 2.5 mg/kg total anthocya-
nins (TAC), could reduce allergic airways inflammation in response to 
acute ovalbumin (OVA) exposure in a mouse model system. We also 
sought to determine the mechanisms involved in any ameliorating 
effect.

2  | MATERIAL S AND METHODS

2.1 | Mice and materials

C57BL/6J male mice were group housed on 12-hr light/dark cycle in 
a conventional animal facility at The New Zealand Institute for Plant 
and Food Research Limited (Palmerston North, New Zealand). Mice 
were fed Prodiet RMH1800 standard chow for rodents (Lab Diet) 
and filtered water ad libitum throughout the study, and all attempts 
to minimize suffering were made. All experimental procedures were 
approved by the AgResearch Grasslands Animal Ethics Committee 
(AE approvals #14839, #14731 and #14016) and carried out in ac-
cordance with the Animal Welfare Act (1999). A commercially avail-
able Boysenberry and apple juice concentrate ingredient (BerriQi®) 
was supplied by and is available from Anagenix Ltd (Auckland, New 
Zealand). Legendplex™ 13-plex Th cytokine, proinflammatory cy-
tokine, and proinflammatory chemokine panels, Zombie NIR™ fix-
able viability dye, and anti-mouse CD3 (clone 17A2), CD4 (clone 
GK1.5), CD8a (clone 53-6.7), CD80 (clone 16-10A1), CD86 (clone 
GL-1), CD11c (clone N418), CD45 (clone 30-F11), CD206 (clone 
C068C2), CD14 (clone Sa14-2), Ly6C (clone HK1.4), Gr-1 (clone 
RB6-8C5), I-A/I-E (MHC class II; clone M5/114.15.2), and F4/80 
(clone BM8) were purchased from BioLegend (San Diego, CA, USA). 
Anti-mouse SiglecF (clone E50-2440) and CD11b (clone M1/70) 
were from BD Biosciences. Ovalbumin (OVA), and Alum were pur-
chased from Sigma (Auckland, New Zealand). iScript Advanced 
cDNA kit was from Bio-Rad Laboratories (Hercules, CA, USA) and 
2X LightCycler® 480 SYBR Green I Master mix was from Roche 
Diagnostics NZ. Taqman® Gene Expression Master Mix probe sets 
for murine inducible nitric oxide synthase (Nos2) (Mm00440502_
m1), chitinase 3-like 3 (Ym-1/Chil3) (Mm00657889_mH), found in 
inflammatory zone (Fizz1/Retnla) (Mm00445109_m1) and arginase 
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(Arg1) (Mm00475988_m1) genes were purchased from Thermo 
Fisher Scientific NZ (Auckland, NZ), and oligonucleotide primers for 
murine β-actin and GAPDH housekeeping genes were synthesized 
by Integrated DNA Technologies. Unless otherwise stated, all cell 
culture media, supplements, and buffers were purchased from Life 
Technologies NZ.

2.2 | Boysenberry and apple juice concentrate 
chemical composition analysis

BerriQi®, a mixture of Boysenberry juice concentrate sourced 
from Boysenberries New Zealand and apple juice concentrate 
sourced from Profruit Limited, was blended in a proprietary 
ratio by Anagenix Ltd. The polyphenol content of the BerriQi® 
Boysenberry and apple juice concentrate was determined by liquid 
chromatography-mass spectrometry (LC-MS) using an LTQ linear 
ion trap mass spectrometer fitted with an ESI interface (Thermo 
Fisher Scientific) coupled to an Ultimate 3000 UHPLC and PDA 
detector (Dionex). A weighed quantity of the concentrate was 
dissolved in 0.1% formic acid(aq) to give an aqueous solution of 
concentration of 20 mg/ml. For quantification of anthocyanins, 
the sample was diluted 5 times further to ensure analyte concen-
trations were within the linear calibration range of the PDA and 
MS detectors. For quantification of nonanthocyanin phenolics, 
both diluted and undiluted samples were analyzed. Anthocyanins 
were separated on a Poroshell 120 SB-C18, 2.1 × 150 mm, 2.7 µm, 
analytical LC column (Agilent), maintained at 70°C. The solvents 
were (A) 5:3:92 acetonitrile:formic acid:water v/v/v and (B) acetoni-
trile + 0.1% formic acid (flow rate, 200 µl/min). The initial mobile 
phase, 100% A, was held for 2 min before being ramped linearly to 
88% A at 14 min, returning to 5% A at 15 min, and held for 4 min 
before resetting to the original conditions. The sample injection 
volume was 10 µl. The MS data were acquired in the positive mode. 
Standards of cyanidin-3-O-glucoside were used to quantitate an-
thocyanin concentrations with PDA detection at 520 nm, and the 
results for individual and total anthocyanin concentrations are re-
ported as cyanidin-3-O-glucoside equivalents.

