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Abstract: The solution-processed deposition of metal-oxide semiconducting materials enables
the fabrication of large-area and low-cost electronic devices by using printing technologies.
Additionally, the simple patterning process of these types of materials become an important issue,
as it can simplify the cost and process of fabricating electronics such as thin-film transistors (TFTs).
In this study, using the electrohydrodynamic (EHD) jet printing technique, we fabricated directly
patterned zinc-tin-oxide (ZTO) semiconductors as the active layers of TFTs. The straight lines of
ZTO semiconductors were successfully drawn using a highly soluble and homogeneous solution
that comprises zinc acrylate and tin-chloride precursors. Besides, we found the optimum condition
for the fabrication of ZTO oxide layers by analyzing the thermal effect in processing. Using the
optimized condition, the resulting devices exhibited satisfactory TFT characteristics with conventional
electrodes and conducting materials. Furthermore, these metal-oxide TFTs were successfully applied
to complementary inverter with conventional p-type organic semiconductor-based TFT, showing high
quality of voltage transfer characteristics. Thus, these printed ZTO TFT results demonstrated that
solution processable metal-oxide transistors are promising for the realization of a more sustainable
and printable next-generation industrial technology.

Keywords: zinc-tin-oxide; electrohyrodynamic jet printing; oxide thin-film transistors;
complementary inverter

1. Introduction

Thin-film transistors (TFTs) are regarded as the key components in flat-panel display (FPD)
applications, such as active matrix liquid crystal displays and active matrix organic light-emitting diode
displays [1]. In recent days, the development of TFT has become an important part of FPDs with high
resolution and large size, thereby pushing the traditional amorphous Si (a-Si) TFTs to their limit [2,3].

Nanomaterials 2020, 10, 1304; doi:10.3390/nano10071304 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-5017-5621
https://orcid.org/0000-0003-4998-2116
https://orcid.org/0000-0001-8658-514X
https://orcid.org/0000-0001-7818-1903
http://www.mdpi.com/2079-4991/10/7/1304?type=check_update&version=1
http://dx.doi.org/10.3390/nano10071304
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 1304 2 of 13

Accordingly, metal oxide-based TFTs might be now one of the most promising technologies in the
next-generation display technologies because of their high carrier mobility, excellent transparency,
satisfactory uniformity, and reasonable electrical reliability/stability [4–6]. Compared with traditional
covalent semiconductor- (e.g., a-Si) based TFTs, whose carrier transport paths comprise sp3 orbitals
with strong directivity, metal oxide TFTs form a charge-transfer path from the metal orbitals to the
oxygen orbitals with a strong degree of iconicity [7]. Therefore, the conduction band minimum is
actually formed because of highly dispersive unoccupied metal orbitals, whereas the valence band
maximum is composed because of fully occupied and localized oxygen orbitals [5,8]. Those vacant
metal orbitals are spherical (i.e., non-directional) and exhibit large spatial spread, inducing high
electron-transport characteristics in the TFT operation [9].

However, despite the aforementioned high-performance characteristics, most high-performance
metal oxide-based TFTs used in well-established industries thus far are manufactured using
conventional vacuum deposition processes. These types of manufacturing processes limit their potential
applications in large-area electronics because of the high-cost of equipment and small deposition area
in processing. Additionally, complex processes (e.g., photolithography and shadow mask) are also
needed to produce the patterns that are required for each device application. However, the solution
process method that utilizes a metal oxide precursor offers many advantages such as large-area
fabrication, equipment and process step simplicity, roll-to-roll capability, atmospheric processing,
and low cost [8,10]. Particularly, direct pattering process with printing technology reduces the time
and cost of the process, thereby circumventing the vacuum and photolithography process. In addition,
it is an environmentally friendly technology that can help reduce chemical wastes [4].

Compared with the conventional ink-jet printing technique, the electrohydrodynamic (EHD)
jet printing process can provide high-resolution micro- to nanoscale patterns using well-modified
droplets [11–13]. The meniscus of the droplet that hangs on the nozzle tip can be deformed because
of the applied electrostatic field, thereby elongating the ink to generate a discrete droplet or jet on
the substrate. According to the electrostatic-field intensity and ink properties, various jetting modes,
which are capable to directly write materials such as organic, metallic, and metal-oxide materials,
are developed [14–17]. Especially, the stable cone-jet mode of the EHD jet printing reduces the diameter
of droplets to smaller than that of the nozzle tip to fabricate patterns on the target substrate.

