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The action potential (AP) in cardiac tissue is important for initiating and coordinating 

contractions in the heart. In addition, the long refractory period minimizes the potential for 

developing extrasystoles and arrhythmias [1]. The AP is generated by coordinate changes in 

different ionic currents. In human (or canine) adult ventricular cells, the depolarization phase 

of the AP is mainly through the influx of Na+ and Ca2+ through specific voltage gated 

channels [2]. Repolarization of the AP is regulated by activation of a number of different K+ 

currents which play important roles in regulating the AP. These K+ currents include: (i) a 

Ca2+-independent transient outward K+ current (Ito), (ii) an inwardly rectifying K+ current 

(IK1), and (iii) the rapidly and slowly activating delayed rectifier K+ channel currents (IKr 

and IKs, respectively). Previous studies have demonstrated that there is an excess of several 

K+ currents necessary for cardiac repolarization such that a net outward current remains 

available for repolarization if one or more currents are reduced (repolarization reserve) [3–

5]. Therefore, cardiac tissue with a lower repolarization reserve is associated with a 

prolonged ventricular action potential and an increased incidence of developing arrhythmias 

[6]. Mutations in KCNH2 (the gene which encodes IKr) cause a decrease in the magnitude of 

IKr and are associated with Long QT syndrome [7,8]. Patients afflicted with Long QT have 

episodes of fainting, irregular heartbeats and an increased incidence of developing 

ventricular arrhythmias. Interestingly, many non-cardiac medications have also been shown 

to block IKr [9,10] which has resulted in drug companies extensively testing potential 

therapeutic compounds for IKr block prior to introduction to the market.
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Role of IKr in hiPSC Cardiomyocytes

The importance of IKr in cardiac repolarization has been highlighted in several studies 

[11,12]. In recent years, myocytes from large animals are being phased out in favor of 

human induced pluripotent stem cell derived cardiac myocytes (hiPSC-CM) [13,14]. In 

contrast to adult myocytes, hiPSC-CMs are deficient or lack several K+ currents which are 

important for repolarization suggesting hiPSC-CMs have a reduced repolarization reserve 

compared to adult myocytes. These deficiencies include a negligible IK1 [15], a functionally 

absent Ito [16] and negligible IKs [17] suggesting these cells are immature 

electrophysiologically. The absence of t-tubules coupled with their small size suggests they 

are morphologically immature [18] indicating that results obtained in hiPSC-CM may not be 

translatable to the adult phenotype.

There are extensive studies detailing methods to improve the maturity level of hiPSC-CM 

such as plating hiPSC-CMs on a more rigid matrix [19]. Other investigators have attempted 

to “mature” hiPSC-CMs by expressing K+ current(s) that are not present at this stage of 

development [20]. In a previous study from our group, we enhanced IKr by pharmacological 

methods using several small molecule activators of K+ currents (such as NS3623) which 

have been shown to increase repolarization reserve [21,22]. The results of those studies 

indicated that IKr is critical during the repolarization phase of the AP and plays a major role 

in setting the membrane potential. Inhibition of IKr (by E-4031) resulted in a depolarization 

of the maximum diastolic potential (MDP) [23]. Conversely, enhancement of IKr (by 

NS3623) resulted in a shortening of the hiPSC-CM action potential and hyperpolarization of 

the MDP [22].

The role of IKr in modulating the AP duration in hiPSC and native myocytes is well 

established [24,25]. Tissue type is also important in determining the degree of drug-induced 

prolongation of the AP, presumably due to the complement of K+ currents present in the 

tissue types [4,26]. Figure 1 shows action potentials recorded from hiPSC-CMs and the 

changes in AP waveform and duration when exposed to low concentrations of the IKr 

inhibitor E-4031 (100nM). In response to 100nM E-4031, a triangulation of the AP was 

observed, and the duration was prolonged (Panels A-B). Prolonged exposure to E-4031 

resulted in the development of repolarization alternans (Panel C) and formation of EADs 

(Panel D).

We next measured the magnitude of IKr in hiPSC-CMs and the amount of IKr blockade 

following 100nM E-4031. Representative traces showing IKr recorded from hiPSC-CMs in 

the absence and presence of E-4031 (Figures 2A and 2B). Application of 100nM resulted in 

a 31% reduction in tail current (Figure 2C). Higher concentrations of E-4031 (5μM) resulted 

in no tail current demonstrating that only IKr is present under these recording conditions.

In the recent years, notable attempts were made towards developing in silico biophysical 

models of hiPSC-CMs which reasonably reproduce the experimental AP morphology and 

intracellular calcium dynamics of hiPSC-CMs [27,28]. Most of these models were 

parameterized by averaging a large amount of in vitro data from multiple sources in order to 

cover the range of variability seen in these cells. This approach addresses the limitations of 
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earlier models which were based on inadequate data. However, the unresolved 

inconsistencies in experimental protocols used by the various sources have the potential to 

introduce unwarranted deviations in the hiPSC-CM electrophysiological parameter range as 

well as the generalizability of the baseline model. For example, blocking IKr by 33% 

resulted in 60% prolongation in APD90 in Koivumäki et al. model [29] whereas up to 59% 

IKr block produces mere 21.8 ± 10% APD90 prolongation in Kernik et al. [28]. Such large 

variations in model behavior could be attributed to the fact that the IKr formulation in 

Koivumäki model was based on adult ventricular myocyte kinetics [30] which was scaled by 

averaging experimental data from seven different sources, experimental conditions of which 

most were “not known”. The Kernik model IKr formulation was parameterized by averaging 

experimental data from four different sources. Moreover, none of these models include 

IKACh, whose channels have recently been found to be present and functional in hiPSC-CMs 

[31]. The inclusion of IKACh, allows for the investigation of the variability in the 

spontaneous beating frequency influenced by parasympathetic influences and/or the 

presence of acetylcholine which have been found to reduce the heart rate.

