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Shikonin is a natural naphthoquinone compound and has demonstrated potent anti-
cancer activities; however, the underlying molecular mechanisms remained elusive. Here
we report that Shikonin inhibited the growth of a wide range of human cancer cell lines,
illustrating a broad anticancer effect. Mechanistically, we show that Shikonin arrested the
cell cycle at the G2/M phase, inhibited the ERK-dependent cell growth signal, and induced
cell death in both P53 wild type and mutant cancer cells, which collectively contributed to
the growth inhibitory effect of Shikonin. A pan-apoptosis inhibitor largely suppressed
Shikonin-induced cell death, suggesting an important role of apoptosis in this process.
Intriguingly, Shikonin also activated autophagy and inhibition of autophagy by depleting
critical autophagic genes further increased Shikonin-induced cell death, indicating a
protective role of autophagy. In uncovering the molecular mechanisms underlying these
effects of Shikonin, we found that Shikonin induced a robust upregulation of P21
independent of the P53 status, upregulated autophagy genes, as well as inhibited
expression of genes required for cell growth. Using mouse tumor models, we
confirmed the strong anticancer effect of Shikonin in vivo. Together, our data reveal a
broad range of pharmacological functions of Shikonin, involving simultaneous growth
inhibition, cell cycle arrest, autophagy activation and apoptosis induction through
regulating expression of critical genes involved in these pathways. Our study may
facilitate the development of Shikonin in cancer therapy as a single agent or in
combination with other anticancer therapies.
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INTRODUCTION

Zicao (purple gromwell), the dried root of Lithospermum erythrorhizon Sieb et Zucc, Arnebia
euchroma (Royle) Johnst, or Arnebia guttata Bunge, is an herbal medicine that has been used to
treat many kinds of illnesses in China and other Asian and European countries for centuries. A large
number of studies have reported a wide range of biological activities of Zicao extracts including anti-
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inflammation, anti-oxidative stress, anti-virus, anti-bacteria and
anti-cancer in both cultured cells and in animal models
(Papageorgiou et al., 1999; Chen et al., 2002; Andujar et al.,
2013; Wang et al., 2019). Shikonin is a major component of Zicao
and belongs to the naphthoquinone family compound.
Consistent with the reported function of Zicao extracts,
Shikonin has demonstrated a broad spectrum of bioactivities
including wound healing (Mani et al., 2004), anti-inflammation
(Tanaka et al., 1986), anti-HIV (Chen et al., 2003), anti-cancer
(Sankawa et al., 1977), and so on. It appears that its toxicity to
normal tissues and organs is limited; hence, Shikonin has been
extensively studied as an anti-cancer agent and had
demonstrated promising effects both in vitro and in vivo
(Papageorgiou et al., 1999; Chen et al., 2002; Andujar et al.,
2013; Wang et al., 2019).

The molecular mechanisms underlying the anti-cancer
activity of Shikonin seemed to be complicated and may depend
on the cellular context (Wang et al., 2019). So far, the reported
cellular targets of Shikonin include the pyruvate kinase
isoenzyme M2 (PKM2) (Chen et al., 2011; Lu et al., 2018;
Tang et al., 2018b), the MAPK pathway (Mao et al., 2008;
Zhao et al., 2015; Shan et al., 2017), HIF1a (Li et al., 2017;
Han et al., 2018; Tang et al., 2018b), JNK (Zhai et al., 2017; Lin
et al., 2018), PI3K/AKT (Zhang et al., 2015; Zhou et al., 2017; Ni
et al., 2018; Tang et al., 2018b), STAT3 (Qiu et al., 2017; Tang
et al., 2018a), p16INK4A and p73 (Jang et al., 2015), and PTEN
(Nigorikawa et al., 2006; Chen et al., 2018; Zhang et al., 2018).
These findings, at one hand, demonstrate that Shikonin can
regulate various biological processes (Wang et al., 2019). On the
other hand, they also illustrate a conundrum as to how exactly
Shikonin regulates cellular processes and how such regulation
contributes to the anticancer activity of Shikonin.

In order to understand how Shikonin elicits its anti-cancer
activity, in the current study, we systematically investigated the
effect of Shikonin on both the short-term proliferation and the
long-term survival of various cancer cell lines originated from
lung, breast, pancreas, colon and bone and one normal cell line
derived from the liver. We use both chemical and genetic
approaches to determine the involvement of cellular processes
such as cell cycle, autophagy and apoptosis in the anti-cancer
effect of Shikonin. Our data reveal that Shikonin simultaneously
induces cell cycle arrest, cell death and autophagy, which
collectively control cancer cell growth, survival and death.
METHODS

Chemicals, Cell Culture and Reagents
Shikonin (>99.0%, #517-89-5) and Z-VAD-FMK (#S7023) were
from Selleck Chemicals (Huston, TX, USA). Rapamycin
(#D9542) was purchased from Sigma (St. Louis, MO, USA).
PEG300 (#P815612) and Tween 80 (#T818928) were purchased
from Macklin Biochemical Co (Shanghai, China) or Selleck
Chemicals (#S6704 and S6702, respectively). Propidium iodide
(PI, # ICN19545810) was purchased from MP Biomedicals
(Solon, OH, USA). Cell lines were grown in DMEM (U2OS,
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PANC-1 and MDA-MB-231), RPMI-1640 (A549), or Ham’s
F12K medium (LO2) with 10% FBS (ExCell bio, China) and
1% penicillin–streptomycin (Gibco/ThermoFisher, Franklin,
MA, USA) at 37°C in 5% CO2 and 98% humidity.