Other phenolic compound separation was achieved using a 
Hypersil GOLD aQ 1.9 µ C18 175 Å (Thermo Scientific), 150 × 2.1 mm 
column maintained at 45°C. The solvents were (A) water + 0.1% for-
mic acid and (B) acetonitrile + 0.1% formic acid (flow rate, 200 µl/
min). The initial mobile phase, 95% A/5% B, was ramped linearly to 
85% A at 10 min, held for 3.75 min, then ramped linearly to 75% A 
at 18 min, 67.2% A at 25 min, 50% A at 28 min, and 3% A at 29 min, 
and held for 4 min before resetting to the original conditions. The 
sample injection volume was 4 µl. The MS data were acquired in the 
negative mode. The phenolic acids, gallic acid, ellagic acid, proto-
catechuic acid, chlorogenic acid (3-p-caffeoylquinic acid) and caffeic 
acid, the flavan-3-ols, catechin and epicatechin, the procyanidin 
B2, the nonglycosylated flavonols, quercetin and myricetin, and the 
chalcone, phloretin-2-O-glucoside were quantified by LC-MS using 

pure standards of these compounds. Detected derivatives of cou-
maric acid are expressed as coumaric acid equivalents. Detected 
flavonol glycosides were quantified by LC-MS using a pure standard 
of quercetin-3-O-glucoside and are expressed as quercetin-3-O-glu-
coside equivalents. Other detected chalcones were quantified as 
phloretin-2-O-glucoside equivalents. Hydrolyzable tannins were 
quantified by LC-MS using a standard of sanguiin H6 that had been 
isolated previously (>98% purity by LC-MS). Other detected tannins 
were quantified as sanguiin H-6 equivalents.

2.3 | Ovalbumin-induced airway 
inflammation model

Allergic airway disease was induced as previously described (Shaw 
& Harper, 2013; Shaw et al., 2017). For the Boysenberry and apple 
interventions, mice were randomized into receiving either water (ve-
hicle control) or 2.5 mg/kg TAC in the BerriQi® Boysenberry and 
apple juice concentrate as previously described (Shaw et al., 2017). 
Briefly, mice were fasted for 4 hr before being orally gavaged with 
water (control) or at a dose of 2.5 mg/kg body weight TAC in the 
BerriQi® Boysenberry and apple juice concentrate made up to a 
total volume of 200 µl in water 1 h before OVA challenge and again 
2 days postchallenge. Mice were sacrificed by anesthetic overdose 
4 days following intranasal ovalbumin challenge and immune param-
eters, and gene expression was analyzed.

2.4 | Immune parameter analysis

Bronchoalveolar lavage fluid (BALF) and lung tissues were col-
lected as previously described, and immune cells were phenotyped 
by flow cytometry (Shaw & Harper, 2013). Lung tissue supernatant 
for cytokine analysis was prepared as previously described (Shaw 
et al., 2017). Cytokine production in lung tissue supernatant was 
measured by Legendplex bead-based multiplex immunoassays as 
per the manufacturer's instruction. Both cell phenotyping and the 
cytokine multiplex assays were analyzed using a BD FACSverse (BD 
Biosciences). H&E and AB-PAS histological staining were performed 
by Massey IVABS histology unit.

