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Line drawings convey meaning with just a few strokes.
Despite strong simplifications, humans can recognize
objects depicted in such abstracted images without
effort. To what degree do deep convolutional neural
networks (CNNs) mirror this human ability to generalize
to abstracted object images? While CNNs trained on
natural images have been shown to exhibit poor
classification performance on drawings, other work has
demonstrated highly similar latent representations in
the networks for abstracted and natural images. Here,
we address these seemingly conflicting findings by
analyzing the activation patterns of a CNN trained on
natural images across a set of photographs, drawings,
and sketches of the same objects and comparing them
to human behavior. We find a highly similar
representational structure across levels of visual
abstraction in early and intermediate layers of the
network. This similarity, however, does not translate to
later stages in the network, resulting in low classification
performance for drawings and sketches. We identified
that texture bias in CNNs contributes to the dissimilar
representational structure in late layers and the poor
performance on drawings. Finally, by fine-tuning late
network layers with object drawings, we show that
performance can be largely restored, demonstrating the
general utility of features learned on natural images in
early and intermediate layers for the recognition of

drawings. In conclusion, generalization to abstracted
images, such as drawings, seems to be an emergent
property of CNNs trained on natural images, which is,
however, suppressed by domain-related biases that
arise during later processing stages in the network.

Introduction

Humans have the remarkable ability to robustly
recognize objects across a wide range of visual
abstractions. One striking example for this feat is that
we can identify objects in simple and abstract line
drawings with similar speed and accuracy as natural
object images (Biederman & Ju, 1988; Eitz, Hays,
& Alexa, 2012). Neuroimaging studies have shown
that this behavior is supported by a similar neural
representation for natural images and line drawings
across a number of visually responsive brain regions
(Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999;
Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011). This
suggests that both the recognition of natural images
and line drawings of objects rely on a general-purpose
neural architecture that supports general object
recognition. Recent developments in computer vision
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and computational neuroscience have opened up new
avenues for studying the computational mechanisms
of object recognition in silico (Kietzmann, McClure,
& Kriegeskorte, 2019), with deep convolutional
neural networks (CNNs) as the most successful
and most popular model class in approximating
the activity elicited during object recognition in the
inferior temporal cortex of non-human primates and
humans (Cichy, Khosla, Pantazis, Torralba, & Oliva,
2016; Khaligh-Razavi & Kriegeskorte, 2014; Storrs,
Kietzmann, Walther, Mehrer, & Kriegeskorte, 2020;
Yamins, Hong, Cadieu, Solomon, Seibert, & DiCarlo,
2014). While CNNs have yielded important insights
into the mechanistic underpinnings of visual object
recognition and show impressive performance in object
classification benchmarks (Krizhevsky, Sutzkever, &
Hinton, 2012; Simonyan & Zisserman, 2015), there is
a limited understanding of how well the recognition
abilities of CNNs generalize to abstracted visual stimuli
such as line drawings. Identifying the extent to which
CNNs generalize to drawings could therefore not
only deepen our understanding of the inner workings
of CNNs themselves, but also create an important
benchmark case for comparing CNNs and biological
vision.

Recent studies investigating human-like
generalization to drawings in CNNs have yielded
conflicting results. On the one hand, there is evidence
that CNNs trained on natural images cannot recognize
abstract drawings and achieve poor classification
performance with such images (Ballester & Araujo,
2016; Evans, Malhotra, & Bowers, 2021; Wang, Ge,
Xing, & Lipton, 2019). This might be attributed
to texture bias in CNNs, referring to the recent
demonstration that CNNs tend to rely more strongly
on texture rather than shape information for object
recognition, which contrasts with humans who rely
more strongly on shape (Geirhos, Janssen, Schütt,
Rauber, Bethge, & Wichmann, 2019; Hermann, Chen,
& Kornblith, 2020). Since the texture of drawings
is altered strongly in respect to photographs (in the
following “photos”, for brevity), CNNs trained on
the latter may no longer recognize them without
this diagnostic information. On the other hand,
notable performance on colored and highly detailed
drawings has been shown (Kubilius, Bracci, & Op de
Beeck, 2016), and others have argued for a common
representational format for drawings and photos
in CNNs trained on natural images (Fan, Yamins,
& Turk-Browne, 2018). This can be explained with
findings showing that CNNs, too, accurately capture
abstract shape information in their representational
spaces (Kalfas, Vinken, & Vogels, 2018; Kubilius et al.,
2016). Since the overall shape of an object is largely
preserved in drawings, based on these findings it might
be expected that the representations and performance
for drawings are similar to those found for natural
photos. Together, these seemingly disparate findings

and their underlying explanations point to a gap in our
understanding of the emergence of generalization to
drawings in CNNs.

Here, we address this gap by assessing the extent
to which CNNs trained on natural images process
object images similarly across different levels of
visual abstraction. To this end, we composed a set
of images of the same objects across three levels of
visual abstraction: natural photos, line drawings, and
sketches. In addition to analyzing the classification
performance of the networks on these images, we
compare the internal representations in the networks to
each other and to human similarity judgments by using
representational similarity analysis (Kriegeskorte, Mur,
& Bandettini, 2008).

Methods

Code

We made all code used for the present analyses
publicly available (https://github.com/Singerjohannes/
object_drawing_DNN). The analysis of the network’s
performance as well as feature extraction were
implemented using Python version 3.6.9 and the
PyTorch version 1.6.0 API (Paszke, Gross, Massa,
Lerer, Bradbury, & Chanan, 2019). Further analyses
based upon the network activations and the human
behavioral data were implemented using MATLAB
R2017a (www.mathworks.com).

Stimuli

Our stimulus set comprised 42 object categories (21
manmade and 21 natural), each depicted across three
different types of depiction: “photos,” “drawings,” and
“sketches” (126 stimuli total; Figure 1). Drawings and
sketches were drawn by a professional artist for the
purpose of this study. For the first type of depiction
(“photos”), object-images were natural photos of
objects, cropped from their background. For the
second type of depiction (“drawings”), we gathered line
drawings of the same objects. For these line drawings,
color and texture information was strongly altered,
while contour-level information was highly similar to
the photos. For the third type of depiction (“sketches”),
the images lacked even more detail as compared to the
photos, with distortions in both the contours and the
size of some features, rendering them physically even
more dissimilar to the photos.

Models

For all experiments, we used the VGG-16
architecture (Simonyan & Zisserman, 2015), which won

https://github.com/Singerjohannes/objectdrawingDNN
http://www.mathworks.com
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Figure 1. Examples from the stimulus set used in all experiments.We created a stimulus set of 126 stimuli originating from 42 object
categories (21 manmade and 21 natural) depicted across three levels of visual abstraction. The three types contained the same
objects as natural photos cropped from their background (“photos”), line drawings (“drawings”), and sketch-like drawings
(“sketches”).

the ILSVRC-challenge in the year 2014 with a top-5
accuracy of 92.7% on the test set. The network was
chosen for its relative simplicity compared to deeper
and more complex network architectures and for its
documented similarities to visual processing in the
human brain (Güçlü & van Gerven, 2015; Jozwik,
Kriegeskorte, Storrs, & Mur, 2017; Kalfas et al., 2018;
Nonaka, Majima, Aoki, & Kamitani, 2020; Schrimpf,
Kubilius, Hong, Majaj, Rajalingham, Issa, et al., 2020;
Storrs et al., 2020). VGG-16 is a 16-layer network which
contains five convolutional blocks, each followed by a
max-pooling layer. After the convolutional stage of the
network, there are three fully connected layers, with the
last layer being the softmax layer, which outputs the
probabilities for the 1000-way classification task. For
experiment 1, we used the standard implementation
of VGG-16 pretrained on the ILSVRC2012 dataset
(Russakovsky, Deng, Su, Krause, Satheesh, Ma, et al.,
2015) without batch normalization. For simplicity,
in the following, we will refer to networks trained
with the ILSVRC2012 dataset as “ImageNet-trained.”
In addition, we evaluated a variant of VGG-16 in
experiment 1 that was not pretrained and was initialized
with random weights. For experiment 2, we obtained
the version of VGG-16, which was trained on stylized
ImageNet – a modified version of the ImageNet dataset
(https://github.com/rgeirhos/Stylized-ImageNet).
Stylized ImageNet was created using image style
transfer (Gatys, Ecker, & Bethge, 2016), with the
goal of making shape a more diagnostic feature
than texture in the training data (Geirhos, Rubisch,
Michaelis, Bethge, Wichmann, & Brendel, 2019). For
experiment 3, we used the same standard VGG-16
implementation as in experiment 1 but carried out
fine-tuning on the weights of the layers (for details, see
below).

