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Abstract: In this paper, we developed a reactive molecular dynamics (RMD) scheme to simulate
the Self-Stable Precipitation (SP) polymerization of 1-pentene and cyclopentene (C5) with maleic
anhydride (MAn) in an all-atom resolution. We studied the chain propagation mechanism by tracking
the changes in molecular conformation and analyzing end-to-end distance and radius of gyration.
The results show that the main reason of chain termination in the reaction process was due to
intramolecular cyclic entanglement, which made the active center wrapped in the center of the
globular chain. After conducting the experiment in the same condition with the simulation, we
found that the distribution trend and peak value of the molecular-weight-distribution curve in the
simulation were consistent with experimental results. The simulated number average molecular
weight (Mn) and weight average molecular weight (Mw) were in good agreement with the experiment.
Moreover, the simulated molecular polydispersity index (PDI) for cyclopentene reaction with maleic
anhydride was accurate, differing by 0.04 from the experimental value. These show that this model
is suitable for C5–maleic anhydride self-stable precipitation polymerization and is expected to be
used as a molecular weight prediction tool for other maleic anhydride self-stable precipitation
polymerization system.

Keywords: reactive molecular dynamics; self-stable precipitation; maleic anhydride; molecular weight

1. Introduction

Our group proposed that α-olefin and maleic anhydride can undergo a self-stable
precipitation polymerization reaction in a specific solvent environment [1–3]. A series
of research works have been employed. Xing et al. studied the Self-Stable Precipitation
polymerization process of Vinyl Acetate and Maleic Anhydride [4,5] and investigated the
influence of reaction time, monomer concentration and ratio, and effect of the reaction
medium on the morphology and size of the prepared polymer microspheres. Hao et al.
used the SP system for the alternating copolymerization of styrene/maleic anhydride
(St/MAn) and investigated the changes in the monomer conversion rate, microsphere
size, and relative molecular weight of the copolymer with the reaction time during the
polymerization process [6]. Liu et al. further extended the range of SP system monomers
to a series of olefin monomers in the C4~C9 fraction of the petrochemical industry [7]
and prepared polyolefin products containing acid anhydride functional groups, indicating
that the SP polymerization process has universality. Furthermore, based on the analysis
of polymerization thermodynamics and kinetics, the nucleation and growth mechanism
of self-stable precipitation was proposed: the initial stage of the reaction mainly occurs
in the solution phase; polymer chains will aggregate and gradually grow and nucleate
out of solution. Subsequently, polymer chains are continuously deposited on the particles
that were precipitated from the solution to eventually grow into balls. Wang et al. used a
fluorescence self-imaging method based on aggregation-induced luminescence to monitor
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the process of particle generation and growth in SP polymerization solution [8]. This
method confirmed the behavior of the abovementioned nucleation and growth process.

However, the influence of the entanglement/aggregation process of molecular chains
in the solution phase in the early stage of the reaction has not been investigated, which is
critical for revealing the mechanism in the molecular-level microscope. The main reason is
that the size of molecules generated in the early stage of the reaction is very small, which
is difficult to observe with current observation methods, and the chain growth process is
extremely fast, which is difficult to research by sampling or in situ observation. However,
MD simulation has great advantages in observing the small size and ultra-fast evolution
process. It has been proved to be one of the most important tools to explore the mechanism
in the field of self-assembly [9,10]. As to free radical polymerization, some researchers
have recently used MD simulations to carry out related research [11–13], using Reactive
Molecular Dynamics (RMD) methods to simulate the initiation and growth of polymers.
The center diagram symbolizes the formation of a new I–P* bond (as shown in Figure 1).
The two different reactive processes are characterized by capture radii rI and rP. The
reaction can take place whenever a free monomer bead M comes into the interaction sphere
rI of an initiator I*or rP of a terminal reactive chain monomer P*. Torres et al. judged
the termination of the reaction by introducing a gel point in the model [14]. Karim et al.
studied the chain propagation process of styrene to monodisperse polystyrene in living
polymerization [11]. Jiwon et al. further studied the molecular weight distribution of
PMMA bulk polymerization and found that the simulated glass transition temperature
and tensile modulus values were very close to the experimental results [15], which proved
the validation of the method on simulating molecular weight and distribution. The above
simulation studies all focus on bulk polymerization. There are few literature reports on
precipitation polymerization simulation.