2.5 | Real-time qPCR analysis

Mouse lung tissue was snap-frozen in liquid nitrogen and crushed 
into powder using a mortar and pestle with liquid nitrogen to pre-
serve RNA integrity. The RNA was extracted from the powder using 
a TRIzol total RNA extraction protocol. RNA was quantified using an 
LVis plate in a POLARstar Omega plate reader (BMG Labtech), and the 
quality of the ribosomal RNA bands confirmed by agarose gel electro-
phoresis (data not shown). cDNA was synthesized from the lung sam-
ple RNA templates using the iScript™ cDNA Synthesis kit as per the 
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TA B L E  1   Phenolic compounds detected in BerriQi® (µg/mL)

Peak M+ (M-H)- Compound µg/mL
µg/g 
DW

Anthocyanins

1 611 Cyanidin 3-O-sophoroside 883 937

2 449 Cyanidin 3-O-glucoside 571 606

3 481 Cyanidin 3-O-sambubioside 24 25

4 757 Cyanidin 3-O-(2-glucosylrutinoside) 411 436

5 595 Cyanidin 3-O-rutinoside 62 66

6 727 Cyanidin 3-O-xylosylrutinoside 18 20

Phenolic acids

7 169 Gallic acid 140 149

8 153 Protocatechuic acid 35 37

10 353 Chlorogenic acid 69 73

11 179 Caffeic acid 7 7

15 337 4-p-Coumaroylquinic acid 26 28

17 337 5-p-Coumaroylquinic acid 3 3

Flavan−3-ols and procyanidins

9 335a  Catechin 3 3

12 577 Procyanidin B2 6 6

13 335a  Epicatechin 21 22

25 579 Unknown procyanidin isomer 3 3

Hydrolyzable tannins

14 1567 Sanguiin H10 isomer 1 9 10

16 469 Sanguisorbic acid dilactone 120 127

19 2036.5 Galloyl-SH6 66 70

20 1567 Sanguiin H10 isomer 2 61 65

21 2501 Lambertian C (minus ellagic acid) 11 12

22 2803 Lambertian C 17 18

24 1869 Sanguiin H6 213 226

26 301 Ellagic acid 449 477

Flavonols

27 609 Quercetin 3-O-rutinoside 6 6

28 463 Quercetin 3-O-galactoside 17 18

29 477 Quercetin 3-O-glucuronide 36 38

30 463 Quercetin 3-O-glucoside 13 14

31 433 Quercetin 3-O-pentoside 1 9 10

32 433 Quercetin 3-O-pentoside 3 6 6

33 433 Quercetin 3-O-pentoside 2 13 14

35 447 Quercetin 3-O-rhamnoside 15 16

37 301 Quercetin 19 20

Chalcones

34 567 Phloretin 2-O-xylo-glucoside 9 10

36 481a  Phloretin 2-O-glucoside 62 66

Unknowns

18 563a  unknown 71 75

23 639 unknown 22 23

Total 1557 1653

Note: M+ and (M-H)- ions are the pseudomolecular ions used for identification of compounds by liquid chromatography-mass spectrometry (LC-MS). 
All identifications confirmed by MS/MSn experiments. Peak numbers refer to chromatograms shown in supplementary data.
aDetected as [M + formate]- adduct. 
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manufacturer's instructions. Taqman® Gene Expression Assays for 
each gene of interest (Arg1, Nos2, Ym-1, and Fizz1) were performed 
as per the manufacturer's protocols. Two housekeeping genes, 
GAPDH (forward primer sequence: GTTGTCTCCTGCGACTTCA; 
reverse primer sequence: GGTGGTCCAGGGTTTCTTA) and β-actin 
(forward primer sequence: CTGTCCCTGTATGCCTCTG; reverse 
primer sequence: ATGTCACGCACGATTTCC) (Xiang et al., 2012), 
were used as controls to determine the differential gene expression 
and were amplified using the LightCycler® 480 SYBR Green master 
mix as per the manufacturer's instructions. All genes of interest and 
both housekeeping genes were amplified in quadruplicate for each 
lung sample using a Bio-Rad™ CFX384™ Real-Time PCR Detection 
System. Normalized (ΔΔCq) gene expression was performed using 
the Bio-Rad CFX Manual 3.1 software. The two housekeeping genes 
were identified as reference genes within the software which al-
lowed the gene expression data from each group to be expressed as 
a fold change relative expression to the naïve group.