Image preprocessing

Before passing the images through the network, they
were scaled and placed on a square grey background.
Further, the images were resized to the input size of
224 × 224 and normalized (zero mean, unit variance).

Performance evaluation

In order to quantify the performance of the networks
in our experiments, we computed the top-1 accuracy
based on the outputs of the softmax layer of the
models. We mapped the categories in our stimulus
set to the ImageNet categories by using the WordNet
3.0 hierarchy (Miller, 1995). A response was counted
as correct if the highest scoring label matched the
given category label or any of its hyponyms in the
WordNet 3.0 hierarchy (Miller, 1995). For example,
for the category “dog,” each response was counted
as correct that referred to any of the labels in the
ImageNet classes that shared the hypernym “domestic
dog” in the WordNet 3.0 hierarchy (Miller, 1995). While
this approach may slightly overestimate the networks’
overall classification performance, it was held constant
for all relevant comparisons and thus should not affect
the overall interpretation of results.

Feature extraction

We extracted the activation patterns for all stimuli
only from the five pooling layers and the first two
fully connected layers but excluded the softmax layer
from our analyses. For comparing activations in
pooling layers, we flattened the extracted feature map
activations.

Fine-tuning

The VGG-16 model was fine-tuned using the
ImageNet-Sketch data set (Wang et al., 2019).
ImageNet-Sketch consists of approximately 50 training
examples of drawings for each of the 1000 ImageNet
classes, resulting in approximately 51,000 training
images of drawings. It is important to note that
ImageNet-Sketch is orders of magnitude smaller than
the ILSVRC2012 data set (1.4 million examples from
ImageNet; Deng, Dong, Socher, Li, Kai, & Li, 2009)
that has been used for training the original VGG-16
network. For the fine-tuning procedure, layers conv1-1

https://github.com/rgeirhos/Stylized-ImageNet
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to conv4-3 were frozen, and only the last convolutional
layers conv5-1 to conv5-3 and the fully connected
layers were adjusted. The model weights of those layers
were then trained using the stochastic gradient descent
(SGD) optimizer. A hyperparameter search for the
learning rate and momentum was performed. With the
optimized learning rate of 0.001 and momentum of 0.7,
a top-1 accuracy of 66.35% was reached on a validation
set of 2000 images.

Behavioral tasks

All human behavioral data were acquired in online
experiments using the Amazon Mechanical Turk
Platform (Mturk). All participants were located in the
United States. In the labeling task, 480 individuals (280
women, 196 men, and 4 other) took part, with a mean
age of 37.96 years (SD = 12.45). In the triplet task 742
(404 women, 334 men, and 4 other) participants took
part, with a mean age of 38.29 years (SD = 12.54).
The experimental protocols were approved by the local
ethics committee (012/20-ek) in accordance with the
Declaration of Helsinki, and all participants provided
informed consent.

Labeling task
To measure the accuracy of humans in recognizing

our stimuli, we conducted an image labeling experiment.
In this task, workers on Mturk were instructed to give
a label for a given image consisting of one word, as if
they were trying to find the corresponding entry for
the given image in a dictionary. Labels were regarded
correct if the label matched the category label of the
object exactly or if the label was a synonym for the
given category label. In order to avoid carryover effects
between types of depiction, all trials in a given task were
limited to one depiction type, and a given participant
could only participate in one task.

Triplet task
To measure the perceived similarity of objects in

our image sets, we conducted a triplet odd-one-out
similarity task (Hebart, Zheng, Pereira, & Baker,
2020). For each given trial, participants were presented
with images from three different object categories
side by side. Triplets always consisted of the same
type of image depiction. Participants were instructed
to indicate which of the three object images in the
trial they thought is the odd-one-out by clicking on
the respective image using their computer mouse or
touchpad. In order to minimize experimenter bias,
there were no instructions as to what strategy they
should use to find the odd-one-out, meaning that
they could use any information as the basis of their

judgment which seemed relevant to them. Additionally,
if they did not recognize the object, participants were
instructed to base their judgment on their best guess of
what the object could be. As in the labeling task, images
in one task were limited to one type of depiction,
and participants could only work on one task. We
subsequently computed the object similarity between
a given object pair for one type of depiction in our
stimulus set as the probability of choosing objects x and
y to belong together, across all participants’ ratings. We
calculated this probability as the ratio of trials in which
objects x and y were presented together with different
objects z in the triplet when object z was chosen as the
odd-one-out. Therefore, the probability of choosing
objects x and y together reflects the perceived similarity
between objects x and y, irrespective of the context
imposed by the third object z in the triplet.

Quantifying representational similarity across
types of depiction

We used representational similarity analysis (RSA;
Kriegeskorte et al., 2008) to quantitatively describe
the representational object space in the CNNs in
our experiments as well as in human behavioral
measurements. RSA characterizes representations
by estimating the geometry of stimulus responses
in high-dimensional population space. For this, the
similarity of all pairwise comparisons of conditions
in the experimental design is computed by comparing
responses of a given system (e.g. activation patterns
extracted from a CNN) for every pair of conditions
and arranging them in a matrix format. The matrix
of dissimilarities is commonly referred to as a
representational dissimilarity matrix (RDM). The
power of RSA lies in the fact that RDMs can be
computed and subsequently compared across different
systems (e.g. computational models and humans) but
also across different conditions and processing stages
in a neural network (Mehrer, Spoerer, Kriegeskorte, &
Kietzmann, 2020). As our stimulus set contained the
same object categories for each type of depiction, we
could directly compare the RDMs across different types
of depiction by correlating the RDMs with each other.
We computed RDMs based on the activation patterns
that we extracted from the networks separately for each
type of depiction and for each selected layer. We then
calculated the Spearman rank correlation between the
RDM’s lower triangular parts to acquire a measure
of similarity across types of depiction in terms of the
network’s internal representation (Figure 2).

Super RDMs and multidimensional scaling
For comparisons of the representational geometries

of all three types of depiction combined, we constructed
super RDMs based on the activation patterns of
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Figure 2. Schematic of the RSA approach used in all experiments. (A) For analyzing the internal representations of the networks, we
extracted the activation patterns to the stimuli in our set from a selection of layers. Subsequently, we computed RDMs based on the
correlation distances (1 - Pearson r) between all pairs of stimuli in one type of depiction and for each given layer separately. This
yielded three RDMs (one for each type of depiction) in every selected layer. (B) In order to obtain a measure of similarity across types
of depiction regarding the internal representation in the networks, we computed the Spearman rank correlation between the lower
triangular values of RDMs of the different types of depiction in each layer separately. For the RDMs comparing representations of
photos and drawings, this yields a “photo-to-drawing” similarity.

the responses of the network to all stimuli in the set
following the RSA procedure described above. For
visualization purposes, we projected the RDMs into a
two-dimensional space using multidimensional scaling
(metric stress).