Figure 1. Schematic representation of the initiation step of the polymerization (left and center
diagrams), as well as the chain propagation (right) (I is the initiator, P* is the active center of the
growing chain, M is the unreacted monomer, rl is the radius of initiation, and rp is the radius of
propagation) [11].

Through the prior experiments of our group, we found that the molecular weight of
the copolymerization product of the C5–maleic anhydride reaction was much lower than
that of common free radical polymerization. The degree of polymerization (DP) of the
product was less than 100. In this study, the RMD simulation method was used to study
two representative molecules 1-pentane and cyclopentene reaction with maleic anhydride.
We investigated the process of chain growth and conformation evolution of the alternating
copolymerization of pentene and cyclopentene with maleic anhydride, respectively, finding
the mechanism for generating lower molecular weight product in this kind of SP polymer-
ization. Correspondingly, we experiment with the same conditions as simulation in order
to compare the simulated and experimental number average molecular weight (Mn) and
weight average molecular weight (Mw) and the molecular weight distribution trend, which
can validate the model we prepared. Since the number of free radicals in the early stage
of the reaction is rare, the probability of free radicals connecting is small. To simplify the
model and reduce the amount of calculation, only one active center was introduced in the
model to study the evolution of molecular conformation during single-chain growth, the
way of termination, and molecular weight distribution. Based on the algorithms proposed
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by Jiwon et al. [15], we developed the kinetic simulation schemes of SP reaction (shown in
Figure 2), according to the alternating copolymerization theory [16] and the characteristics
of the self-stabilizing polymerization reaction [5,7].

Figure 2. Scheme of molecular dynamics simulation algorithm for self-stable precipitation polymerization.

2. Simulation Method and Results

Since our simulation focuses on the early stage of the polymerization, the molecular
weight is not high, DP < 100, and precipitation has not formed yet in solution. There is a
different termination method from Jiwon’s in our algorithm. Jiwon’s termination condition
is whether the conversion rate reaches a target value. Ours is whether the “no” loop cycles
five times in a row; that is, if there are no head atoms within 1000 ps.

Construction of atomic model and RMD simulations were carried out with Materials
Studio 7.0 software, Accelrys Company, (San Diego, CA, USA).

First, the double bonds in maleic anhydride and 1-pentene (cyclopentene) were
changed to single bonds and linked to form a composite monomer, as shown in Figure 3.
Then a three-dimensional periodic boundary cubic box composed of 200 composite monomers
(the yellow part in Figure 4) and 1000 p-xylene molecules (a non-polar solvent) were con-
structed in the Amorphous Cell modules of Materials studio 7.0 software pack. The density was
set to be 0.86 g/cm3 (measured in the experiment). The cell size was 64.7 Å × 64.7 Å × 64.7 Å.
Two nanoseconds of NVT dynamic equilibrium was employed to the cell. The integration
time step was 1 fs, the temperature T = 500 K, and the COMPASS force field was adopted,
which was validated on alkane and phenyl liquid substances in the literature by Sun [17].
The temperature-control method adopted the Nose method to fully relax the system at a
high temperature.

Figure 3. Maleic anhydride and 1-pentene composite monomer (A). Maleic anhydride and cyclopen-
tene composite monomer (B).
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Figure 4. Cubic simulation cell (yellow parts represent composite monomers) and repeating unit
structure (green atom is the initiated central atom; yellow atom is the head atom).

Then the carbon atom on the side of maleic anhydride in a composite monomer away
from pentane was defined as the active center (the green atom in Figure 4). We performed
200 ps kinetic equilibrium at T = 343 K (the reaction temperature of the experiment) for
chain relaxation [18,19] and then checked the distance between the active center and the
head atom (yellow atom in Figure 4) of the unreacted monomer near the initiated monomer.
The head atom with distance within the capture radius 0.5–0.8 nm was linked to the active
center atom, realizing the chain growth process. The bond was formed with the closest one,
if there were more than one such head atoms at each check step. If there was no matching
head atom within this radius, we continued to perform 200 ps kinetic equilibrium and then
checked again. If the process of no matching was repeated five times, the propagating
line was terminated. That is, when no head atoms were found to enter the capture radius
within 1000 ps, the reaction was considered to be terminated. The cell needs 1000 ps to
reach an equilibrium state at the temperature 343 K, which was observed when the NVT
equilibrium was employed before. Thus, we set this time length as a termination criterion.
Thus, the polymer chain 1-pentene–maleic anhydride (1PM) and cyclopentene–maleic
anhydride (CPM) were constructed.