2.6 | Statistical analysis

All data were analyzed using one-way analysis of variance (ANOVA) 
with a Tukey's post hoc test and graphed in SigmaPlot 12.5 (Systat 
Software Inc.).

3  | RESULTS

3.1 | Chemical composition of the Boysenberry and 
apple juice concentrate

The results of the LC-MS analysis showed that cyanidin glycosides, 
ellagitannins, and chlorogenic acid were the major components in 
BerriQi® Boysenberry and apple juice concentrate (Table 1, Figures 
S1, S2). Minor components included phloretin 2-O-glucoside and 
a mix of phenolic acids, flavonol glycosides, flavanol monomers, 
and procyanidins. The major classes of phenolic compounds were 
anthocyanins (1969 μg/mL) and hydrolyzable tannins (946 μg/mL), 
accounting for 56% and 27%, respectively, of the total phenolics 
quantified. The most abundant tannins were ellagic acid (449 μg/mL) 
and sanguiin H6 (213 μg/mL).

3.2 | Effect of Boysenberry and apple juice 
concentrate intervention on ovalbumin-induced 
allergic airways inflammation

Acute intranasal OVA exposure resulted in an infiltration of immune 
cells into the lung (Figure 1a) and increased mucous production 
(Figure 1b). Consumption of 2.5 mg/kg TAC BerriQi® Boysenberry 

F I G U R E  1   BerriQi® Boysenberry 
and apple juice concentrate suppresses 
ovalbumin-induced airway inflammation. 
(a) Representative hematoxylin and eosin 
stained lung tissue from naïve, OVA-
challenged and OVA-challenged mice 
treated with BerriQi® Boysenberry and 
apple juice concentrate. Magnification 
10x (top) and 20x (bottom) Asterisk = cell 
infiltration. (b) Representative Alcian-blue 
Periodic acid-Schiff stained lung tissue 
from naïve, OVA-challenged and OVA-
challenged mice treated with BerriQi® 
Boysenberry and apple juice concentrate. 
Magnification 10x (top) and 20x (bottom). 
Arrow = mucous producing goblet cells
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and apple juice concentrate reduced the infiltration of immune cells 
and decreased OVA-induced mucous production (Figure 1a,b). We 
quantified the type and number of immune cells infiltrating into the 
lung and found that acute OVA exposure significantly increased 

(p < .001) infiltrating eosinophils (CD45+/CD11b+/SiglecF+), neu-
trophils (CD45 + Ly6C+Gr-1+), and T cells (CD45+/CD3+/CD4 + or 
CD45+/CD3+/CD8a+), compared with the lung of naïve animals 
(Figure 2a-d). Compared with animals only exposed to OVA, those 

F I G U R E  2   BerriQi® Boysenberry and apple juice concentrate suppresses ovalbumin-induced immune cell infiltration into the lung. 
(a) Total eosinophil, (b) total neutrophil, (c) CD4 + T cells, and (d) CD8 + T cells in bronchoalveolar lavage fluid (BALF), and (e) CD4 + and 
(f) CD8 + T cells number in the mediastinal lymph node (MSLN), were determined 4 days post-OVA challenge. Data presented as 
mean ± SEMp < .001 compared with naïve and OVA challenge + BerriQi® Boysenberry and apple juice concentrate (one-way ANOVA with 
Tukey's post hoc test) for two experimental replicates with n = 9–10 per treatment groups

(a) (b)

(c) (d)

(e) (f)
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that also consumed 2.5 mg/kg TAC BerriQi® Boysenberry and apple 
juice concentrate showed a significant decrease (p < .001) in the 
number of infiltrating eosinophils, neutrophils, and T cells in the lung 

(Figure 2a-d). We saw no change in the number of CD4 + or CD8 + T 
cells in the mediastinal (lung draining) lymph node for any of the 
treatment groups (Figure 2e-f).