Classification analysis

Intra-domain classification
To quantify the information contained in the

activation patterns of the networks in a given layer, we
performed a classification analysis on the extracted
activation patterns. To this end, we trained a linear
Support Vector Machine classifier (Chang & Lin,
2011) on the activation patterns to distinguish between
patterns of manmade and natural objects (c = 1). We
followed a leave-N-out cross-validation framework (N
= 6), meaning that we trained the classifier on all but a
left-out sample of six activation patterns and evaluated
the accuracy of the classifier’s prediction on the left-out
sample. We repeated this procedure 1000 times for a
given layer while randomly drawing training and test
examples from all activation patterns according to
the framework described above. Finally, we averaged
the accuracies over all 1000 iterations, yielding mean
classification accuracies and standard errors for each
layer and each type of depiction in the network.

Cross-domain classification
In an additional analysis step, we trained the classifier

following the same procedure as described above but
used the activation patterns of one type of depiction
(e.g. photos) and tested the classifier on the activation
patterns of another type of depiction (e.g. drawings).

Statistical analyses

To statistically evaluate differences in classification
performance between networks or between types of
depiction in one network, we used the McNemar
test of homogeneity (McNemar, 1947). Furthermore,
to test for differences between levels of human
performance, we used a two-sided independent t-test.
For testing the equivalence of the means in human
behavioral accuracies, we followed a two one-sided
tests procedure, as described in (Lakens, 2017). For all
other comparisons, we used a one-sided randomization
testing procedure. This procedure entailed computing
a null distribution by repeated randomization and
subsequently obtaining the p value by finding the
percentile of values in the null distribution that
reaches or exceeds the empirical value. For comparing
human performance with CNN performance, we
obtained the null distribution using a sign permutation
procedure. To do this, we permuted the signs of
human accuracies for single objects for a given type
of depiction, subtracted the CNN accuracy from the
permuted human accuracies, averaged the accuracies,
and repeated this procedure 1000 times. To test for the
statistical significance of a given RDM-correlation,
we randomly shuffled object labels for one RDM,
computed the correlation with the reference RDM, and
repeated this procedure 1000 times to obtain a null
distribution (Mantel test; Mantel, 1967). To test for
changes in representational similarity across layers (e.g.
for “photos” versus “drawings”), we randomly shuffled
object labels, using the same shuffling across layers but
a different shuffling for different types of depiction.
Then we created permuted RDMs and subsequently
computed the sum of squared differences between the
overall mean in RDM correlations across layers and
the individual RDM correlations. We then repeated
this procedure 1000 times to obtain a null distribution
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of sum of squared differences. Furthermore, to test
for pairwise differences between two given RDM
correlations, we created permuted RDMs for one of
the RDMs from both correlations by shuffling the
object labels in one of the correlated RDMs. We then
computed the correlation with these permuted RDMs
and subtracted the two correlation values from each
other. By repeating this procedure 1000 times we
obtained a null distribution of the difference between
two RDM correlations. Finally, in order to test if a
given classification accuracy significantly exceeded
chance level, we obtained the null distribution by
repeating the classification analysis 1000 times with
randomly shuffled labels.

Correction for multiple testing
For all statistical tests reported here, we corrected

the p values for multiple comparisons by using the
Benjamini-Hochberg false discovery rate correction
(Benjamini & Hochberg, 1995).

Results

Experiment 1: Generalization to drawings in an
ImageNet-trained CNN

The overall aim of this study was to quantify how
similarly CNNs process natural images and drawings
of objects. This was accomplished by comparing their
performance, their internal representations, and by
comparing them to human behavior.

Similarity in terms of classification performance
As a first step, we sought to test how an ImageNet-

trained CNN, specifically VGG-16 (Simonyan &
Zisserman, 2015), generalizes to drawings and sketches
in terms of classification performance. For this
purpose, we passed the images through the network
and compared predicted class labels with the actual
object categories. We found that VGG-16 exhibited
excellent classification accuracy for photos but very
low accuracies for drawings and sketches (Figure 3).
Statistical comparisons of the accuracies revealed that
drawing performance was significantly lower than
photo performance (M(Photos) = 0.79, M(Drawings)
= 0.14, χ2(1) = 33.44, p < 0.001, false discovery
rate [FDR]-corrected). Sketch performance was
also significantly lower than photo performance
(M(Sketches) = 0.02, χ2(1) = 47.25, p < 0.001,
FDR-corrected) but there was no significant difference
between the network’s performance on drawings and
sketches (χ2(1) = 0.96, p = 0.326, FDR-corrected).

Figure 3. Classification performance in variants of VGG-16 in
comparison to humans. Human accuracies measured in a
separate online experiment revealed that humans performed
very well and virtually identical on photos and drawings and
slightly worse on sketches. The ImageNet-trained VGG-16
(VGG-16 IN) showed high performance on photos but a sharp
drop in performance for drawings and sketches. VGG-16 trained
on stylized ImageNet (VGG-16 SIN) performed better on
drawings than VGG-16 IN but not on sketches or photos.
VGG-16 fine-tuned on ImageNet-Sketch (VGG-16 FT) performed
equally well on photos and drawings but still performed poorly
on sketches.

To compare the network’s performance to humans,
we measured human classification accuracy on the same
images in a separate online labeling experiment. Unlike
VGG-16, humans performed very well and virtually
identical on photos and drawings (M(Photos) = 0.97,
M(Drawings) = 0.96, t(41) = −1.93, p = 0.030, two
one-sided tests of equivalence) and showed only a slight
but significant decrease in performance for sketches
(M(Sketches) = 0.90, photos versus sketches - t(82)
= 3.12, p = 0.008, FDR-corrected; drawings versus
sketches - t(82) = 2.67, p = 0.014, FDR-corrected).
The network performed significantly worse across all
types of depiction as compared to humans (all p =
0.002, FDR-corrected, one-sided randomization test).
These results demonstrate that VGG-16 pretrained
on ImageNet fails to replicate human generalization
to drawings and sketches in terms of classification
performance.

Similarity in terms of internal representations
To compare VGG-16 not only in terms of

performance but also regarding its internal
representations of photos, drawings, and sketches,
we used RSA (Kriegeskorte et al., 2008). For a
given type of depiction, we calculated the pairwise
dissimilarities (1 - Pearson r) for all pairs of object
activation patterns and stored them in a RDM. This
procedure yielded three RDMs (one for each type of
depiction) for each of the layers in the network. Finally,
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Figure 4. Similarity in representational structure between types of depiction in variants of VGG-16. (A) Spearman rank correlations
between RDMs for the different types of depiction based on the CNN input (raw pixel values of preprocessed images) as well as
activations in the ImageNet-trained VGG-16 (VGG-16 IN) and activations in the VGG-16 trained on stylized ImageNet (VGG-16 SIN).
Based on the CNN input, we found a low similarity between photos and both drawings and sketches. The similarity between drawings
and sketches, however, was higher. After passing the images through the network, we observed a high degree of representational
similarity between photos and drawings and to a lesser extent also between photos and sketches in early and intermediate layers in
both networks. In the later layers, these similarities between photos and abstracted types of depiction dropped sharply in VGG-16 IN,
whereas in VGG-16 SIN this drop was attenuated. (B) Spearman rank correlations between RDMs for the different types of depiction
in the ImageNet-trained VGG-16 before and after fine-tuning. After fine-tuning, the similarity in the representational format was
increased for the photo-to-drawing and photo-to-sketch similarity, but reduced for the drawing-to-sketch similarity, indicating
increased similarity in processing between photos and abstracted types of depiction in the network after fine-tuning.

we computed the Spearman rank correlation between
the lower triangular part of RDMs of different types
of depiction. This yielded three sets of comparisons:
photo-to-drawing similarity, photo-to-sketch similarity,
and drawing-to-sketch similarity. We assumed that if
the network processed object images at different levels
of visual abstraction similarly, this would be reflected
in a similar representational format across types of
depiction.