Figure 5a is the snapshot of the molecular conformation captured at four different
moments in the process of 1PM growth. From the figure, we can see that the conformation
changes continuously during the chain growth process. The chain of 1PM keeps a line
when the DP is 5 and 10. The molecular end-to-end distance and the radius of gyration (Rg)
increase linearly from 12 to 18 Å when the DP is within the range of 5 to 15 (see Table 1).
When the DP reaches 20, the line tends to circle. Simultaneously, the molecular end-to-end
distance increases at a higher rate, from 18 to 27 Å. When the DP is up to 30, the extent of
the circling enlarges. The line collapse to a globule, with the end-to-end distance plunging.
The molecular chain turns to three-dimensional growth. From two-dimensional growth to
three-dimensional growth, the chain undergoes collapsing and curling towards the center
of the chain. We can call this process cyclization. The center is heavily wrapped at the
end of chain growth and cannot continue to grow because of the lack of monomers nearby.
Similarly, the conformation of CPM constantly changes during the growth process (Figure 5b).
When the DP of CPM increases from 5 to 10, the end-to-end distance varies by the same
changing rate as 1PM. As the DP increases from 10 to 15, the end-to-end distance varies
from 15 to 30 Å, showing three-dimensional growth. It terminates when the DP reaches
20, with the end-to-end distance plunging by more than half. Moreover, the cyclization
occurred in the polymer chain. From the growth process of these two chains, we find that,
in the xylene non-polar solvent, the molecular chain has a strong tendency of cyclization
that makes the chain to be a globule. When the chain grows to a certain extent, the active
center is wrapped in the center of the globule, resulting in chain termination.
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Figure 5. (a) Molecular conformation evolution of 1-pentene–maleic anhydride (1PM) during the
growth process in the nonpolar solvent. The green atom is the active center, and polydispersity index
(DP) is 5, 10, 20, and 30 from left to right, respectively; (b) the molecular conformation evolution of
cyclopentene–maleic anhydride (CPM) during the growth process. DP is 5, 10, 15, and 20 from left to
right, respectively.

Table 1. Molecular size parameters during polymerization process.

Chain DP End-to-End Distance
(Å)

Rg
(Å)

1PM1 5 12 5.0
1PM1 10 15 7.5
1PM1 15 18 10.1
1PM1 20 27 11.5
1PM1 25 30 11.6
1PM1 30(end) 17 10.2
CPM1 5 10 5.0
CPM1 10 15 7.5
CPM1 15 30 10.5
CPM1 20(end) 11 9.4

To investigate the influence of solvent on conformation, we employed the simulation
mentioned above in two polar solvents, acetone and ethyl acetate, respectively. We found
that the globular conformation does not occur to the 1CP chain in both of the solvents (see
Figure 6). Moreover, the active centers were not wrapped. They can continue to grow until
the monomers were rare. It is very likely that the non-polar solvent, p-xylene, leads to the
formation of globular conformation at a low DP for this type of polymerization.

To study the distribution of molecular weight, more polymer chains with different
molecular weights are needed. Due to the randomness of constructing cells in the AC
module, we can obtain a new chain of 1PM when the initiation–growth–termination process
was repeated. Repeat this process until 26 chains were simulated. Thus, we obtained a
total of 26 polymer chains of 1PM as statistical samples. By the same method, we obtained
26 polymer chains of CPM. It was found that these chains all had the characteristics of
intra-chain cyclization (see Figure 7) and active center being wrapped. When the active
centers of the chains were wrapped earlier, the molecular weight of the polymers was
relatively low, and when the active centers of chains were wrapped later, the molecular
weight of the polymers was relatively high. It can be seen from Table 2 that the DP number
of the copolymer 1PM ranges from 26 to 80, and the largest number of molecular chains
(Ni) is 8 when the DP is 30. The DP of CPM ranges from 17 to 60, and the distribution of
CPM ranges narrowly than that of 1PM. The highest Ni of CPM reaches 7 when the DP is
23. Based on the above analysis, the DP of CPM is smaller than that of 1PM. The copolymer
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chains of CPM have a greater tendency to cyclize than 1PM chain, so the chain termination
of CPM occurs at a smaller degree of polymerization.