In this study, we examined solution-processed zinc-tin-oxide (ZTO) semiconductors as the
active layers of metal oxide TFT, with different annealing conditions. In addition, we used the
EHD-printed ZTO as the active layers of TFT with various source(S)/drain(D) electrode materials and
also applied the complementary inverter with organic semiconductor-based TFTs. ZTO precursors
for printing were synthesized via mixing with zinc acrylate and tin chloride. Conventional metallic
material, Al, and previously reported printable multi-walled carbon nanotubes (MWCNT)/Triton
X-100 composites were utilized for fabricating S/D electrodes [18,19]. The processing and printing
parameters, such as the annealing condition, flow rate, voltage, and printing speed, were investigated
for the optimal formation of patterned ZTO active layers. Consequently, the optimized EHD jet-printed
ZTO showed low-hysteresis driving behaviors with the field-effect mobility (µFET) of 1.35 ± 0.14,
0.52 ± 0.08 cm2/V s for Al- and MWCNT-based devices. Moreover, these well-operated oxide-based
TFT devices (mainly electrons were transported) were successfully applied to the fabrication of
complementary inverters by combining with organic material-based transistors (holes were mainly
transported). Consequently, we believe that this research will contribute not only to the production of
EHD printing-based oxide semiconductors for TFTs, but also to the fabrication of electronic devices
based on the properties of oxide- and organic-based materials.
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2. Materials and Methods

2.1. Materials and Sample Preparation

Zinc acetate dehydrate, tin chloride, and 2-methoxyethanol were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and used as received without further purification. The solution-processable
ZTO semiconductor precursor was synthesized using totally 0.4 M of zinc acetate dehydrate and tin
chloride in the mole ratio of 1:1, in 2-methoxyethanol. Before depositing this solution, we stirred it
to achieve a homogeneous-solution state. The MWCNT-based solution was synthesized following
a method in a previously conducted study [19]. Briefly, the MWCNTs (diameter: 10–20 nm, length:
5–20 µm, Nanolab from Newton MA, USA) and Triton X-100 (polyethylene glycol tert-octylphenylether,
TX100, Sigma-Aldrich, St. Louis, MO, USA) were dispersed in ethanol (Sigma-Aldrich, St. Louis, MO,
USA) to prepare MWCNTs’ electrode ink. Heavily doped n-type Si wafers (resistivity < 0.005 Ω cm,
Namkang hi-tech, Seongnam-si, Korea) were used as both gate electrodes and substrate for device
fabrication. The wafers were rinsed using isopropyl alcohol (IPA) and cleaned using a UV-ozone
cleaner for 20 min. Subsequently, the gate dielectric layers were deposited through the atomic layer
deposition (ALD)-processed 50-nm alumina (Al2O3) using a previously reported method [20,21].
The gate dielectric-deposited wafer was then clipped to the size of 2 × 2 cm2. These clipped samples
were cleaned using boiled acetone for 10 min. Subsequently, the samples were ultra-sonicated in
acetone and IPA for 20 min, dried under a nitrogen stream, and further cleaned via UV-ozone exposure
for 15 min.

2.2. Fabrication of ZTO Patterning and Solution-Processed Oxide TFTs

ZTO patterns were produced by directly writing, using the previously created ZTO precursor
solution via the EHD jet printing process. The ZTO precursor ink was taken in a glass syringe with the
nozzle diameter of 200 µm and loaded in the EHD jet printing machine (Enjet, Gyeonggi-do, Korea).
Notably, the flow rate and working distance in this study were optimized at 0.15 µL/min and 280 µm,
respectively. A power supply was used to apply an electric field between the nozzle and substrate,
which served as the ground. The EHD printing was performed in various jetting modes by adjusting
direct current (DC) voltage values and at various printing speeds between 5 and 50 mm/s in ambient air
conditions. Subsequently, the active layers were annealed at various thermal conditions (300◦C, 400 ◦C,
and 500 ◦C) to yield metal-oxide active layers. The Al or MWCNTs’ electrodes were printed for using
the source (S) and drain (D) electrodes in the same manner as in a previously reported condition [19].