First, as a baseline measure of similarity between
types of depiction, we determined the similarity
which is given only by the input to VGG-16. For this,
we computed RDMs based on the raw pixel values
obtained after preprocessing the images and before
passing them through the network. Correlating the
RDMs based on the raw pixel values between types of
depiction, we found that the similarity between photos
and drawings and between photos and sketches was
low and not significantly different (p = 0.141, one-sided
randomization test, FDR-corrected; Figure 4A). The
correlation between drawings and sketches, however,
was higher than the other two correlations (both p <
0.003, one-sided randomization test, FDR-corrected).
This suggests that while the raw image structure is
similar for drawings and sketches, it is very dissimilar
for photos and drawings as well as for photos and
sketches.

Comparing the degree of representational similarity
between photos, drawings, and sketches based on the
activations in VGG-16 and how it changes across layers,
we found overall differences in RDM correlations

across layers for all three comparisons (all p < 0.001,
one-sided randomization test). We followed up on these
overall differences with tests between pairs of layers
for one type of depiction. For the photo-to-drawing
similarity, we found a significant increase in correlation
from pooling layer one to pooling layer four (p =
0.002, one-sided randomization test, FDR-corrected)
and after that a significant drop in similarity from
pooling layer four to fully connected layer two (p =
0.002, one-sided randomization test, FDR-corrected;
see Figure 4A). While there were overall relatively
lower correlation values for the photo-to-sketch
correlation (all p < 0.003, one-sided randomization
test, FDR-corrected), the shape of the results was
similar, with an increase in similarity from pooling
layer one to pooling layer four (p = 0.005, one-sided
randomization test, FDR-corrected) and a drop
in correlation for higher layers which approached
zero in the penultimate layer (p = 0.003, one-sided
randomization test, FDR-corrected). These results
demonstrate a representational format which is shared
between photos and drawings at intermediate layers
and a weaker but stable similarity to sketches.

Interestingly, a different pattern was observed for the
drawing-to-sketch similarity. Here, we found an increase
in correlation from pooling layer one to pooling layer
four (p = 0.003, one-sided randomization test, FDR-
corrected) and no significant difference in correlation
between pooling layer four and the fully connected
layer two (p = 0.309, one-sided-randomization test,
FDR-corrected).
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Overall, the results reveal an increase in
representational similarity across levels of visual
abstraction that peaks in intermediate layers. This
pattern of results diverged after pooling layer four,
with photo representations becoming less similar to
drawings and sketches, whereas drawing and sketch
representations stay at a highly similar level.

Contribution of training and architecture to the similarity
in representations between types of depiction

Furthermore, we aimed at disentangling the
contribution of training and architecture to the
observed representational similarities between types
of depiction. To this end, we ran our stimuli through
a variant of VGG-16 with randomly initialized
weights and obtained RDMs for the different types
of depictions across layers. Correlating these RDMs
between types of depiction, we found that for all
comparisons there were significant differences in
correlations for all comparisons across layers (all p <
0.001, one-sided randomization test). Pairwise tests
revealed an increase in correlation for all comparisons
between pooling layer one and pooling layer four (all p
< 0.003, one-sided randomization test, FDR-corrected;
Figure 5). After pooling layer four, similarities
either increased further for the photo-to-drawing
comparison (p = 0.041, one-sided randomization test,
FDR-corrected) or remained at a level that was not
significantly different for the photo-to-sketch and
drawing-to-sketch comparisons (all p > 0.318). Next,
we directly compared the similarities from the randomly
initialized VGG-16 and the ImageNet-trained variant.
For the photo-to-drawing similarity, the similarities
were either not significantly different or higher in
VGG-16 IN in the early layers up to pooling layer
four (pool 1: p = 0.263; pool 2: p = 0.005; pool 3: p =
0.033; and pool 4: p = 0.059, one-sided randomization
test, FDR-corrected). This pattern reversed in the
late layers from pooling layer five, with significantly
lower similarities in VGG-16 IN than in the randomly
initialized network (all p < 0.005). A similar pattern
was found for the photo-to-sketch similarity; in early
layers, there were no differences up to pooling layer
four (all p > 0.123, one-sided randomization test,
FDR-corrected), whereas, in late layers, similarities
were lower for VGG-16 IN (all p = 0.006). Finally,
for the drawing-to-sketch comparison, there were
no significant differences in similarity between both
networks (all p > 0.163). In sum, this suggests that at
least a part of the representational similarities between
photos and both drawings and sketches in early
and intermediate layers can be accounted for by the
architecture of the network. Yet, these results indicate
that training improved the similarities even further in
these layers. In contrast, the drop in representational
similarities in late layers cannot be explained by the

Figure 5. Representational similarities between types of
depiction in an ImageNet-trained and a randomly initialized
instance of VGG-16. The rise in representational similarities
between photos and both drawings and sketches in early and
intermediate layers was mirrored in the randomly initialized and
ImageNet-trained variant of VGG-16. Yet, similarities between
photos and abstracted types of depiction were stronger after
training in these layers. In contrast, in the late layers,
similarities between photos and both drawings and sketches
remained high in the randomly initialized variant of VGG-16,
whereas they dropped in the ImageNet-trained network. These
results indicate that while the architecture explains part of the
observed representational similarities between photos and
both drawings and sketches, training influences these
similarities both positively in early layers as well as negatively in
late layers. Finally, for the drawing-to-sketch similarity, there
were no significant differences between the randomly
initialized and the ImageNet-trained VGG-16.

architecture alone and may be related to biases induced
by the training of the network. Finally, the similarity
between drawings and sketches appears to be unaffected
by training.

Clustering of drawing and sketch representations
The sharp drop in representational similarity for the

photo-to-drawing and photo-to-sketch comparison
in the ImageNet-trained VGG-16 suggests a strong
shift in the representational structure after pooling
layer four. To illustrate the source of this drop,
we visualized all representational similarities using
multidimensional scaling. To this end, for a given layer,
we first constructed a super-RDM composed of the
pairwise distances between all pairs of stimuli in the
set (see Appendix A2). Subsequently, we used metric
multidimensional scaling to project the representational
dissimilarities into a two-dimensional (2D) space. We
then repeated this entire procedure for each layer of the
selected layers of VGG-16. In these 2D projections,
we found that the activations for all types of depiction
appeared evenly distributed in the first two pooling
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Figure 6. Clustering of abstracted object representations in the ImageNet-trained VGG-16.Multidimensional scaling plots of the
super-RDMs reflecting all pairwise dissimilarities between stimulus representations in the stimulus set. Across layers, drawing and
sketch representations increasingly clustered together, whereas photo representations remained well separated.

layers. However, starting already at pooling layer three,
activations for drawings and sketches started to cluster
into one combined cluster, and the degree of clustering
showed an increase up to the penultimate layer
(Figure 6).