Figure 6. The molecular conformation evolution of 1-pentene–maleic anhydride (1PM) in the acetone
as a solvent (a) and ethyl acetate as a solvent (b). The green atom is the active center, and degree of
polymerization (DP) is 20 and 30 from left to right, respectively.

Figure 7. The end-to-end distance evolution of the 1-pentene–maleic anhydride (1PM) polymers
with different polydispersity index (DP). Its values are showed at the end of the lines.
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Table 2. Polymerization degree and corresponding number of molecules.

Polymer DP Ni

1PM 26 1
1PM 27 2
1PM 30 8
1PM 32 7
1PM 34 2
1PM 61 2
1PM 80 1
CPM 17 1
CPM 20 5
CPM 23 7
CPM 28 5
CPM 30 4
CPM 37 3
CPM 60 1

3. Comparison with Experimental Results
3.1. Experiment Procedure

Two grams of the monomer maleic anhydride and 0.5 g of the initiator AIBN were
added into 12.5 mL of xylene solvent in a 100 mL flask and allowed to fully dissolve.
Purged bubble nitrogen was used for about half an hour to remove the oxygen, and then
1.4 g of the monomer 1-pentene was added to the reaction flask. Then the obtained mixture
was put into a 70b ◦C water bath for reaction, without magnetic stirring, the flask was
sealed during the reaction. More experimental details and product structure confirmation
were published [20]. In the experiment, the molar ratio of maleic anhydride to 1-pentene is
1:1, and the molar ratio of maleic anhydride to xylene is 1:5. The experimental temperature
was also the same as the temperature during the simulation of chain growth. The reagents
were all purchased from Alpha Reagent Company (Shanghai, China).

The liquid in the reaction flask remained clear as a solution state within ten minutes
after the start of the reaction. Samples were taken out every one minute, and then the
ten samples were taken for gel permeation chromatography (GPC) tests. GPC 1515-2414 de-
tector produced by Waters company (Taunton, MA, USA) was used for the test, polystyrene
(PS) as the standards, and tetrahydrofuran as the eluent. The samples were filtered through
a 0.45µm pore size syringe filter before sample injection. None of polymers were de-
tected from the sample within the first 4 min, and there was polymer in the sample at the
5th minute. The polymer obtained at this time was used as the product of the early stage of
the reaction for subsequent studies.

To verify the composition ratio of the copolymer, the acid–base titration method was
used to determine the content of acid anhydride in the copolymer [21]. We took 0.018 g of
the white copolymer powder after vacuum-drying into a 100 mL flask, added 20 mL of
acetone, and heated to refluxed for about 10 min until the copolymer was fully dissolved.
After cooling, we added an excess of KOH–ethanol standard solution (concentration of
0.0697 mol/L), and then heated to reflux for 5 min to ensure that the copolymer was fully
dissolved. After cooling, phenolphthalein was used as an indicator, and the prepared
HCl–isopropanol standard solution (solubility of 0.134 mol/L) was used as back titration;
the amount of KOH–ethanol solution and HCl–isopropanol solution was 10.1 and 3.6 mL,
respectively. We substituted them into Formula (1), and then GMAH = 0.6. Thus, the molar
ratio of maleic anhydride and 1-pentene (cyclopentene) was 1:1, which proves that the
obtained polymer was a regularly alternating copolymer.

GMAH = 9.806(COHVOH − CHVH)/2m (1)

where GMAH is the mass fraction of MAn %; COH is the KOH–ethanol standard solution
concentration, mol/L; VOH is the amount of excess KOH–ethanol standard solution, mL;
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CH is the concentration of HCl–isopropanol standard solution, mol/L; VH is the amount
of HCl-isopropanol standard solution in back titration, mL; and m_ is the mass of the
copolymer sample, g.