Antibodies
Antibodies for b-Actin (#4970), p-mTOR (Ser-2448, #5536), p-
ERK1/2 (Thr-202/Tyr-204, #4370), PARP (#9542S), caspase-3
(#9665S), anti-ULK1 (#8054S), anti-pRSK (#9344), anti-pATK
(#9275S), anti-BECN1 (#3495S), cleaved Caspase-3 (#9664S) and
BAX (#2772S), ERK1/2 (#9102) and HRP-conjugated secondary
anti-rabbit and anti-mouse antibodies (#7076 and #7074) were
from Cell Signaling Technology (Beverly, MA, USA). Anti-P53
(#SC-6243), anti-UHRF1 (#SC-373750) and anti-P21 (#SC-397)
were from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
The anti-human LC3B (#NB100-2220) and anti-P62 (#NBP1-
42821) antibodies were obtained from Novus Biologicals
(Littleton, CO, USA). Anti-ATPA3 (#ab2826) antibody was
from Abcam (Cambridge, UK).

Cell Proliferation and IC50 Determination
Cell proliferation was determined by the cell counting kit-8 (cck-
8) assay (BeyotimeInst Biotech, China). Briefly, 5 × 103 A549
cells were seeded in each well of 96-well plates, grown at 37°C for
24 h, and treated with different concentrations of Shikonin for 1,
2, 3 and 4 days. Then 10 ml of cck-8 solution was added to each
well, incubated at 37°C for 2 h and the absorbance was
determined at 570 nm from five replicates using a microplate
reader (Synergy TM HT, BioTEK, USA).

To determine the IC50 of Shikonin, A549, PANC-1, MDA-
MB-131 and U2OS cancer cells, as well as LO2 liver fibroblasts,
were treated with increasing dosages of Shikonin for 48 h and cell
viability was determined as above-mentioned. Absorption in the
blank well was subtracted and that in the DMSO control was set
as 100%, and others were normalized accordingly. The IC50 was
calculated by the GraphPad Prism program.

Cell Cycle Analysis
For cell cycle analysis, 5 × 105 A549 or PANC-1 cells were seeded
in 6-cm dishes, treated with Shikonin for 0, 12 and 24 h. Cells
were harvested, washed once with cold PBS, fixed in 70%
ethanol, washed with PBS once, re-suspended in 1 ml of
propidium iodide (PI) staining solution (50 mg/ml PI and 1
mg/ml RNase in sodium citrate buffer, pH 7.4), incubated in the
dark for 30 min, and the cell cycle was measured by flow
FACSCantoII cytometer (BD Biosciences, San Jose, CA, USA).
Quantitation was performed using Multi-cycle Software (ModFit
software) to determine the percentage of G1, S, G2/M and sub-
G1 phase cells.

Western Blotting
Total cell lysates were harvested from A549, PANC-1, MDA-
MB-131, SW620, HT-29 or U2OS cells in lysis buffer
(BeyotimeInst Biotech, China). The protein concentration
was determined by the Pierce® BCA Protein Assay Kit
(Pierce, #23225, ThermoFisher, Franklin, MA, USA). Equal
amount of total proteins (~40 mg) were separated on 6–10–15%
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SDS-PAGE, transferred to PVDF membranes (#IPVH00010,
Millipore/Sigma, Burlington, MA, USA), blocked with 5% skim
milk, probed with primary antibodies overnight at 4°C,
incubated with HRP-conjugated secondary antibodies for 1 h
at room temperature, and imaged by the Tanon 5200
chemiluminescence imaging system (BioTanon, China).

Annexin V Analysis
Annexin V assay was conducted by the Annexin V fluorescein
isothiocyanate (FITC) Apoptosis Detection Kit (KeyGEN
BioTECH, Nanjing, China) according to manufacturer’s
instructions. Briefly, A549 cells were seeded in 6-well plates at
a density of 1 * 106 cells/well in RPMI 1640 medium. The cells
were treated or co-treated with 5 mM Shikonin, 200 nM CPT or
both for 24 h at 37°C in 5% CO2, collected and stained with
Annexin V-FITC and propidium iodide (PI) in the dark at room
temperature for 15 min and analyzed by flow cytometer (BD
Biosciences, San Jose, CA, USA), and the results were analyzed
using the software FACS Diva (BD Biosciences, San Jose,
CA, USA).