No collapse of representations for drawings and sketches
At first, this strong clustering might indicate

a “representational collapse” of drawing and
sketch representations toward specific points in the
representational space. This might be expected, given the
dramatic difference in image statistics between natural
images the network had been trained on and drawings
and sketches. A strong interpretation of this account
would predict that all images of drawings and sketches
are treated as largely equal by the network, possibly
all leading to the same incorrect predicted category,
and with differences in representations between images
only reflecting meaningless residual noise. However, the
fact that representational similarities between drawings
and sketches remain high indicates that there is still
some representational structure shared between these
types of depiction. What is left open is to what extent
these representations are idiosyncratic but similar, due
to the similar appearance of drawings and sketches,
or whether the representation still carries meaningful
information, for example, about the high-level category
of an object.

To test for the representational content of the
drawing and sketch representations, we used a Support
Vector Machine classification approach to predict an

object’s high-level category (manmade/natural) from
the network’s activation pattern, separately for each
layer and type of depiction. For photos, we found
significant above-chance classification accuracies
from pooling layer three onward (all p < 0.011,
one-sided randomization test, FDR-corrected). A
similar effect was observed for drawings from pooling
layer four (all p = 0.004, one-sided randomization test,
FDR-corrected), and for sketches starting from pooling
layer two (all p < 0.048, one-sided randomization test,
FDR-corrected; Figure 7A). These results indicate that
despite the strong clustering observed in the RDMs
as visualized by the MDS plots, category-relevant
information was retained in the activation patterns of
drawings and sketches in the later layers. These results
argue against a strong representational collapse (as
described above) for drawings and sketches. Instead,
they suggest a representational shift, indicating that
the relative representational structure of objects is
not destroyed and still allows meaningful readout of
category information.

Generalizable high-level information for drawings and
sketches

The classification results indicate that category
information is still present in drawing and sketch
representations but leaves open to what degree this
information generalizes between types of depiction.
To test this, we carried out cross-classification,
training a Support Vector Machine classifier on
the manmade/natural distinction using activation
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Figure 7. Classification of high-level category information based on feature representations across layers in VGG-16.
(A) Classification accuracies in VGG-16 IN. Based on the features extracted from single layers in VGG-16 IN high-level category
information (manmade/natural classification) could be decoded with above-chance accuracy even for drawings and sketches,
particularly in the later layers. (B) Cross-classification accuracies in VGG-16 IN. Generalization of the classifier trained on one type of
depiction (e.g. photos) to another type (e.g. drawings) showed above-chance accuracy only for the case where we trained on
drawings and tested on sketches.

patterns from one type of depiction, and testing it
on another type. We found significant above-chance
cross-classification accuracies only for the case
in which we trained on drawings and tested on
sketches (all p < 0.041, one-sided randomization test,
FDR-corrected), however, not for the cases where we
trained on photos and tested on drawings or tested
on sketches (all p > 0.372, one-sided randomization
test, FDR-corrected; Figure 7B). This suggests that
the information contained in the representation only
generalizes between drawings and sketches but not
between photos and any of the other types of depiction.
This is consistent with the idea that the representations
of drawings and sketches do not collapse but are
shifted and thus retain some meaningful information,
which, however, exhibits a different format than the
information for photos.

Fit to human behavior
The classification of a single high-level object

category might be seen as insufficient evidence of
intact representations. For that reason, we obtained
human behavioral similarity measurements to quantify
how the objects in our stimulus set are represented in
humans (see Appendix A4 for visualization) and to
compare these human representations to the network’s
representations. Assuming that there was a collapse
in the representations for drawings and sketches that
increases across layers, we would expect to see a
drop in representational similarity between VGG-16
and human behavior, both for drawings and sketches,
specifically in the late layers. Alternatively, in the case
of a shift of representations, we would expect smaller
representational similarities for drawings and sketches

than for photos but still significant representational
similarities for these types of depiction in later
layers. This would in turn indicate that there is some
meaningful structure preserved in the representation
for drawings and sketches, which is similar to human
behavior. To examine this, we correlated the RDMs
that we obtained for the layers of VGG-16 separately
for every layer and type of depiction with the
corresponding RDM that we obtained from human
similarity judgments.

Perhaps not surprisingly, we found the highest fit
of network representations to human behavior for
photos (Figure 8A), showing an increase in RDM
correlation up to pooling layer five, after which the
correlation dropped slightly in the penultimate layer
of the network. We observed a similar pattern for
the drawings and sketches with an increase in RDM
correlation up to pooling layer five, after which the
correlation stabilized in the fully connected layers.
Statistical tests confirmed that there were significant
correlations in all layers for photos and sketches (all p
< 0.011, one-sided Mantel test, FDR-corrected) and
starting at pooling layer three for drawings (all p <
0.036, one-sided Mantel test, FDR-corrected).

Comparing the RDM correlations against each other
revealed that the RDM correlation for photos was
significantly higher than for drawings in all layers (all p
< 0.005, one-sided randomization test, FDR-corrected)
and for sketches (all p < 0.039) in all layers but pooling
layer two (p = 0.103). The correlations for drawings
and sketches were only significantly different in the
fully connected layers (both p < 0.045) but not in all the
other layers (all p > 0.079).

In conclusion, we found the best fit of network
representations to human behavior for representations
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Figure 8. Fit to human behavior in variants of VGG-16. (A) Spearman rank correlations between the RDMs obtained from the
ImageNet-trained VGG-16 (VGG-16 IN) and the VGG-16 trained on stylized ImageNet (VGG-16 SIN) for every layer in the networks and
the RDMs obtained in an online behavioral experiment, for each type of depiction separately. We observed the best fit to human
behavior in VGG-16 IN for the representations of photos. Although lower, we found a significant fit to human behavior for the drawing
and sketch representations. In VGG-16 SIN the fit to human behavior for drawings and sketches mostly improved in comparison to
VGG-16 IN. (B) Spearman rank correlations between the RDMs obtained from the ImageNet-trained VGG-16 (VGG-16 IN) and the
fine-tuned VGG-16 and the RDMs obtained from human behavior. Fine-tuning increased the similarity of drawing and sketch
representations to representations in human behavior in all fine-tuned layers. For photos, however, the similarity to human behavior
was decreased after fine-tuning.

of photos. Importantly, however, we found a significant
fit to human behavior for drawings and sketches,
which increased across layers and remained high
until the last layer. This is in line with the idea of a
shift in representations of abstracted object images.
While the representations are shifted, they are not
completely distorted and retain category-relevant
information of the objects and show similarity to
human representations.

Taken together, the results of experiment 1 suggest
fairly general object representations in intermediate
layers, which show generalization across different
levels of visual abstraction. Yet, in the process of
linking these representations to object categories, they
are presumably biased toward the object features in
natural images, leading to dissimilar representations in
later layers and low network classification accuracies
for drawings and sketches. This would indicate that
the issue of incorrect classification is not an issue of
representation as such, but more an issue of read-out
into object classification.

Experiment 2: Generalization to drawings in a
shape-biased CNN

In experiment 1, we found that the ImageNet-trained
VGG-16 categorizes drawings and sketches poorly.
However, in terms of its internal representations,
there seems to be considerable similarity between

photos and drawings, and to some extent between
photos and sketches. Despite this similarity in
intermediate layers, as image processing approached the
classification stage, the network represented drawings
and sketches very differently to photos. Yet, the CNN
representations for drawings and sketches retained
category-relevant information about the objects and
showed similar representations to those derived from
human similarity judgements. While these results
highlight the representational nature of object drawings
and sketches in VGG-16, they leave open the critical
question of why the representations shift in later layers,
which seems to cause misclassifications of the network.