F I G U R E  3   BerriQi® Boysenberry and apple juice concentrate increased CD206 + macrophage and IL-17A, CXCL10, and CCL4 
cytokine concentrations. (a) Percentage of CD206 + macrophages in BALF, and lung tissue production of (b) CXCL10, (c) IL-17A, (d) CCL4, 
and (e) IL-17F was determined 4 days post-OVA challenge by Legendplex. Data presented as mean ± SEM, p < .05 compared with OVA 
challenge + BerriQi® Boysenberry and apple juice concentrate, p < .01 compared with naïve and OVA challenge (one-way ANOVA with 
Tukey's post hoc test) for two experimental replicates with n = 10 per treatment groups

(a)
(b)

(c) (d)

(e)
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There was a trend toward an increased percentage of CD206+/
CD14- macrophages in the lungs of mice that consumed 2.5 mg/kg TAC 
BerriQi® Boysenberry and apple juice concentrate (Figure 3a). To de-
termine whether it was possible that there was increased alternatively 
activated macrophages, we measured the gene expression of Arg1, 
Ym-1, Fizz1, and Nos2 in lung tissue. We found that both OVA alone 
and 2.5 mg/kg TAC BerriQi® Boysenberry and apple juice concentrate 
consumption led to a significant (p < .01) fold increase in Ym-1 (4.0 ± 2.4 
and 4.7 ± 1.8, respectively) and Fizz1 (15.4 ± 11.6 and 23.0 ± 13.6, re-
spectively) gene expression compared to naïve mice (Table 2). 2.5 mg/
kg TAC BerriQi® Boysenberry and apple juice concentrate also led to a 
significant increase in Arg1 compared to OVA alone (p < .05) and naïve 
(p < .001), whereas OVA alone did not significantly increase Arg1 com-
pared to naïve mice (Table 2). We found no significant fold change in 
Nos2 gene expression between any of the treatment.

Consumption of 2.5 mg/kg TAC BerriQi® Boysenberry and 
apple juice concentrate led to increased levels of the cytokines in-
terleukin (IL)-17A, C-X-C motif chemokine ligand (CXCL)10, and C-C 
motif chemokine ligand (CCL)4 (Figure 3b-d) 4 days following OVA 
challenge, but did not affect the IL-17F concentration (Figure 3e). We 
saw no effect on the concentrations of the classical Th-1/Th-2 cyto-
kines interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), 
IL-5, IL-9, or IL-10 in either the BerriQi® Boysenberry and apple juice 
concentrate treated or the OVA alone mice compared to naïve con-
trols (Figure 4a-e), and the concentration of IL-4 and IL-13 was below 
the detection limits of the assay for all treatment groups.

4  | DISCUSSION

We evaluated the effects of dietary supplementation with 2.5 mg/
kg TAC BerriQi® Boysenberry and apple juice concentrate, on the 
immune responses in a mouse model of acute allergic airways in-
flammation. Our results show that consumption of 2.5 mg/kg TAC 
BerriQi® Boysenberry and apple juice concentrate reduced granulo-
cyte and local T-cell infiltration into the lung after OVA challenge, but 
did not alter T-cell activation within the lung draining lymph node or 
the levels of classical Th-2 and Th-1 cytokines in the lung at four days 

following OVA challenge. Our current results indicated that BerriQi® 
Boysenberry and apple juice concentrate had little impact on the 
Th-2/Th-1 mediated allergic response of mice, but rather targeted 
innate proinflammatory immune pathways. This is consistent with 
our previously reported finding in a mouse model of chronic allergic 
airways inflammation using 10 mg/kg TAC Boysenberry juice con-
centrate (Shaw et al., 2016). Chemical composition analysis showed 
that the BerriQi® Boysenberry and apple juice concentrate formula-
tion contained high concentrations of cyanidin glycosides, ellagitan-
nins, and chlorogenic acid. These compounds have been previously 
shown to reduce inflammatory signaling in vitro (Cassidy et al., 2015; 
El-Shitany et al., 2014; McGhie et al., 2012) and in vivo animal mod-
els of inflammation (Auclair et al., 2008; Denis et al., 2016; Guan 
et al., 2017; Impellizzeri et al., 2015; Shaw et al., 2017). Our cur-
rent results suggest that consumption of 2.5 mg/kg TAC BerriQi® 
Boysenberry and apple juice concentrate, which also contains high 
levels of ellagitannins and chlorogenic acid, could have broader 
lung health benefits beyond allergic asthma disease by promot-
ing the resolution of inflammation caused by innate immune cell 
overactivation.