The data obtained by GPC were relative values to the molecular weight of the standard
PS, which can be corrected by the universal calibration method [22] to obtain the true
molecular weight. We used the viscosity detection accessory of the waters GPC to determine
the intrinsic viscosities (η) of each fraction of the copolymer and standard PS. Intrinsic
viscosity data can be brought into Formula (2) to obtain the molecular weight, Mi, of each
fraction. Then the simulated data and experimental data were used to plot the molecular
weight curve (as shown in Figure 8), and then we used the Formula (3) to obtain the
number average molecular weight (Mn), weight average molecular weight (Mw), and
polydispersity index (PDI) (see Table 3).

([η]M)i = ([η]M)standard (2)

Mw = WiMi =
∑ NiMi2

∑ NiMi
PDI =

Mw
Mn

(3)

Figure 8. (a) Simulation and experimental molecular weight distribution of copolymer 1-pentene–
maleic anhydride (1PM); (b) simulation and experimental molecular weight distribution of copolymer
cyclopentene–maleic anhydride (CPM); the results were normalized to 1 for comparison.

Table 3. Molecular weight and molecular weight distribution of simulation and experiment.

Polymer Mn (g/mol) Mw (g/mol) PDI

1PMsimulation 6001 7531 1.25
1PMexperiment 5550 7660 1.38
CPMsimulation 4581 5028 1.10
CPMexperiment 4517 5150 1.14

3.2. Comparison of Molecular Weight

From the distribution trend of the histogram (simulation) and the curve (experiment)
in Figure 8, the peak positions of the simulation and the experiment are very close, indi-
cating that the model can accurately simulate the molecular weight value of the largest
number of fractions. Furthermore, the simulation and experimental results have a better
consistency on higher molecular weight on the right side of the figure, indicating that
the model can describe the behavior of the chain with larger molecular weight molecular
generated by the reaction. The agreement in the distribution curve on the left is not ideal,
because in order to improve the calculation efficiency, the model does not involve chain
transfer termination [23] that takes place in the chains with low molecular weight in the
growth process. Despite this, it can be seen from Table 3 that, for the copolymers 1PM and
CPM, the difference between the simulated Mw and the experimental Mw is less than the
molecular weight of one repeating unit, 170 g/mol, reaching the accurate value match. The
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reason is that the largest number of fraction and the fraction with larger molecular weight
occupy a larger weight in the statistical average value Mw (see Formula (3)). The simulated
PDI value is also consistent with the experimental value. For CPM copolymers with a
smaller molecular weight, the simulated PDI value is 1.1, the experimental PDI value is
1.14, and the difference is only 0.04. From the above analysis, we can conclude that the
algorithm used in this model is reasonable and can be used to present the chain growth and
termination in the early stage of the self-stable precipitation polymerization of C5–maleic
anhydride. Moreover, the termination method of most polymers is the single-radical
termination with an active atom wrapped in the center of the molecular chain.

4. Conclusions

This paper proposed a new algorithm for simulating low-molecular-weight (degree
of polymerization (DP) < 100) polymers in the early stage of Self-Stable Precipitation (SP)
polymerization. Using this algorithm, the chain growth process of the reaction of 1-pentene
and cyclopentene with maleic anhydride was simulated under the same conditions as
the experiment. The process of the chain growth was stated by the conformation image
and the changing of molecular end-to-end distance and the radius of gyration. It was
found that the reason for the termination of the two chains 1-pentene–maleic anhydride
(1PM) and cyclopentene–maleic anhydride (CPM) was the intramolecular cyclic entangle-
ment; the active centers were wrapped in the center of the globular chains, which cannot
make contact with other monomers; and, finally, the chains terminate at a low DP. This
investigation revealed the mechanism of entanglement/aggregation of SP polymer chains
on a microscopic scale. Furthermore, we simulated more molecular chains to obtain the
molecular weight distribution. We compared the molecular-weight-distribution curve with
that of the experiment. It was found that the simulated value in a limited sample can be
consistent with most of the experimental curves. The experimental and simulated values
of number average molecular weight (Mn), weight average molecular weight (Mw), and
PDI were in good agreement between experiment and simulation. It was validated that the
model is suitable for simulating the alternating copolymerization of C5–maleic anhydride,
and the chain growth mechanism is reliable. This model may be suitable to a wider range
of self-stable precipitation polymerization systems, and we will further explore it in the
future research.
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