One reason for the dissimilar representation of
natural images and abstracted images in the late
stages of processing and the poor performance for
abstracted images might be that ImageNet-trained
CNNs rely heavily on local texture information for
their classifications (Baker, Lu, Erlikhman, & Kellman,
2018; Geirhos et al., 2019). Since texture information
is strongly altered in both drawings and sketches, a
reliance on texture information for the classification
might favor a dissimilar representation of photos and
abstracted images. In order to reduce the bias for
texture in CNNs, Geirhos et al. (2019) introduced a new
way of training CNNs, forcing them to rely more on
shape information than texture. By training CNNs on a
stylized version of the ImageNet dataset (Gatys et al.,
2016), they revealed a preference of shape over texture
in the classification behavior of the network. Assuming
that, in experiment 1, texture bias indeed contributed to
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the mismatch between the representation of photos and
abstracted object images in later layers, this leads to
two predictions. First, we would expect that for a CNN
trained on stylized images, the drop in representational
similarity between photos and abstracted types of
depiction in later layers is attenuated, because they
now share more similar overall shape information in
the network’s representation. Second, we would expect
improved classification performance on abstracted
object images. To test the role of the texture bias in the
representation of drawings in CNNs, we analyzed the
processing for VGG-16 which was trained on stylized
ImageNet analogous to experiment 1.

Better performance on drawings in a shape-biased CNN
Again, as a first step we focused on the performance

of the network in terms of predicting the object
category from the images, separately for photos,
drawings, and sketches. We found that the network
trained on stylized ImageNet (VGG-16 SIN) compared
to the ImageNet-trained variant (VGG-16 IN),
performed similarly well on photos (M(Photos)
= 0.79, χ2(1) = 0.01, p = 0.913, FDR-corrected),
however, showed much improved performance on
drawings (M(Drawings) = 0.50, χ2(1) = 10.01, p =
0.005, FDR-corrected), with performance on sketches
remaining poor (M(Sketches) = 0.14, χ2(1) = 0.96,
p = 0.489, FDR-corrected; see Figure 3). Despite
these improvements, performance in VGG-16 SIN on
drawings was still worse than on photos (χ2(1) = 6.30,
p = 0.121, FDR-corrected) and significantly worse on
sketches than on drawings (χ2(1) = 10.01, p = 0.002,
FDR-corrected). Similar to experiment 1, the direct
comparison of VGG-16 SIN performance to humans
revealed that the network performed significantly worse
in all types of depiction than humans (all p < 0.001,
one-sided randomization test, FDR-corrected).

In conclusion, VGG-16 SIN performed better on
drawings than VGG-16 IN, however, the network still
performed worse on drawings than on photos and did
not perform better on sketches than VGG-16 IN.

Attenuated drop in representational similarity across
levels of visual abstraction

Next, we quantified the similarity in processing
between types of depiction in VGG-16 SIN in terms
of the network’s internal representations analogous to
experiment 1. We hypothesized that we would see a
particular attenuation of the drop in representational
similarity toward the late layers compared to what we
observed in experiment 1.

In comparison to VGG-16 IN, photo-to-drawing
correlations in the early layers in VGG-16 SIN were
either not statistically different from the ones in
VGG-16 IN (pooling layer 1: p = 1; and pooling layer
3: p = 1, one-sided randomization test, FDR-corrected)

or higher in VGG-16 IN (pooling layer 2: p = 0.004;
see Figure 4A). In contrast, starting in pooling layer
four, all photo-to-drawing correlations were higher in
VGG-16 SIN (all p < 0.004, one-sided randomization
test, FDR-corrected), reflecting indeed an attenuated
drop in representational similarity between photos
and drawings in VGG-16 SIN as compared to
VGG-16 IN. A very similar pattern was found for the
photo-to-sketch correlation. For early and intermediate
layers up to pooling layer four, the only difference in
similarity was found in pooling layer three, with higher
values in VGG-16 SIN (p = 0.0121; all other p > 0.548,
one-sided randomization test, FDR-corrected). For the
later layers starting from pooling layer five, we found
consistently higher values for VGG-16 SIN (all p =
0.009). Finally, for the drawing-to-sketch comparison,
we observed higher values in VGG-16 SIN only in
pooling layer three (p = 0.018, one-sided randomization
test, FDR-corrected) but no significant differences in
any of the other layers (all p > 0.105).

To summarize, while representational similarities
between natural images and abstracted types of
depiction in early and intermediate layers were mostly
similar or lower in VGG-16 SIN compared to VGG-16
IN, in the later layers of the network we found
consistently higher values in VGG-16 SIN. For the
drawing-to-sketch similarity, we found overall mostly
similar correlations in VGG-16 SIN and VGG-16 IN.
Taken together, these results suggest a specific role of
texture bias in the similarity in processing across levels
of visual abstraction in late layers of VGG-16 but less
so in the early and intermediate layers.

Increased similarity of drawing and sketch representa-
tions to human behavior in VGG-16 SIN

Given the improvements in classification performance
and representational similarity between photos and
both drawings and sketches in the network trained
on stylized ImageNet, it could be expected that
representations for drawings and sketches now also
more closely resemble representations in human
behavior. To test this, we correlated the RDMs derived
from VGG-16 SIN for the three types of depiction
with the corresponding RDMs obtained from human
behavior and compared the correlations to those in
VGG-16 IN. We found better fits to human behavior
for photos in VGG-16 IN in pooling layers four and
five (both p < 0.012, one-sided randomization test,
FDR-corrected) but better fits in VGG-16 SIN in fully
connected layer one (p = 0.009), with no significant
differences in all other layers (all p > 0.077; see Figure
8A). For drawings, we found higher values in VGG-16
SIN in pooling layers one and two and fully connected
layer one (all p < 0.014, one-sided randomization test,
FDR-corrected) and higher values in VGG-16 IN in
pooling layer four (p = 0.006). Finally, for sketches,
we found differences in the fit to human behavior
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between the networks, with a better fit in VGG-16 SIN
in all layers except for pooling layer four (pool 4: p =
0.075; all other p < 0.030, one-sided randomization
test, FDR-corrected). In short, we found differences
in fit to human behavior between VGG-16 IN and
SIN for all types of depiction, with overall mostly
higher fits in VGG-16 SIN for the abstracted types
of depiction. Taken together, this suggests that the
improved generalization in terms of performance and
representations to abstracted types of depiction in
VGG-16 SIN compared to VGG-16 IN is also reflected
in its fit to human behavior.

Experiment 3: Generalization through transfer
learning

Reducing texture bias in VGG-16 improved the
similarity in processing of object images across
levels of visual abstraction particularly regarding the
representational structure in late layers but mostly did
not affect intermediate and early layers. This implies
that the features in early and intermediate layers in the
ImageNet-trained VGG-16 might already be general
enough to support recognition of abstracted drawings.
To directly test this, we used transfer learning, from the
task of classifying natural object images to the task of
classifying drawings and sketches. For this purpose,
we fine-tuned VGG-16 pretrained on ImageNet on
the ImageNet-Sketch dataset (Wang et al., 2019).
We used representational similarities between the
types of depiction as an index for the generality of
representations in a given layer and based our selection
of layers for transfer learning on that (Dwivedi & Roig,
2019). Hence, for training the network, we froze the
connection weights of the network up to pooling layer
four and only adapted the weights of the layers after
pooling layer four, which includes the last convolutional
block, the last pooling layer, and all fully connected
layers.