2.3. Fabrication of Complementary Inverters

Heavily n-doped Si wafers (resistivity < 0.005 Ω· cm) with thermally grown 300 nm SiO2 were
utilized as the substrates for complementary inverters, and Si and SiO2 were utilized as input voltage
(Vin) electrode and gate dielectrics, respectively. Before fabrication of complementary inverters, the Si
wafers were cleaned with sequential boiling with acetone for 10 min. Then, the boiled wafers were
further cleaned with ultra-sonicator with acetone and IPA for 20 min and dried under a nitrogen stream.
Before printing the ZTO layers, the substrates further cleaned via UV-ozone exposure for 15 min.
For fabrication of complementary inverters, ZTO patterns were firstly printed through the EHD jet
printing process on the active layer region of n-type transistor on n-doped Si with thermally grown
300 nm SiO2. Then, the 2,9-di-decyl-dinaphtho-[2,3-b:2′,3′-f]-thieno-[3,2-b]-thiophene (C10-DNTT),
which was synthesized with the previously reported method [22], was deposited on the p-type
transistor’s active layer region as 50 nm thick using the organic molecular beam deposition (deposition
rate = 0.1 Å s−1, vacuum pressure = 10−6 Torr, substrate temperature = 25 ◦C). The 50-nm-thick
Au electrodes for contact of supply voltages (VDD), ground, and output voltage (Vout) were
deposited through the thermal evaporation (deposition rate = 2 Å·s−1, vacuum pressure = 10−6 torr,
substrate temperature = 25 ◦C) on the active deposited substrates.
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2.4. Characterization

The meniscus of EHD jet printing was monitored using a charge-coupled device camera of EHD
printer. The printed ZTO patterns height properties were analyzed by the alpha-step (NanoMap-PS) and
optical microscope (OM, Nikon ECLIPSE LV100ND, Tokyo, Japan). The morphologies of the deposited
ZTO were analyzed using OM and scanning electron microscope (SEM, Hitachi S4800, Ibaraki, Japan).
The ZTO film was characterized via X-ray diffraction (XRD, X’pert Pro MPD, Panalytical, Malvern, UK)
and X-ray photoelectron spectroscopy (XPS, Thermo K-Alpha XPS, Thermo Fisher Scientific, Waltham,
MA, USA) of Yeungnam University Center for Research Facilities. The XRD patterns were recorded
using Cu-Kα radiation (λ = 0.154178 nm) between the 2θ of 20◦ and 70◦ (step size: 0.02◦). XPS was
performed using a monochromatic Al-Kα X-ray source (hυ = 1468.6 eV). The chamber pressure was
maintained at approximately 10−8 mbar, and the spectra were obtained from a spot size of 400 µm with
the energy steps of 0.1 eV. The electrical characteristics of the TFTs were measured using a Keithley
4200 SCS (Cleveland, OH, USA) at room temperature in the vacuum state (approximately 10−3 torr)
with the dark state to exclude the effects of H2O, O2, and visible light on the TFTs.

3. Results and Discussion

3.1. Patterning of EHD Jet-Printed ZTO Layers

Before proceeding with ZTO printing in earnest, we must prepare the precursor solution.
The precursor solution was synthesized using totally 0.4 M of zinc acetate dehydrate and tin chloride at
the molar ratio of 1:1 in 2-methoxyethanol. A mixture of recently mixed substances was fairly turbulent;
however, a day of stirring resulted in a homogeneous solution, depicted in Figure 1a. Using the thus
synthesized solution, direct patterning was performed via the EHD jet printing process. The EHD
jet printing technology utilizes the electrospinning behavior obtained at the short nozzle-to-substrate
distance of approximately hundreds of micrometers [23]. Electrospinning is a fiber-production method
that uses electric force to draw the charged threads of polymer solutions or polymer melts up to the
fibers with the diameters in the order of some hundred nanometers. Likewise, in EHD jet printing
depicted in Figure 1b, a force balance was achieved among the viscous force Fµ, surface tension Fσ,
electrical force Fe, and gravitational force Fg. [16,24] Therefore, increasing the applied Fe induced
charge accumulation on the surface of the fluid, and increasing the Fe resulted in the formation of
an ellipsoidal meniscus, meaning breaking the balance of Fe and Fg with Fµ and Fσ of loaded ink.
Notably, if the applied electrostatic field increased to some extent, the micro-droplet hung on the nozzle
tip decomposed with various jetting behaviors that depended on the printing parameters such as
electrospinning phenomena.