Consumption of BerriQi® Boysenberry and apple juice concen-
trate had less of an effect on monocyte/macrophage infiltration into 
the lung than on granulocyte infiltration, and there was increased 
percentage of CD206 + monocytes. This suggested that there could 
be a shift to an alternatively activated macrophage (M2-like) phe-
notype. To confirm this shift, we measured the changes in gene 
expression for Arg1, Ym-1, and Fizz1, classic genes for identifying 
alternatively activated macrophages (Chung et al., 2016; Kurowska-
Stolarska et al., 2009) as well as Nos2, a proinflammatory gene 
closely associated with classically activated macrophages (M1-like). 
We found that both OVA alone and with BerriQi® Boysenberry and 
apple juice concentrate consumption resulted in a significant fold in-
crease in Ym-1 and Fizz1 gene expression compared to naïve mice 
at 4 days following challenge, and we did not see increased Nos2 
gene expression in any of the groups. These results suggested that 
4 days post-OVA challenge the infiltrating monocyte/macrophages 
were more M2-like rather than M1-like. This is consistent with other 
studies that have shown that lung macrophages express increased 
M2-associated genes following OVA challenge (Siddiqui et al., 2013). 
Alternatively activated macrophage Fizz1 expression, in particular, 
has been associated with regulating Th-2-mediated lung inflam-
mation by modulating IL-4 and IL-5 (Nair et al., 2009). It has also 
been shown that depletion of alternatively activated macrophages 
does not ameliorate allergic airways inflammation (Nieuwenhuizen 
et al., 2012).

However, BerriQi® Boysenberry and apple juice concentrate 
led to a significant increase in Arg1 compared to both OVA alone 
and naïve and OVA alone did not significantly increase Arg1 com-
pared to naïve mice. Previous studies have shown that changes 
in Fizz1 and Ym-1 gene expression can be constitutive in M2-like 
macrophages (Wong et al., 2010), and arginase activity regulation 
has been shown to be regulated independently of Fizz1 and Ym-1 
gene expression in lung macrophages (Raes et al., 2002). Arginase 

TA B L E  2   BerriQi® Boysenberry and apple juice concentrate 
increases alternatively activated macrophage gene expression in 
the lung

Target Gene
Naïve 
(n = 9) OVA (n = 9)

OVA + BerriQi 
(n = 10)

Arg1 1 (0.66) 9.0 (7.3) 18.9 (12.4)**,†

Ym−1 1 (0.7) 4.0 (2.4)** 4.7 (1.8)**

Fizz1 1 (0.8) 15.4 (11.6)** 23.0 (13.6)**

Nos2 1 (0.6) 1.0 (0.5) 1.2 (0.5)

Note: Mean fold change (SEM) in gene expression was measured by real-
time qPCR in lung tissue 4 days post-OVA challenge.
**p < .01 compared with naïve, †p < .05 compared with OVA alone (one-
way ANOVA with Tukey's post hoc test) for 4 experimental replicates 
with n = 9–10 per treatment groups.
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expression, particularly by M2-like macrophages, has been asso-
ciated with lung remodeling (Martinez et al., 2009), and increased 
arginase activity is associated with lower iNOS activity through 
substrate competition, leading to reduced inflammation (Hey 
et al., 1997; Johann et al., 2007; Mori & Gotoh, 2000). The increase 
in Arg1 gene expression is similar to our previously reported 

study showing increased arginase protein expression by alterna-
tively activated macrophages as a result of chronic Boysenberry 
consumption (Shaw et al., 2016). Further, research looking at an 
animal model Th-2-mediated inflammation has identified M2 mac-
rophage-derived Fizz1 as a key limiting factor for Th2-mediated 
pulmonary inflammation (Nair et al., 2009).