Restored performance on drawings after fine-tuning
After fine-tuning, we found high and comparable

performance of the network (VGG-16 FT) for photos
and drawings (M(Photos) = 0.86, M(Drawings)=0.79,
χ2(1) = 0.30, p = 0.584, FDR-corrected) but still
lower and relatively poor performance for sketches
(M(Sketches) = 0.21, photos versus sketches – χ2(1)
= 33.44, p < 0.001, FDR-corrected; drawings versus
sketches – χ2(1) = 26.30, p < 0.001, FDR-corrected;
see Figure 3). When comparing VGG-16 before and
after fine-tuning, we found no statistically significant
difference between networks on photos (χ2(1) =
0.30, p = 0.585, FDR-corrected). Further, drawing
performance was significantly higher in VGG-16 FT
than in VGG-16 IN (χ2(1) = 33.44, p < 0.001, FDR-
corrected) but sketch performance was not (χ2(1) =

2.68, p = 0.153, FDR-corrected). In direct comparison
with human performance, we found that VGG-16
FT performed worse than humans on every type of
depiction (all p < 0.001, one-sided randomization test,
FDR-corrected), mirroring the results of experiments
1 and 2. Taken together, the fine-tuned network
showed largely restored performance for drawings, yet,
performance on sketches remained poor.

Increased representational similarity across levels of
visual abstraction after fine-tuning

Since we explicitly fine-tuned the later layers on
abstracted object images, we expected to see an
attenuated decrease in representational similarity
between photos and abstracted types of depiction
toward the output layer as compared to VGG-16
IN in experiment 1, similar to what we observed for
VGG-16 SIN in experiment 2. Indeed, after fine-tuning,
the network showed higher photo-to-drawing and
photo-to-sketch similarity compared to VGG-16 IN
across all fine-tuned layers (all p < 0.049, one-sided
randomization test, FDR-corrected) whereas drawing-
to-sketch similarity was decreased (all p < 0.002; see
Figure 4B).

In comparison to VGG-16 SIN, there were no
significant differences in both the photo-to-drawing
or photo-to-sketch similarity in any of the fine-tuned
layers (all p > 0.264, one-sided randomization test,
FDR-corrected). For the drawing-to-sketch correlation,
there were significantly higher values in VGG-16
SIN only in pooling layer five (p = 0.017, one-sided
randomization test, FDR-corrected) but not in fully
connected layers one and two (both p = 0.209).

Together, this demonstrates that the drop in
representational similarity between photos and both
drawings and sketches was attenuated after fine-tuning.
This attenuation was comparable to the one observed
in VGG-16 SIN in experiment 2.

Improved fit to human behavior for drawings and
sketches after fine-tuning

The fine-tuned network showed restored
classification performance on drawings, and the drop
in representational similarity between photos and
abstracted types of depiction was attenuated. In order
to test if fine-tuning also led to representations that
resembled representations in human behavior more
closely than before fine-tuning, we correlated the RDMs
from the fine-tuned layers with the RDMs obtained
from human behavior and compared this with the fit
to human behavior in VGG-16 before fine-tuning. We
found that after fine-tuning, the fit to human behavior
was worse for photos but improved for both drawings
and sketches in all fine-tuned layers (all p < 0.007,
one-sided randomization test, FDR-corrected; see
Figure 8B).
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We conclude that the fine-tuning procedure
improved the generalization to drawings regarding
the classification performance of the network, the
representational similarity across levels of visual
abstraction, and the similarity to representations
in human behavior for drawings and sketches. This
suggests that given the right mapping between early and
intermediate features learned on natural images and
the classification layer, the network is able to similarly
process photos and drawings. The performance for
sketches, however, remained poor indicating that
different recognition strategies might be required in the
networks for high levels of visual abstraction.

Discussion

The main objective of this study was to investigate
to what extent generalization to abstracted object
images is an emergent property of CNNs trained on
natural images and how these generalization capabilities
compare to those found in humans. To this end, we
analyzed both the classification performance and the
representational similarities across different levels of
visual abstraction in VGG-16 and compared them
to humans. In experiment 1, we showed that in the
ImageNet-trained VGG-16, natural and abstracted
object images evoke highly similar representations, with
representational similarities peaking in intermediate
layers. These similarities, however, dropped off sharply
in later layers of the network, culminating in poor
performance on drawings and sketches. In contrast,
human behavioral performance was highly accurate and
comparable across types of depiction. A similar rise in
representational similarities between types of depiction
as in the ImageNet-trained VGG-16 could be observed
in a randomly initialized variant of VGG-16 suggesting
that part of these similarities can be attributed to
the architecture of the network. However, similarities
between photos and drawings were improved in early
and intermediate layers after training and the drop in
later layers was not present in the randomly initialized
network, in turn indicating that training affects the
similarities in the network. Moreover, we observed
that representations of drawings and sketches in
the ImageNet-trained VGG-16 clustered together
with increasing degrees across layers, whereas photo
representations remained well separated, suggesting
either a collapse or a shift in drawing and sketch
representations. Two findings supported the idea of
a representational shift: the presence of high-level
category information in the representation for drawings
and sketches, and their representational similarities to
human behavior. Together, the results in experiment
1 suggest that photos, drawings, and sketches share
strong similarities in processing up to intermediate

layers in the network, which disappear with increasing
proximity to the output layer, ultimately resulting
in poor generalization to drawings and sketches. In
experiment 2, we identified the degree to which a
proposed texture bias in ImageNet-trained CNNs
(Geirhos et al., 2019; Hermann et al., 2020) contributed
to the drop in representational similarity and the
poor generalization to drawings and sketches. We
demonstrate that reducing texture bias in the network
attenuated the drop off in representational similarity
between types of depiction specifically in later layers.
This, in turn, suggests that representations in early and
intermediate layers of the ImageNet-trained VGG-16
are already general enough to serve as the foundation
for the recognition of drawings. In experiment 3, we
provide direct evidence for this notion by showing that
increased performance for drawings was achieved by
fine-tuning only the later layers in the network on a
set of drawings while keeping the features in early and
intermediate layers learned on ImageNet intact. This
demonstrates that large parts of the ImageNet-trained
VGG-16 are general enough to support recognition of
drawings, yet, not for more abstract sketches. In the
later stages of the network, however, the processing
is presumably biased toward the image features and
texture the network was trained on. This apparent
bias favors a dissimilar representation for natural and
abstracted object images and prevents the network from
accurately classifying drawings and sketches.

Our findings reconcile the demonstrations of poor
performance of CNNs on drawings (Ballester & Araujo,
2016; Evans et al., 2021;Wang et al., 2019) with evidence
for generalizable representations for natural images and
drawings (Fan et al., 2018). Our results furthermore
suggest that processing of object images across levels
of visual abstraction remains domain-general up to
the penultimate pooling layer, after which a distinct
representational format emerges that is more biased
toward the domain of natural images and leads to
incorrect classifications on drawings and sketches. Our
observations in the different parts of processing in the
networks are in line with distinct bodies of research
on the processing in CNNs. While several studies
find evidence for abstract shape representations and
brain-like shape sensitivity in CNNs (Kalfas et al.,
2018; Kubilius et al., 2016; Pospisil, Pasupathy, & Bair,
2018) others point out the specificity of these networks
for the domain of their training data, in particular
regarding their classification decisions (Geirhos et al.,
2019; Geirhos, Temme, Rauber, Schütt, Bethge, &
Wichmann, 2018; Goodfellow, Shlens, & Szegedy, 2015;
Hermann et al., 2020). We propose that both lines of
observations might be explained with a dynamically
changing representational format that is differentially
influenced by shape and texture information depending
on the processing stage in the network. A recent study
provides further evidence for this notion by showing
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that the number of shape and texture encoding units
varies across processing stages in CNNs (Islam, Kowal,
Esser, Jia, Ommer, Derpanis et al., 2021). However,
shape and texture are clearly not the only features that
influence representations in CNNs. Hence, further
research investigating similarities and differences in
the representational structure for different types of
stimuli across processing stages is needed to provide a
better understanding of the nature of representations
in CNNs.