According to the aforementioned principle, the synthesized ZTO ink was loaded into the EHD
printer to find the optimum condition for the printing process with the working distance of 300 µm and
flowrate of 0.15 µL/m. As depicted in Figure 1c, various jetting behaviors were achieved by applying
different electric-field conditions. When the applied voltage was less than 0.72 kV, the dripping mode
arose because the charges induced because of this low electrical force did not affect droplet formation
but resulted only in a bulging drop that hung at the edge of the nozzle tip by the gravitational force.
Subsequently, increasing voltage (1.08 kV) resulted in a micro-dripping jetting behavior in which
the diameter of the droplet was considerably smaller than that of the capillary, and made a circular
shape of printing on the substrate (Figure S1). When Fe + Fg was greater than the Fσ + Fµ of ZTO
solution and the viscosity of the solution was sufficient to sustain the electrical pulling forces, a conical
shape (Taylor cone) was observed in the stable cone-jet mode, thereby inducing the continuously
uniform line printing, as depicted in Figure S1 [25,26]. Further increasing the voltage resulted in
the formation of multi-jet modes in which the ZTO jet contained a broad distribution of drops and
disintegrated because of the unstable force balance [27]. Therefore, we might fabricate various jetting
behaviors of the synthesized ZTO ink by controlling the applied voltage. Moreover, these phenomena
were adjusted by the distance between substrate and nozzle-tip, which critically influenced the Fe in
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printing condition [28]. Thus, we further investigated the jetting behaviors of the ZTO ink according to
both operation distance and applied voltages, as illustrated in Figure 1d. The printing condition was
optimized with these further investigations, and printed films were fabricated with stable cone-jet
mode with 1.34 kV in working distance and flow rate as 300 µm and 0.15 µL/m.
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illustration of EHD jet printing process. (c) Various jetting behaviors, depending on the electrical bias
and fabricated lines with micro-dripping and cone-jet mode. (d) Summary plots, including the EHD jet
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The width of the patterns could be also controlled by varying the coating velocity [28].
Therefore, we varied the coating velocity of the ZTO solution from 5 to 50 mm/s. The optical
microscopy (OM) images of the ZTO lines according to the coating speed are depicted in Figure 2a.
Upon increasing the printing speed, the width of the ZTO line dramatically decreased: The line widths
were 757, 505, 350, 291, 236, and 230 µm for the printing speeds of 5, 10, 20, 30, 40, and 50 mm/s,
respectively. This decreasing trend in the line widths was attributed to the decrease in the volume of
solution deposited per unit time, as the increase in the printing speed obstructed line spreading [29,30].
Besides, the printed ZTO patterns showed volcano shape due to the coffee-ring effect, but almost
similar thickness (~100–120 nm scales) in the middle part of printing (see the cross-sectional profiles
of each pattern in Figure 2a). Also, this direct patterning technology via EHD jet printing resulted
in well-defined ZTO patterns with various shapes with no agglomerations (see Figure 2b), and such
possibilities might expand the scope of applications of the EHD jet printing.
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3.2. ZTO Active Layer Fabrication

To utilize them as the active layers of metal-oxide TFTs, the precursors of ZTO were subjected to
annealing to form semiconducting metal oxides at various temperatures (300 ◦C, 400 ◦C, and 500 ◦C)
in ambient air condition for 1 h. The contents of the precursor were SnCl2 and Zn(CH3COO)2·2H2O,
and formed a metal oxide via a sol-gel reaction [31,32]. As mentioned previously in the experimental
section, the solution used in this study was fabricated using the molar ratio of 50:50 of Zn and Sn oxide
precursors. According to the previous reports, increasing the Sn contents in ZTO solution induced
the fabrication of ZTO crystalline structure as (ZnO)1−x(SnO2)x, (Zn2SnO4)1−x (ZnO)x, and (ZnSnO3)