RNA Interference (RNAi)
To generate ULK1 or BECN1 stably depleted cells, A549 or HeLa
cells were stably infected with lentivirus shRNA vectors targeting
these two genes, respectively. In brief, 6 * 106 HEK293T cells in
100 mm dish were transfected with virus packaging plasmid
combinations containing 5 mg individual shRNA lentivirus
vector for ULK1 or BECN1, 2 mg pMDL, 1 mg VSVG and 1 mg
RSV-REV. After 48 h, the supernatant was collected, centrifuged
at 450g for 5 min at room temperature, and added with fresh
culture media (1:1 vol/vol) into pre-seeded A549 or HeLa cells in
6-well plates. Polybrene (final concentration at 4 mg/ml) was
added into the culture media 4 h later and incubated for 48–72 h.
The cells were then split into 100 mm dishes and added
puromycin (2–4 mg/ml) to select stable cell clones. After
around 10 days (or until the colonies formed), the cells were
pooled and protein expression of ULK1 or BECN1 was
confirmed by immunoblotting. shRNA vectors targeting ULK1
(#TRCN0000000835 and # TRCN0000000838) and BECN1
(#TRCN0000033549 and # TRCN0000033552) were obtained
from Sigma (St. Louis, MO, USA).

QPCR Analysis
Total RNA was extracted from A549 cell cultures by the RNeasy
plus kit (#74134, Qiagen USA, Germany Town, MD, USA). The
cDNA was synthesized using the Revert Aid first strand cDNA
synthesis kit according to the manufacturer’s procedure (#K1622,
ThermoFisher, Franklin, MA, USA). Real-time PCR was
performed on a CFX96 Real-Time PCR system (Bio-Rad,
Hercules, CA, USA) with SYBR Green Master Mix (#208054,
Invitrogen/ThermoFisher, Franklin, MA, USA). The mRNA level
of target gene was determined by analyzing 2−DDCt using HPRT1
as the internal control. The program used is: 95°C for 3 min,
followed by 40 cycles of 95°C 10 s and 60°C 30 s. Immediately
following the cycle, melt curve is determined by heating the
sample to 95°C for 10 s, reducing to 60°C for 30 s, and then
gradually increasing to 95°C with 0.5°C increment increase.
Frontiers in Pharmacology | www.frontiersin.org 3
Primers for RT-PCR are:

TP53-F: 5′-CTTCCATTTGCTTTGTCCCG-3′
TP53-R: 5′-CATCTCCCAAACATCCCTCAC-3′
CDKN1A (P21)-F: 5′-AACTAGGCGGTTGAATGAGAG-3′
CDKN1A (P21)-R: 5′-GAGGAAGTAGCTGGCATGAAG-3′
c-FOS-F: 5′-CTCAAGTCCTTACCTCTTCCG-3′
c-FOS-R: 5′-GAGAAAAGAGACACAGACCCAG-3′
JUN-F: 5′-TGTCCGAGAACTAAAGCCAAG-3′
JUN-R: 5′-TCAATGTTAACGAAAAGTCCAACG-3′
ATG3-F: 5′-GATGGCGGATGGGTAGATACA-3′
ATG3-R: 5′-TCTTCACATAGTGCTGAGCAATC-3′
ATG5-F: 5′-AAAGATGTGCTTCGAGATGTGT-3′
ATG5-R: 5′-CACTTTGTCAGTTACCAACGTCA-3′
HPRT1-F: 5′-AGCTTGCTGGTGAAAAGGA-3′
HPRT1-R: 5′-CCAAACTCAACTTGAACTCTCATC-3′
Clonogenic Cell Survival Assay
Clonogenic survival assay was used to determine the long-term
survival capability of cells. Briefly, after treatment, 5000 A549,
PANC-1, U2OS, MDA-MB-231 or LO2 cells were seeded into 6-
well plates in triplicate and cultured in drug-free full media for
10–14 days or until cell colonies were clearly visible. The culture
medium was changed every 3 days. Cells were washed once with
phosphate buffered saline and fixed in acetic acid-methanol
solution (1:7, vol/vol) at room temperature for 5 min. After
staining with 0.1% crystal violet dye in methanol at room
temperature for 15 min, the plates were then gently rinsed
under tap water, placed upside down to allow air dry. The
dried plates were first scanned, then dissolved in 1% SDS. The
plates were placed on a shaker to incubate until no areas of dense
coloration were visible at the bottom of wells. Finally, the
absorbance of each well was read at 570 nM using a microplate
reader (Synergy TM HT, BioTEK, USA).

Mouse Studies
For mouse studies, 5–6 weeks old female BALB/c Nu/Nu mice
were purchased from Beijing HFK Bioscience CO. LTD
(Beijing, China) or the Jackson Laboratory (Bar Harbor, ME,
USA). All mice were housed in-group in cages with bedding,
controlled temperature (23 ± 2°C), humidity (50 ± 5%) and
illumination (12 h light/dark cycle). Mice were adapted to the
facility for 1 week before experiments. All animal experiments
were performed in accordance with the National Institutes of
Health’s Guide for the Care and Use of Laboratory Animals
(NIH publication No. 80-23, revised in 1996) and were
approved by the Institutional Animal Care and Use
Committee at Jinan University or Case Western Reserve
University. In addition to all procedures to be sterile, mice
were allowed access to sterile food and water and libitum.
Shikonin was prepared at 140 or 70 mM stock solution in
DMSO. The injection solution was always freshly prepared by
mixing the stock solution with PEG300 (30%), Tween-80 (5%)
and sterile H2O (various based on the Shikonin concentration).
June 2020 | Volume 11 | Article 861
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The solution is stable for at least 4 hours at room temperature,
which is sufficient for injection.