F I G U R E  4   BerriQi® Boysenberry and apple juice concentrate does not alter classical Th-1/Th-2 cytokines. Lung tissue production of (a) 
IL-5, (b) IL-9, (c) IL-10 (d) IFNγ, and (e) TNFα were determined 4 days post-OVA challenge by Legendplex. Data presented as mean ± SEM for 
two experimental replicates with n = 9–10 per treatment groups

(a) (b)

(c) (d)

(e)
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Consistent with Boysenberry and apple juice concentrate 
polyphenols resulting in a greater shift to an anti-inflamma-
tory environment, mice that consumed 2.5 mg/kg TAC BerriQi® 
Boysenberry and apple juice concentrate showed increased levels 
of the cytokines CXCL10 and CCL4, which are produced by M2 
macrophages, compared to OVA alone and naïve mice. CXCL10 and 
CCL4 are chemokines that attract monocytes/macrophages, and 
CXCL10 has been shown to also inhibit the infiltration of eosino-
phils in response to allergic airways inflammation (Su et al., 2008). 
IL-17A was also increased in the BerriQi® Boysenberry and apple 
juice concentrate group compared to naïve mice only, and the lev-
els of IL-17F were not affected by any of the treatments at the 
time point measured. High IL-17 expression, including IL-17A and 
IL-17F, has been implicated in asthma pathogenesis (Gurczynski 
& Moore, 2018; Wang & Liu, 2008). However, there is also some 
evidence that elevated IL-17A (Linden & Dahlen, 2014) increases 
the abundance of MMP-9, an important tissue remodeling protein 
in asthma (Shaw et al., 2016) and late-stage increases in IL-17A 
concentration can induce apoptosis of neutrophils and eosinophils 
(Linden & Dahlen, 2014; Wang & Liu, 2008). However, it not clear 
whether the increased IL-17A seen in the BerriQi® Boysenberry 
and apple juice concentrate treatment is proinflammatory or an-
ti-inflammatory as there is no statistical difference between the 
OVA alone group, and further studies to determine the role of 
IL-17A are needed. The reduced number of eosinophils and neu-
trophils seen with consumption of the BerriQi® Boysenberry and 
apple juice concentrate could be as a result of either a late-stage IL-
17A increase causing granulocyte apoptosis or CXCL10-mediated 
inhibition of granulocyte infiltration or a combination of the two 
factors. It is not yet clear how important these cytokines are for 
mediating the effects of BerriQi® Boysenberry and apple juice 
concentrate, and more work is needed to fully determine whether 
these cytokines are responsible for the decreased inflammatory 
response to OVA seen in this model and if alternatively activated 
(M2) macrophage are the cytokine source.

A switch to a more anti-inflammatory M2 macrophage phenotype 
may be through the Boysenberry and apple polyphenols identified in 
the BerriQi® Boysenberry and apple juice concentrate directly in-
hibiting proinflammatory pathways. Ellagitannins have been shown 
in cell culture and animal models of chronic inflammatory diseases 
to reduce proinflammatory prostaglandins (Karlsson et al., 2010) cy-
tokines, (Cornelio Favarin et al., 2013; Guan et al., 2017) and other 
proteins (El-Shitany et al., 2014; Marin et al., 2013; Saba et al., 2013). 
Anthocyanins have also been shown to inhibit proinflammatory 
proteins (Esposito et al., 2014; Fu et al., 2014) and activate anti-in-
flammatory pathways in models of inflammation (Chen et al., 2016; 
Edirisinghe et al., 2011; Khanna et al., 2001; Koh et al., 2015; Liu 
et al., 2015). Previously, we reported that 10 mg/kg TAC Boysenberry 
juice concentrate can increase the abundance of alternatively acti-
vated (M2) macrophages, which promote tissue repair in a chronic 
model of airways inflammation (Shaw et al., 2016). It is possible 
that the combination of the different polyphenols in the BerriQi® 

Boysenberry and apple juice concentrate acts on a number of dif-
ferent immune pathways to regulate the immune responses to OVA.

We found that mice that consumed BerriQi® Boysenberry and 
apple juice concentrate had reduced immune cell infiltration in re-
sponse to acute OVA challenge, and this could be as a result of a shift 
toward an anti-inflammatory environment within the lung. These re-
sults highlight the potential of anthocyanin-rich Boysenberry and 
apple dietary supplementation to modulate innate immune path-
ways during acute allergic lung inflammation. Further work is needed 
to determine whether these pathways are also altered in other lung 
inflammatory conditions, such as air pollution exposure, and to de-
termine the underlying molecular mechanisms the mediate the re-
ported effects as well as clinical studies to show if these findings are 
translatable to human health.
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