1−x(SnO2)x, among others [33]. As depicted in Figure 3, the 300 ◦C, 400 ◦C, and 500 ◦C cases of ZTO
film exhibited the intense ZnO (002) peak at 38.4◦ and ZTO polycrystalline cubic (322) peak at 44.7◦,
which indicated the ZTO semiconductive crystals’ formations from the precursor of ZnO and SnO2 [34].
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To further understand the formation of the crystalline structure of our ZTO films, SEM and XPS
measurements were performed. The morphological images of ZTO at various annealing temperatures
are depicted in Figure 4. As shown in Figure 4a, the ZTO patterns with the annealing temperature
of 300 ◦C induced ZTO crystallites of small and unclear particles with the size of less than 40 nm.
However, upon increasing the annealing temperature, the growth or size of ZTO crystals dramatically
increased (see Figure 4b,c). Especially when the temperature reached 500 ◦C, the size of the crystals
became 180 nm. Therefore, although no change occurred in the crystal structure, a difference was
observed in the crystal growth.
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In addition, the XPS data for various annealing conditions were carried out to study the chemical
bonding of ZTO films. Particularly, the O 1s XPS data showed the tendency of the direct formation of
ZTO oxide. As depicted in Figure 5a, the shape of the graph changed with the annealing temperature.
The oxide peak related to the O2− ions that were associated with neighboring zinc and tin atoms
(OX) was located at 530 eV (blue vertical line) and gradually increased upon increasing the annealing
temperature. Similarly, the peak generated due to oxygen vacancy (OVAC) or hydroxyl groups (OOH)
was located at 531 eV with orange vertical line and gradually decreased [17]. Particularly, the annealed
ZTO film showed a tendency for oxide peaks to be superior to oxygen vacancy or hydroxyl groups,
where the as-deposited samples were considerably dominant. Furthermore, peak split analysis was
conducted to confirm the effect of the annealing temperature on the formation of ZTO.

Nanomaterials 2020, 10, x 7 of 13 

 

In addition, the XPS data for various annealing conditions were carried out to study the chemical 
bonding of ZTO films. Particularly, the O 1s XPS data showed the tendency of the direct formation 
of ZTO oxide. As depicted in Figure 5a, the shape of the graph changed with the annealing 
temperature. The oxide peak related to the O2− ions that were associated with neighboring zinc and 
tin atoms (OX) was located at 530 eV (blue vertical line) and gradually increased upon increasing the 
annealing temperature. Similarly, the peak generated due to oxygen vacancy (OVAC) or hydroxyl 
groups (OOH) was located at 531 eV with orange vertical line and gradually decreased [17]. 
Particularly, the annealed ZTO film showed a tendency for oxide peaks to be superior to oxygen 
vacancy or hydroxyl groups, where the as-deposited samples were considerably dominant. 
Furthermore, peak split analysis was conducted to confirm the effect of the annealing temperature 
on the formation of ZTO.  

 
Figure 5. XPS spectra of the printed ZTO at various annealing temperatures: (a) O 1s, (b) Zn 2p, and 
(c) Sn 3d core levels. 

The O 1s peak in ZTO films was distributed to the following three types of chemical bonding: 
OX, OVAC, and OOH, as mentioned earlier. From this distribution, we could extract the metal-oxide ratio 
of ZTO by calculating the value of chemical-bonding type per (OX + OVAC + OOH). Using this 
relationship and the plots described in Figure 6, the oxide values of ZTO were calculated as 56.42%, 
62.96%, and 67.69% for the annealing temperatures of 300 °C, 400 °C, and 500 °C, respectively. These 
values directly showed higher production of semiconducting ZTO upon increasing the thermal 
treatment temperature. In more detail, Table 1 shows the proportion of oxygen-involved bonds; the 
proportion outlines how ZTO was formed. At 300 °C, despite the smallest oxide ratio (56.42%) among 
the three values, the proportion by hydroxyl (1.06%) was smaller than those by others (13.33% and 
11.01% for 400 °C and 500 °C, respectively). This result was attributed to the precursor properties that 
the formation of metal oxide for SnCl2 and Zn(CH3COO)2·2H2O occurred at 320–430 °C and 35–300 
°C, respectively [31]. Therefore, the formation of the metal oxide occurred in earnest at the 
temperature of 300 °C or more, and, consequently, hydroxyl groups were generated according to the 
sol-gel reaction and gradually decreased upon fabricating metal oxides. In addition, the Zn 2p3/2 (1021 
eV) and Sn 3d5/2 (486 eV) peaks were increased because of the thermal treatments (see Figure 5b,c). 

Figure 5. XPS spectra of the printed ZTO at various annealing temperatures: (a) O 1s, (b) Zn 2p, and (c)
Sn 3d core levels.