For animal toxicity experiment, mice were injected with 20, 10,
5, 3 and 1 mg/kg Shikonin i.p. twice a week for 2 weeks. Animal
survival was documented and plotted by Kaplan–Meier survival
curve. For xenografted tumor study, 5 × 106 A549 cells suspended in
RPMI-1640 medium without serum were injected subcutaneously
into the right flank of each mouse. Tumors were allowed to grow till
the volume reached approximately ~100 mm3, and mice were
randomly divided into the following two groups with 6 mice in
each group: (1) Control; and (2) Shikonin (2 mg/kg). Shikonin was
given by i.p. twice a week. Tumor volume and body weight were
measured at least twice a week for 3 weeks. Tumor volume was
calculated using the formula V = (L × W2) × 0.52 where V =
volume, L = length, W = width.
Frontiers in Pharmacology | www.frontiersin.org 4
Statistical Analysis
All cell culture experiments were performed at least twice. Data
are presented as mean ± standard deviation. The statistical
analysis was conducted by the Prism 5.0 software. Pairwise
comparison was performed using a two-tailed Student t-test,
whereas one-way ANOVA was used to compare multiple
comparisons. P-values of less than at least 0.05 were
considered statistically significant.
RESULTS

Shikonin Displays a Broad Inhibitory Effect
on Cancer Cell Growth
To understand the anti-cancer mechanisms of Shikonin
(Figure 1), we first evaluated the IC50 of this compound in
four different cancer cell lines including lung adenocarcinoma
(A549), triple-negative breast cancer (MDA-MB-231),
pancreatic cancer (PANC-1), and osteosarcoma (U2OS). We
reason that an evaluation of the effect of Shikonin on these
cancer cell lines may provide insights into the preclinical
development of this agent in the future. The results show
that Shikonin treatment for 48 h displayed an IC50 at around
1–2 mM in all cancer cell lines tested (Figures 2A–D). On the
other hand, the IC50 of Shikonin in a normal human
hepatocyte LO2 cell line is roughly 4-fold higher than that
FIGURE 1 | Chemical structure of Shikonin.
A B

C D

E

F

FIGURE 2 | Effects of Shikonin on cancer cell growth. A549 (A), PANC-1 (B), U2OS (C), MDA-MB-231 (D), or LO2 (E) cells were treated with indicated
concentrations of Shikonin for 48 h, and cell survival was analyzed by the CCK-8 assay. Data were normalized to that of DMSO control and presented as relative
survival rate from five replicates. IC50 values were analyzed using the GraphPad software. (E) A549 cells were treated with DMSO or different concentrations of
Shikonin or 10 mM doxorubicin (DOX) for 1, 2, 3 and 4 days, and cell survival was analyzed by the CCK-8 assay. The absorbance of Shikonin-treated group was
normalized to that of the same day DMSO control, which yields the relative survival rate. Data represent mean and standard deviation from five replicates. (F) A549
cells were treated with DMSO or different concentrations of Shikonin for 1, 2, 3 and 4 days, and cell survival was analyzed by CCK-8 assay. The absorbance of
Shikonin-treated group was normalized to that from the same day DMSO control, which yields the relative survival rate. Data represent mean and standard deviation
from five replicates.
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in cancer cells (Figure 2E). To further probe the growth
inhibitory effect of Shikonin, we performed a real time cell
proliferation assay using A549 as the representative cell line.
The results show that Shikonin both dose- and time-
dependently suppressed cancer cell proliferation (Figure
2F). At a dose at or greater than 1 mM, Shikonin showed
even more growth inhibitory effect than a chemotherapeutic
drug doxorubicin (Figure 2F), indicating a strong anti-cancer
effect of Shikonin.

Then to determine the impact of Shikonin on long-term cell
survival, we performed a dose-dependent clonogenic survival
assay in A549 and PNAC-1 cancer cells. The results show that
Shikonin dose-dependently inhibited the long-term survival of
both cancer cell lines (Figures 3A, B). Similar inhibitory effects
were observed in MDA-MD-231 and U2OS cancer cells (Figure
3C). On the other hand, Shikonin did not inhibit the long-term
survival of the normal LO2 cell (Figure 3C), even though it also
inhibited the short-term cell proliferation albeit at a much
lesser degree than cancer cells (Figure 2E). Together, these data
demonstrate a general anti-cancer effect of Shikonin and
suggest that it has much less inhibitory effect on normal cells.
These findings also allow us to choose selected cell lines from
Frontiers in Pharmacology | www.frontiersin.org 5
these four types to perform subsequent studies in order to
avoid redundancy.