We implemented a genetic algorithm-based optimization method to fit the experimental I-V 

curves of five key currents in hiPSC-CMs to mathematical formulations from adult human 

atrial and sinoatrial cell models. Our aim was to utilize experimental data from a single 

source to maintain consistent experimental conditions and protocols as far as possible. 

Therefore, we utilized data acquired in our lab on the following five key currents: fast 

sodium current, INa; transient outward potassium current, Ito; L-type calcium current, ICaL; 

rapid delayed rectifier potassium, IKr; and hyperpolarization-activated current, If. The 

Hodgkin-Huxley style characteristic equations of current density as well as activation/

inactivation gating for these currents were formulated. The parameter sets of each current 

formulation were combined together as chromosomes and were optimized heuristically by 

genetic algorithm over 100 generations [32]. The maximum conductances of the remaining 

ionic channels were then scaled based on recommendations from literature to reasonably 

reproduce the experimentally observed hiPSC-CM action potential morphology and 

automaticity. Our numerical model was able to accurately reproduce the experimentally 

recorded AP morphology of hiPSC-CMs as well as their automaticity (Figure 3A). We then 

studied the effects of varying IKr blockade in our model by scaling the maximum 

conductance of IKr (GKr) from 0–100%. It was observed that the APD was prolonged by 

approximately 15% when IKr was blocked completely (Figure 3B). The MDP was elevated 

slightly as the extent of IKr block was increased (Figure 3C) and the basic cycle length of 

spontaneous APs was monotonically increased with the extent of IKr block (Figure 3D). Our 

model qualitatively reproduced the depolarization of the resting membrane potential in 

presence of IKr block. However, it should be noted that the model being generic, did not 

produce the severe effects of long-term IKr block such as triangulation of AP and alternans/

EADs as observed in the experiments which warrants a more systematic in silico 
investigation.

Summary and Conclusions

In hiPSC myocytes, IKr is important in determining the MDP and plays a role in controlling 

action potential duration. Inhibition of this current by low concentrations of E-4031 
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(100nM) results in depolarization of MDP, prolongation of the APD and development of 

EADs. These effects in hiPSC myocytes are in contrast to those seen in adult ventricular 

myocytes. In both guinea pig and rabbit ventricular myocytes, application of 10μM E-4031 

resulted in about a 70ms prolongation of the action potential duration [33] and no 

depolarization of the membrane potential was observed. Similarly, Gintant demonstrated that 

5μM E-4031 applied to canine midmyocardial cells caused a 100 ms prolongation in the 

APD [34]. These results highlight that micromolar concentrations of E-4031 produce modest 

changes in APD in adult myocytes whereas nanomolar concentration produce dramatic 

changes in hiPSC myocytes, namely depolarization of MDP, AP prolongation and EADs. 

The deficiency of several K+ currents important for repolarization (such as IK1 and IKs) is 

likely responsible for the higher sensitivity of hiPSC-CMs to IKr inhibition. It is worth 

noting that canine ventricular myocytes exhibit depolarization of the membrane potential 

and EADs when exposed to combine IKr and IK1 blockade [35].

Safety Pharmacology and the Use of hiPSC-CM to Study IKr?

hiPSC-CM are utilized in many applications such as models of cardiac genetic diseases [36–

38]. In addition, the utilization of hiPSC-CMs for safety pharmacology is becoming more 

attractive as highlighted by the proposed Comprehensive In Vitro Pro-Arrhythmia Assay 

(CiPA) initiative [14]. CiPA aims to examine how pharmaceutical agents bound for 

regulatory submission to the Food and Drug Administration will affect multiple ion channels 

in adult cardiac tissue as well as in stem cell derived human cardiac myocytes. This new 

drug testing paradigm will replace the hERG channel/Purkinje fiber assay to assess potential 

QT prolongation of novel compounds. The use of hiPSC-CMs would seem like the ideal 

experimental model in that large quantities of human cardiac cells can be generated and high 

throughput electrophysiological analysis can be performed. Our experimental and modeling 

results would suggest the hiPSC-CMs are an excellent platform for assessing cardiotoxicity 

as hiPSC-CMs and adult native myocytes exhibit a similar response to selective IKr blockade 

which may facilitate in vitro identification of drug-induced effects. However, since hiPSC 

myocytes have a low repolarization reserve compared to adult ventricular myocytes, this cell 

type has a greater arrhythmogenic potential due to excessive APD prolongation.
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Figure 1: 
APs showing spontaneous activity (Panel A) and triangulation of the hiPSC myocyte AP 

following exposure to E-4031 (Panel B). Repolarization alternans (Panel C) and early 

afterdepolarizations (Panel D) were also observed following application of E-4031.
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Figure 2: 
Representative IKr traces recorded from a hiPSC-CM in the absence (Panel A) and presence 

of the IKr inhibitor E-4031 (Panel B). The voltage clamp protocol is shown at the top of the 

figure. Summary data showing that 100 nM E-4031 decreased the size of IKr tail currents 

(Panel C). *significantly different compared to control.
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Figure 3: 
Computer model outcome. A) AP morphology and spontaneous triggering of APs in 

computer model (blue) compared to experimental data (red). B) AP prolongation at various 

levels of IKr blockade. C) Depolarization of MDP and D) increase in cycle length (CL) of 

spontaneous APs for varying levels of IKr block.
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