Nanomaterials 2020, 10, 1304 8 of 13

The O 1s peak in ZTO films was distributed to the following three types of chemical bonding: OX,
OVAC, and OOH, as mentioned earlier. From this distribution, we could extract the metal-oxide ratio of
ZTO by calculating the value of chemical-bonding type per (OX + OVAC + OOH). Using this relationship
and the plots described in Figure 6, the oxide values of ZTO were calculated as 56.42%, 62.96%,
and 67.69% for the annealing temperatures of 300 ◦C, 400 ◦C, and 500 ◦C, respectively. These values
directly showed higher production of semiconducting ZTO upon increasing the thermal treatment
temperature. In more detail, Table 1 shows the proportion of oxygen-involved bonds; the proportion
outlines how ZTO was formed. At 300 ◦C, despite the smallest oxide ratio (56.42%) among the three
values, the proportion by hydroxyl (1.06%) was smaller than those by others (13.33% and 11.01%
for 400 ◦C and 500 ◦C, respectively). This result was attributed to the precursor properties that the
formation of metal oxide for SnCl2 and Zn(CH3COO)2·2H2O occurred at 320–430 ◦C and 35–300 ◦C,
respectively [31]. Therefore, the formation of the metal oxide occurred in earnest at the temperature of
300 ◦C or more, and, consequently, hydroxyl groups were generated according to the sol-gel reaction
and gradually decreased upon fabricating metal oxides. In addition, the Zn 2p3/2 (1021 eV) and Sn
3d5/2 (486 eV) peaks were increased because of the thermal treatments (see Figure 5b,c).
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Table 1. Deconvoluted O 1s core shell of EDH jet-printed ZTO thin film in various temperature conditions.

300 ◦C 400 ◦C 500 ◦C

OX/OX + OVAC + OOH 56.42% 62.96% 67.69%
OVAC/OX + OVAC + OOH 42.51% 23.71% 21.30%
OOH/OX + OVAC + OOH 1.06% 13.33% 11.01%

3.3. ZTO Active and MWCNT S/D-Based TFT

The electrical properties of the EHD jet-patterned ZTO were evaluated by fabricating typical
bottom-gate top-contact TFTs using a typical metallic material (Al) and printable solution-based
material (MWCNTs). ALD deposited Al2O3 50 nm (capacitance Ci: 96.6 nF/cm2) were utilized as the
gate dielectric layers of TFTs, and 10 layers of ZTO patterns were patterned via the cone-jet mode
of EHD jet printing process for active layers (30 mm/s, 300 µm, and 0.5 µL/min for printing velocity,
working distance, and flow rate of ink). Then, the printed ZTO layers were annealed in various
temperature conditions (300 ◦C, 400 ◦C, and 500 ◦C) for 1 h under ambient air conditions. The device
fabrication was completed upon the deposition of S/D electrodes with Al and MWCNTs, as depicted in
Figure 7a. The channel length (L) and width (W) defined using the effective length and width of ZTO
patterns, respectively, existed between the S/D electrodes, as shown in Figure 7a (W/L were 4.0 for Al
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and 2.0 for MWCNTs, respectively). The devices were driven in the saturation regime with the gate
voltage VG ranging from −5 or −2 to 5 V and S/D voltage VD of 5 V. The transfer electrical properties of
the devices were extracted using the following relationship between drain current ID and VG: ID = µFET
Ci W/2L (VG−Vth)2, where Vth denotes threshold voltage.Nanomaterials 2020, 10, x 9 of 13 
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characteristics of ZTO devices with (b) Al and (c) MWCNTs S/D electrodes.

Previously analyzed part illustrated that 500 ◦C annealing process of ZTO is most suitable for
fabrication of TFT devices. Indeed, the fabricated TFTs with 300 and 400 ◦C showed the insulating
properties, as shown in Figure S2. Thus, the our applied sol-gel-based ZTO layers could be complete
thermal decomposition under 500 ◦C annealing condition, and can be applied as a semiconductor layer
in this case. In the case of 500 ◦C, thermally annealed ZTO TFT with conventional vacuum deposited Al
electrode displayed the typical n-type transistor operation properties that show electrical performance
with the µFET of 1.35 ± 0.14 cm2 V−1 s−1, ON/OFF ratio of 105, Vth of −0.42 ± 0.37 V, and low operation
voltage below 5 V (see Figure 7b). Especially, the operating devices exhibited the hysteresis behavior
level with ∆Vth of 0.46 V, meaning the difference between the forward and reverse swept transfer
curves. In addition, the output results of ZTO TFTs were fully saturated and well matched with the
saturation current value of the transfer curve, indicating reliable TFT operation.