Shikonin Induces G2/M Phase Cell Cycle
Arrest and Robust Cell Death
To understand how Shikonin inhibited cancer cell growth, we
first monitored the cell cycle profile in the presence or absence of
Shikonin. Flow cytometry data revealed that Shikonin induced a
time-dependent accumulation of cells at the G2/M phase in A549
and PANC-1 (Figures 3D, E) cells, suggesting that Shikonin
induces cell cycle arrest at the G2/M phase.

To understand the molecular basis underlying the growth
inhibitory effect of Shikonin, we conducted immunoblotting
to examine expression of genes involved in cell growth, cell
death and autophagy by Shikonin. We found that treatment of
A549 cells with Shikonin time-dependently increased the
cleavage of poly (ADP-ribose) polymerase (PARP) and
caspase 3 (cCasp3) (Figure 4A), two known apoptotic cell
death markers (Fernandes-Alnemri et al., 1994; Nicholson
et al., 1995; Duriez and Shah, 1997). These findings are in
general agreement with previous reports (review (Wang et al.,
2019)). To confirm that Shikonin indeed induced cell death,
A B C

D
E

FIGURE 3 | Effects of Shikonin on cell survival and cell cycle. (A) A549 or PANC-1 cells were treated with increasing concentrations of Shikonin for 24 h, and
clonogenic survival assay was measured. Representative images are shown. (B) Quantitation of relative survival from (A). Data represent mean and standard
deviation from five replicates. *P <0.001 compared with the DMSO control. (C) MDA-MB-231, U2OS or LO2 cells were treated with 5 mM of Shikonin for 24 h, and
clonogenic survival assay was measured. Representative images are shown. (D) A549 or PANC-1 cells were treated with 5 mM of Shikonin for 0, 12 and 24 h, fixed
and cell cycle profile was analyzed. (E) Quantitation of cell cycle distribution for A549 and PANC-1 cells from D. Data represent average and standard deviation from
two independent experiments.
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we measured dead cell population using trypan blue staining.
The results show that Shikonin induced significant cell death
induction after 24 h treatment (Figure 4B). Similar results
were obtained from breast MDA-MB-231 cancer cells
(Figures 4C, D) and colorectal SW620 and HT-29 cancer
cells (Figures 4E–G). Except A549, PANC-1, MDA-MB-231,
SW620 and HT-29 are all P53 mutant cancer cell line. MDA-
MB-231 carries a homozygous c.839G > A (R280K) mutation,
whereas PANC1 is homozygous for c.818G > A (R273H). On
the other hand, SW620 carries both R273H and P309S
mutations whereas HT-29 is a R273H P53 mutant cancer
cell line. Hence, these results demonstrate that Shikonin
induces cell death in both P53 wild type and mutant cancer
cell lines.

Shikonin Inhibits the ERK Growth
Signal Pathway
Shikonin had been previously reported to both inhibit and
activate the extracellular signal-regulated kinas (ERK) pathway,
providing inconsistent results of Shikonin (review (Wang et al.,
2019)). During analyses, we observed that Shikonin time-
dependently inhibited phosphorylation of ERK in both A549
and MDA-MB-231 cells (Figures 4A, C), indicating that
Shikonin inhibited the ERK signaling. In agreement with the
inhibition in phosphorylation of ERK, phosphorylation of the
ERK downstream factor RSK was also reduced by Shikonin in a
time-dependent manner (Figures 4A, C). These results suggest
that Shikonin inhibits, but not activates, the ERK pathway, which
may lead to the cell growth inhibitory effect of Shikonin.
Frontiers in Pharmacology | www.frontiersin.org 6
Shikonin Mainly Induces Apoptotic
Cell Death
To confirm the role of apoptosis in Shikonin-induced cell death, we
first carried out Annexin V staining. The FACS results show that
Shikonin time-dependently induced a moderate increase in the
apoptotic cell population (Figure 5A), suggesting the activation of
apoptosis by Shikonin. However, Annexin V staining illustrated a
much weaker activity of Shikonin than that of PARP cleavage or
trypan blue staining. Such a relatively weak effect of Annexin V
might be due to the insensitivity of the assay in measuring dead cells
in this particular experimental setting, as well as the involvement of
other cell death mechanisms.

To answer this question and to confirm the involvement of
apoptosis, we assessed the effect of a pan apoptosis inhibitor, Z-
VAD-FMK (Z-VAD), on Shikonin-induced cell death. The results
show that Z-VAD co-treatment dramatically reduced the levels of
cleaved PARP or Caspase 3 induced by Shikonin (Figure 5B).
Consistently, Z-VAD significantly reduced the dead cell population
of both A549 and PNAC-1 cells measured by trypan blue staining in
the presence of Shikonin (Figure 5C).We realize that the effect of Z-
VAD was weaker in PANC-1 cells than in A549 cells and that it did
not completely block Shikonin-induced cell death (Figure 5C),
suggesting that other types of cell death such as necroptosis might
also be involved (review (Wang et al., 2019)).