While we found high representational similarities
between types of depiction in the early and intermediate
layers in the ImageNet-trained variant of VGG-16,
we found a similar increase in similarities in a
randomly initialized instance of VGG-16. In addition,
representational similarities between photos and both
drawings and sketches remained high in the randomly
initialized VGG-16 while they dropped sharply in
the ImageNet-trained variant. On the one hand,
this indicates that feedforward processing through a
hierarchy of convolutional layers inherently leads to
increased similarity between representations of photos,
drawings, and sketches even when the convolutional
filters are purely random. This is in line with recent
findings proposing that random convolutions preserve
local shape while discarding texture and that random
convolutions can be used as a data augmentation
technique to improve out-of-domain generalization to,
for example, drawing images (Xu, Liu, Yang, Raffel, &
Niethammer, 2021). On the other hand, our findings
suggest a dual role of training the network for the
representational similarity between types of depiction.
First, training led to an increase in representational
similarities in early and intermediate layers, indicating
that learned features support the representational
similarities between types of depiction. These features
may include local edge features in early convolutional
layers (Krizhevsky et al., 2012) or curvature features
in intermediate layers (Cammarata, Goh, Carter,
Schubert, Petrov, & Olah, 2020). In contrast to
these results in early layers, training decreased the
representational similarities in later layers, likely
reflecting the bias of the network for the statistics
of natural images, which is found in the photos but
neither the drawings nor the sketches. Together, these
observations imply that while the architecture of
the network provides the basis for generalization to
drawings, training in the network both contributes to
the generalization in early layers and prevents it in later
layers.

Another possible explanation for the limited
similarities between natural and abstracted object
images is related to the specifics of the chosen
neural network architecture. One such choice is the
type of layer in the network. While the decline in
representational similarity was found already in the final
pooling layer, the presence of fully connected layers

might have contributed to the drop in performance.
However, results of a similar analysis using a network
consisting only of convolutional layers (vNet; Mehrer,
Spoerer, Jones, Kriegeskorte, & Kietzmann, 2021)
continued to yield a drop in classification performance
for drawings and sketches, paired with decreases in
representational similarities across levels of visual
abstraction, albeit weaker than those found for VGG-16
(Appendix text, Appendix A5). This demonstrates that
limitations in generalization to drawings in experiment
1 cannot be explained solely by the presence of fully
connected layers. Future studies need to identify the
degree to which the generalization performance can be
maintained by changes in network architecture alone or
whether alternative training regimes become necessary.

The fact that we found similarities between
drawing and sketch representations in VGG-16 and
representations in human behavior indicates that
despite not being able to categorize drawings and
sketches correctly, the network still captures meaningful
information in its representation for drawings and
sketches. However, it should be noted that the triplet
task with which we measured human behavioral
similarities allows participants to use information that
CNNs might not capture in their representations.
For example, humans might use information about
the context in which objects typically appear to
make inferences about which objects are more or less
similar to each other. While there is evidence that
CNNs represent contextual information, the way this
information is represented in the human brain and
CNNs seems to be markedly different (Bracci, Mraz,
Zeman, Leys, & de Beeck, 2021). Nonetheless, the
demonstration that there is similarity in representations
between humans and CNNs, despite possible
differences in availability of information, supports
the conclusion that the network retains meaningful
information about drawings and sketches despite shifts
in the representation. It remains an open question
to what extent such similarities can be accounted
for by low-level perceptual or high-level contextual
information, which invites further investigation.

We demonstrated that similarity in processing
objects across visual abstractions is, in part, an
emergent property in CNNs trained on natural
images. Yet, despite attenuating texture bias and
fine-tuning on drawings, the performance on very
abstract sketch images remained poor. We propose
two possible explanations for this discrepancy. First,
ImageNet-Sketch (Wang et al., 2019) mostly contains
highly detailed drawings, which more closely resemble
the level of visual abstraction of the drawings in
our stimulus set compared to the one of sketches.
This might make ImageNet-Sketch a more suitable
training dataset for drawings in our stimulus set
than for sketches. Alternatively, the recognition of
highly abstracted and simplified object images might
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require incorporating different mechanisms in CNNs
than the ones used for classifying natural images
and drawings. A possible mechanism for such robust
recognition abilities might include some form of
global shape processing. This ability is limited in
predominant CNN architectures (Baker et al., 2018;
Baker, Erlikhman, & Kellman, 2020) and may involve
computations including recurrent segmentation and
grouping which are not performed by canonical
CNNs (Doerig, Schmittwilken, Sayim, Manassi,
& Herzog, 2020). Investigating how this challenge
is solved by networks with different architectures
and processing mechanisms than current CNNs
might elucidate the mechanisms that enable broad
generalization abilities, including those for abstract
sketches.

While the generalization capabilities in human
recognition are still out of reach for networks with
a feedforward architecture and supervised learning
regime (Geirhos et al., 2019; Geirhos, Janssen, et
al., 2018; Geirhos, Temme, et al., 2018), developing
models that more closely match the human brain in
terms of architecture (Evans et al., 2021; Kietzmann,
Spoerer, Sörensen, Cichy, Hauk, & Kriegeskorte, 2019)
and learning rules (Zhuang, Yan, Nayebi, Schrimpf,
Frank, DiCarlo, et al., 2021) offer new perspectives for
meeting this goal. Such models have yielded important
insight in how the brain solves the general problem of
object recognition and show improved generalization in
some cases (Geirhos, Narayanappa, Mitzkus, Bethge,
Wichmann, & Brendel, 2020; Spoerer, McClure,
& Kriegeskorte, 2017) but are still outmatched by
humans (Geirhos, Meding, & Wichmann, 2020;
Geirhos, Narayanappa, et al., 2020). Only recently, a
new class of models based on the concept of natural
language supervision has been introduced, which show
intriguingly robust performance across domains and
across visual abstractions (Radford, Kim, Hallacy,
Ramesh, Goh, Agarwal, et al., 2020). It is an open
and exciting question to what extent these models
and their training approach resemble principles of
natural intelligence, which might ultimately provide
new explanations for the remarkable generalization in
human vision.

Conclusions

Our results show that a CNN trained on natural
images represents photos and drawings of objects in
intermediate layers highly similarlywhile simultaneously
exhibiting low similarities between types of depiction
in late layers and performing poorly on drawings and
sketches. The texture bias present in CNNs (Geirhos
et al., 2019; Hermann et al., 2020) contributes to the
low representational similarities between types of

depiction in later layers and the network’s reduced
performance for drawings. After fine-tuning these
late layers on a set of object drawings, the network
showed high performance on photos and drawings and
increased representational similarities between types
of depiction in late layers. In conclusion, these results
contribute to the understanding of generalization to
drawings in CNNs, by revealing high similarities in
processing of natural images and abstracted object
images in the network and providing explanations for
the link between these similarities and the limitations in
performance for abstracted object images.

Keywords: deep convolutional neural networks,
generalization, drawings, representational similarity
analysis
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