Furthermore, we utilized the patterning of ZTO active layers with printable electrodes to fabricate
TFTs. Following the previously proposed methods [35], we could fabricate the conductive layers as an
S/D electrode, as depicted in Figure S3. Using this technique, it is possible to manufacture TFTs with
semiconductor and conductive layer patterns through a printing process (see the right OM images
in Figure 7a). In Figure 7c, we depicted the transfer and output characteristics of a specific sample
of each of the ZTO TFTs with MWCNTs S/D electrodes. Similar to Al electrode devices, the TFT
showed the typical operation behavior of electron-based transistors with low operation characteristics.
However, the electrical performance was inferior to that of Al-based devices, which yielded the µFET
of 0.52 ± 0.08 cm2 V−1 s−1, ON/OFF ratio of 104, and Vth of 0.70 ± 0.25 V. This is because the work
function of MWCNTs-based electrode (approximately 4.95 eV) was higher than that of the conventional
Al electrode (approximately 4.0–4.28 eV) [19,36,37]. Therefore, the higher work-function value of
the electrode hindered the injection of electrons, which were the major charge carriers in our ZTO
devices, from the electrode to semiconducting layers, thereby degrading the electrical performance of
the devices. Despite the output curve being almost saturated, it showed fairly reliable characteristics,
such as showing a saturation-current value that matched the saturation-current value shown in the
transfer curve (see Figure 7c).
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Furthermore, we fabricated the complementary inverter with conventional p-type organic field
effect transistors to identify the benefits of EHD-printed ZTO transistors for manufacturing the
integrated circuitry devices. The fabrication of complementary inverter was initiated with printing of
ZTO active layers with previously optimized conditions. Then, the sequential deposition processes
of p-type active layers (C10-DNTT) and gold electrodes through the vacuum deposition process
were conducted to complete the fabrication of complementary inverter, as described in Figure 8a,b
(schematics and OM image). Figure 8c revealed that the C10-DNTT p- and ZTO n-type transistors
exhibited similar performances in respect of turn-on voltage and saturation currents (see the transfer
characteristics of Figure 8c). Due to these balanced electrical characteristics of p- and n-type devices,
their complementary inverters exhibited good voltage transfer characteristics under various VDD,
as shown in Figure 8d. The inverters were operated with a sharp voltage inversion over various ranges
of VIN, which was caused by the on and off of p- and n-type transistors. Besides, the voltage gains of
inverter, defined as dVOUT/dVIN, were calculated from the operation plot in Figure 8c (see the graph
in Figure 8d). The maximum gain value reached 31.2 with a VDD of 50 V, which was well operated,
like the previously reported printed ZTO transistor-based inverter results [38,39].
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Figure 8. (a) Schematic showing and (b) OM image of complementary inverter with printed ZTO
(left side) and C10-DNTT-based transistors (right side). The W and L for both transistors were 2000 µm
and 100 µm, respectively. (c) Transfer characteristics (VD = ± 30 V) of ZTO and C10-DNTT transistors.
(d) Voltage transfer characteristics and (e) DC voltage gains of complementary inverters with various
VDD values.

4. Conclusions

We demonstrated the EHD jet printing technology-based direct patterning of ZTO semiconducting
layers, as well as their usage as the active layers of TFTs with conventional and printable electrode
materials. Highly homogeneous ZTO precursor ink was observed to be appropriate for the EHD jet
printing process, yielding various jetting modes (dripping, micro-dripping, cone-jet, and multi-jet).
In addition, the stable cone-jet mode induced various ZTO line patterns depending on the printing
speed. Various analysis tools such as XRD, SEM, and XPS revealed the fabrication mechanism of
our patterned ZTO films. In optimized conditions, EHD jet-printed ZTO lines with micro-scale
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dimensions were used to fabricate the conventional metal oxide-based TFTs, which showed satisfactory
and reliable electrical performances with low hysteresis. Furthermore, we patterned MWCNTs’ lines
onto pre-patterned ZTO samples via EHD jet printing and utilized them as the S/D electrodes
of the TFTs. These EHD-printed TFTs, which comprised ZTO active layers and MWCNTs S/D
electrodes, displayed reliable TFT driving properties. In particular, these optimized devices were
successfully applied to the complementary inverter with p-type organic semiconductor-based
transistors, showing good voltage transfer characteristics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/7/1304/s1,
Figure S1: OM images of ZTO-printed layers with micro-dripping and cone-jet mode. Figure S2: Transfer
characteristics with ZTO TFTs with 300 and 400 ◦C thermal annealing condition. Figure S3: OM and SEM images
of EHD jet-patterned MWCNTs.
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