Shikonin Activates the Protective
Autophagy Pathway
Cells often activate the protective autophagy pathway to survive
when encountering stressful situations, for instance, in the
A B C D

E F G

FIGURE 4 | Shikonin induces cell death. (A) PANC-1 cells were treated with 5 mM of Shikonin for 0, 12 and 24 h, and protein expression was measured using
specific antibodies. I and II indicate non-modified and lipidated forms of LC3B, respectively. Anti-PARP recognizes both full-length and cleaved PARP proteins, and
the latter is indicated by the arrow. (B) Quantitation of dead cell population from cells in (A) by trypan blue staining. Data represent mean and standard deviation
from five replicates. *P <0.001. (C) MDA-MD-231 cells were treated with 5 mM of Shikonin for 0, 12 and 24 h, and protein expression was measured by specific
antibodies. (D) Quantitation of dead cell population from C by trypan blue staining. Data represent mean and standard deviation from five replicates. *P <0.001.
SW620 (E) or HT-29 (F) cancer cells were treated with 5 mM of Shikonin for 12 h, and protein expression was measured by specific antibodies. (G) Quantitation of
dead cell population from E and F by trypan blue staining. Data represent mean and standard deviation from five replicates. *P < 0.001.
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absence of nutrient or energy supply (Kundu and Thompson,
2008; Levine and Kroemer, 2008). Consistent with this idea and
previous reports (review (Wang et al., 2019)), we found that
Shikonin greatly increased the level of the lipidated form of LC3B
(i.e., LC3B II in Figures 4A, B), a well-known marker for
autophagy activation (Kundu and Thompson, 2008;
Mizushima and Komatsu, 2011). These results led us to further
determine the role of autophagy in Shikonin-induced cellular
response. To this end, we decided to inhibit autophagy by
depleting critical autophagic genes including Unc-51 like
autophagy activating kinase 1 (ULK1) and Beclin 1 (BECN1)
by RNA interference (RNAi). ULK1 is a serine/threonine protein
kinase that plays a critical role in the initiating step of autophagy
(Matsuura et al., 1997; Kamada et al., 2000; Wirth et al., 2013).
We generated an A549 cell line with ULK1 stably reduced
(Figure 6A). We found that inhibiting ULK1 expression
further increased the levels of cleaved Caspase 3 and PARP
caused by Shikonin (Figure 6A), as well as elevated Shikonin-
induced cell death (Figure 6B). BECN1, by forming a complex
with the class III type phosphatidylinositol 3 kinase VPS34, is
another key autophagy initiator (Funderburk et al., 2010).
Therefore, we stably depleted BECN1 in HeLa cells and
observed that even a partial depletion of BECN1 further
Frontiers in Pharmacology | www.frontiersin.org 7
elevated the level of cleaved PARP (Figure 6C) and cell death
by Shikonin (Figure 6D), reinforcing the idea that autophagy is
activated during Shikonin treatment. We noticed that Shikonin
did not clearly induced LC3B lipidation in HeLa cells (Figure
6C). The reason is unclear at this moment; however, this could be
a cell line specific effect as we constantly observed the conversion
of LC3B in A549, PNAC-1, MDA-MB-231, SW620 and HT-29
cells. Overall, these results suggest that Shikonin generally
activates autophagy and such autophagy activation helps to
counteract the cell death-inducing effect of Shikonin.
Shikonin Regulates Expression of Genes
Involved in Cell Growth, Autophagy and
Cell Cycle
Next we intended to further understand the molecular
mechanisms by which Shikonin inhibited cell cycle
progression, activated autophagy and induced cell death. We
found that Shikonin treatment greatly increased the protein level
of P21 in A549 (Figure 7A), MDA-MB-231 (Figure 7B), PNAC-
1 (Figure 7C) and U2OS cells (Figure 7D), as well as in SW620
(Figure 4E) and HT-29 (Figure 4F) cells. Shikonin had also been
previously reported to induce P21 expression in breast cancer
A

B C

FIGURE 5 | Apoptosis-dependent cell death induction by Shikonin. (A) A549 cells were treated with 5 mM of Shikonin for 0, 12 and 24 h, and apoptotic cells were
analyzed by Annexin V staining. (B) PANC-1 cells were treated with 5 mM of Shikonin in the presence or absence of 10 mM Z-VAD for 24 h, and protein expression
was measured by specific antibodies. Cleaved PARP, LC3B forms I and II are indicated by arrows. (C) Quantitation of dead cell population from B by trypan blue
staining. Data represent mean and standard deviation from five replicates. *P < 0.001.
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cells (Zhang et al., 2013; Zheng et al., 2018). P21 is a potent
inhibitor of cyclin-dependent kinases and induces cell cycle
arrest in G1 or G2/M phase (Xiong et al., 1993; Abbas and
Dutta, 2009; Karimian et al., 2016; Kastenhuber and Lowe, 2017).
Hence, the upregulation in P21 is consistent with the G2/M
phase cell cycle arrest by Shikonin. These data suggest that
Shikonin induced upregulation in P21 in both P53 wild type
and mutant cancer cell lines.

To confirm these results, we performed quantitative PCR
(qPCR) to determine the mRNA level of CDKN1A, the gene
encoding P21. The results show that Shikonin robustly increased
CDKN1A levels in A549 cells in a time-dependent fashion
(Figure 7E). On the other hand, Shikonin initially slightly
increased TP53 (the gene encoding P53) transcription followed
by a reduction of it to the basal level (Figure 7F). The difference
in transcription between CDKN1A and TP53 again supports the
idea that Shikonin-upregulated P21 is unrelated to P53, which is
consistent with previous reports showing that P21 transcription
can be both P53-dependent and -independent (Hoffman et al.,
2002; Kastenhuber and Lowe, 2017).

To determine how Shikonin induced cell death and
autophagy activation, we also assessed mRNA levels of
Frontiers in Pharmacology | www.frontiersin.org 8
critical genes involved in these pathways. We found that
Shikonin time-dependently inhibited the expression of
growth-promoting genes such as JUN and c-FOS (Figures
7G, H), as well as increased the levels of autophagy genes like
ATG3 and ATG5 (Figures 7I, J).

Shikonin Inhibits Tumor Growth in Mice
To determine if the strong in vitro anticancer effect of Shikonin
can be recapitulated in vivo, we decided to perform mouse
xenograft experiment. First, we assessed the toxicity of
Shikonin in mice. We found that i.p. injection of Shikonin at a
dose of 10 mg/kg and above caused acute death of mice, whereas
a dose at 5 mg/kg induced partial death of the animal after 2
weeks of injection (Figure 8A). In contrast, a dose of 1–3 mg/kg
did not result in mouse death (Figure 8A) despite slight weight
loss of mice after 2 weeks of drug administration (Figure 8B).

Given the general anticancer effect of Shikonin observed in
various cancer cell lines, we chose to use the A549 lung
adenocarcinoma cell line as the representative to perform the
in vivo study. To this end, we inoculated A549 cancer cells into
nude mice subcutaneously, and examined the effect of Shikonin
on tumor growth. Our data show that Shikonin significantly
A C

B D

FIGURE 6 | Shikonin activated autophagy. (A) A549 control or ULK1 depleted cells were treated with 5 mM of Shikonin for 0, 12 and 24 h, and protein expression
was measured. (B) Quantitation of dead cell population from (A) by trypan blue staining. Data represent mean and standard deviation from five replicates. (C) HeLa
control or BECN1 stably depleted cells were treated with 5 mM of Shikonin for 0, 12 and 24 h, and protein expression was measured using specific antibodies. (D)
Quantitation of dead cell population from C by trypan blue staining. Data represent mean and standard deviation from five replicates. *P < 0.05.
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suppressed tumor growth in mice (Figure 8C), confirming the
anticancer effect of this compound in vivo.
DISCUSSION

It has been shown that Shikonin elicits a wide variety of
biological activities including the heavily studied anticancer
effect (Wang et al., 2019). Yet, the underlying molecular
mechanisms remained unclear. Studies have shown that
Shikonin could inhibit cell proliferation, induce cell death and
activate autophagy, pointing to complicated biological outcomes
that often depend on the cellular context including cell types,
treatment conditions and assay methods (Wang et al., 2019). In
the current study, we presented evidence to show a broad anti-
cancer effect of Shikonin that is largely consistent with previous
reports. However, compared with previous reports, our studies
are novel in a number of ways.

One of the major reasons for the uncertainty of the anti-
cancer mechanism of Shikonin is that usually one type of cancer
cell line was used and only short-term cell culture effect was
Frontiers in Pharmacology | www.frontiersin.org 9
measured using assays like MTT. Further, there is the lack of
well-planned genetic and pharmacological studies to determine
the time course of biological processes caused by Shikonin. Here,
we systematically investigated the effect of Shikonin on both
short-term and long-term growth of four different cancer cell
lines and one normal cell line from the liver. In determining cell
death (using trypan blue exclusion and Western blotting tools),
two additional colorectal cancer cell lines were included to
confirm the generality of Shikonin-induced cell death and
autophagy activation. Our results reveal that Shikonin
simultaneously inhibits cell cycle, induces cell death and
activates autophagy. Although Shikonin had been reported to
have effects on these biological processes, as far as we know, we
are the first to show that Shikonin could do all of these at the
same time in various cancer cell lines. These results clearly point
out the complexity of the biological effect of Shikonin, as well as
highlight a broad spectrum of activities of this compound.

Our studies advanced out understanding of cellular
mechanisms underlying Shikonin-induced cell cycle arrest and
cell death. Here we present strong evidence acquired from six
different cancer cell lines from different tissues and organs to
A

E F G

H I J

B C D

FIGURE 7 | Shikonin upregulates P21 and alters gene transcription. (A) A549, (B) MDA-MB-231, (C) PANC-1 and (D) U2OS cells were treated with 5 mM of
Shikonin for 6 h, and protein expression was measured by specific antibodies. For qPCR analysis, A549 cells were treated with 5 mM Shikonin for 0, 4, 8, 12 and 24
h, RNA was isolated, and expression of genes including CDKN1A (E), TP53 (F), c-FOS (G), JUN (H), ATG5 (I), and ATG3 (J) was analyzed. Data represent mean
and standard deviation from five replicates. *P < 0.001 between 0 and 24 h groups.
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show that Shikonin arrested the cell cycle at the G2/M phase
likely due to its up-regulation of P21, a potent cell cycle inhibitor
that arrests cells at G1 or G2/M phase (Xiong et al., 1993; Abbas
and Dutta, 2009; Karimian et al., 2016; Kastenhuber and Lowe,
2017). Such an increase in P21 was accompanied with elevated
transcription. Interestingly, the increases in both P21 and cell
death induced by Shikonin were observed in both P53 wild type
and mutant cancer cell lines, highly supporting P53 status-
independent activities of Shikonin.

Our studies also helped to clear some confusion about
Shikonin in the literature. First, autophagy activation had
been presented as both a positive and a negative factor for
Shikonin-induced cell death. For instance, Kim et al. reported
that autophagy activation protected cells from Shikonin-
induced necroptosis (Kim et al., 2017), whereas another study
suggested that autophagy activation contributed to Shikonin-
induced cell death (Zhu et al., 2019). Here we also confirmed
autophagy activation by Shikonin in a wide range of cancer cell
lines except HeLa. We further showed that autophagy
protected, but not promoted, Shikonin-induced cell death,
illustrating a protective effect of autophagy in the presence of
Shikonin. Nonetheless, the effect of autophagy activator or
autophagic gene depletion was generally weak, indicating that
autophagy activation in the presence of Shikonin may merely
represent a consequence of cellular reaction to stress (in this
case, Shikonin treatment)(Wang et al., 2019). Second, the ERK
kinase belongs to the MAPK family kinase and plays a critical
role in regulating cell growth (Peti and Page, 2013). Not
surprisingly, Shikonin has been shown to inhibit the ERK
kinase, contributing to its growth inhibitory effect. However, a
number of studies also reported that Shikonin activated ERK
(Wu et al., 2005; Chang et al., 2010; Shen et al., 2012; Han et al.,
2019) and such activation seemed to promote the cell death
inducing effect of Shikonin (Zhuang and Schnellmann, 2006).
Therefore, the effect of Shikonin on the ERK pathway remained
controversial. Here, we show that Shikonin reduced the levels of
activated ERK and its downstream factor RSK in multiple
Frontiers in Pharmacology | www.frontiersin.org 10
cancer cell lines, indicating that Shikonin inhibits the ERK
pathway at least under these particular experimental conditions.
qPCR results showed a reduction in the expression levels of
growth-related genes, which is consistent with the data showing
the inhibition of the ERK pathway. These results may help to
clear the confusion as to the role of the ERK signal in the effect
of Shikonin.

Also we, for the first time, provided a detailed toxicity
analysis of Shikonin in nude mice. Our studies reveal a
relatively low dose tolerance of Shikonin in mice (< 3 mg/
kg). As to why previous studies reported even greater than 10
mg/kg dose of Shikonin in mice, we speculate that it was
largely due to inappropriate solution making of Shikonin in
previous studies. We have tested various solvents to allow
stable dissolving of Shikonin. We found that the Shikonin
solution can be stable for as long as 4 h at room temperature
only when dissolved in PEG300 (30%), Tween-80 (5%) and
sterile H2O. Otherwise, Shikonin seemed to be dissolved
initially but will precipitate within 30 min, preventing the
injection of precise amount of chemicals into mince.
Consequently, that led to the incorrect impression that mice
can tolerate high dose of Shikonin. This additional analysis
allowed us to precisely control the amount of Shikonin and
determine its toxicity in mice. By combining with the effect on
normal cell line, we believe that we can lower the dose of
Shikonin in future studies. Together, our results demonstrate
strong anticancer effect of Shikonin across a wide range of
human cancer cell lines and reveal activation of biological
pathways that contributed to the growth inhibitory effect of
Shikonin. These results will shed significant light on our
understanding of this molecule in cancer therapy.
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FIGURE 8 | Mouse studies of Shikonin. (A) 5–6 week old nude mice (n = 2) were injected with vehicle control or 1, 3, 5, 10 or 20 mg/kg Shikonin i.p. twice a week
for 2 weeks, and mouse survival was plotted by the Kaplen–Mier plotter. (B) Body weight of mice in (A) was recorded and plotted over time. (C) For nude mice
tumor study, 5 * 106 A549 cells were inoculated into nude mice subcutaneously. When the tumor reached around 100 mm3 in size, the mice were treated with 2
mg/kg of Shikonin i.p. twice a week for 3 weeks. Tumor volumes were measured during this time period. Data represent mean and standard error of tumor volume
from six mice per group. *P < 0.001.
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