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Coastal ecosystems are exposed to multiple anthropogenic stressors. Effective
management actions would be better informed from generalized predictions
of the individual, combined and interactive effects of multiple stressors;
however, few generalities are shared across different meta-analyses. Using an
experimental study, we present an approach for analysing regression-based
designs with generalized additive models that allowed us to capture nonlinear
effects of exposure duration and stressor intensity and access interactions
among stressors. We tested the approach on a globally distributed marine
diatom, using 72 hphotosynthesis andgrowth assays to quantify the individual
and combined effects of three commonwater quality stressors; photosystem II-
inhibiting herbicide exposure, dissolved inorganic nitrogen (DIN) enrichment
and reduced light (due to excess suspended sediment). Exposure to DIN and
reduced light generally resulted in additivity, while exposure to diuron and
reduced light resulted in additive, antagonistic or synergistic interactions,
depending on the stressor intensity, exposure period and biological response.
We thus find the context of experimental studies to be a primary driver of inter-
actions. The experimental and modelling approaches used here bridge the gap
between two-way designs and regression-based studies, which provides away
forward to identify generalities in multiple stressor interactions.
1. Background
Most of Earth’s ecosystems are exposed to multiple stressors [1–3]. Biodiversity
loss or the degradation of ecosystem services cannot be appropriately managed
without approaches that address multiple, interacting stressors. Management of
stressors is vastly improved when the impacts on ecosystems can be predicted
or quantitatively measured [4]. However, in most cases, empirical data on
multi-stressor interactions are lacking, meaning that combined or interacting
effects are not often considered or assessed by management bodies [1,4–6].
Thus, management would benefit from general models that predict how stres-
sors interact, based on theoretical deduction. A common approach to predicting
stressor interactions is to seek generalities through meta-analyses that classify
interactions as additive, antagonistic or synergistic [7]; or, through variations
of this simple scheme [1,4,8]. Additive interactions mean that the combined
effects of stressors are indistinguishable from the sum of their individual
effects on an ecological response, whereas synergism and antagonisms describe
outcomes where the combined effects are more or less than the additive
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response, respectively [4,7]. These classifications are useful, as
each has different implications for conservation and manage-
ment. The most recent reviews have shifted from focusing
solely on synergies, which accelerate the impacts of multiple
stressors on biodiversity [4,9], to also focusing on antagon-
isms [10,11] and other non-additive interactions [12], which
may mitigate future environmental impacts.

A challenge with trying to infer generalities in interaction
types is that meta-analyses are typically unable to capture
important context about the intensity of the stressor or the
timescale of the experiment [10,13,14]. When organisms
respond nonlinearly to stressors, the interaction types that
are analysed with classic additive models will appear to
change with stressor intensity [15]. Further, the interactive
effects of stressors have been shown to vary across levels of
biological organization [4,10]. As such, few generalities in
stressor interactions have emerged from meta-analyses,
which limits our ability to predict interaction types [12].
Overall impacts of stressors on an organism may arise from
physiological (cellular), whole-organism (organismal) and/
or population (community) processes [10–12]. Data and
theory support a greater occurrence of antagonisms at the
community level, versus synergies and additive effects at
physiological and population levels [4,13]. The result of addi-
tive, synergistic or antagonistic interactions at different levels
of biological organization may vary depending on factors
such as stressor magnitude, exposure duration and the
specific endpoint measured [11,16]. For example, measure-
ments of multiple endpoints are required to determine
overall individual and interactive effects between two
common stressors in coastal environments, herbicide pol-
lution and light limitation [17]. For herbicide and reduced
light exposure, multiple endpoints are required to determine
overall individual and interactive effects. This is because
direct measurements of photophysiological responses (i.e.
chlorophyll-a fluorescence) will not account for biochemical
responses such as intracellular damage, which then ultimately
impact whole-organism responses (i.e. growth and mortality)
as secondary sites of impact [11]. Therefore, there is a need
for empirical studies that explore how interaction types
change over multiple levels of biological organization and
over time, and for experiments that use regression-type designs
to study how stressor intensity affects interactions [12,14].

Quantifying how experimental context affects interaction
types has been identified in recent reviews as a key priority
for the field of multiple stressor research [12,14]. Here, we
conducted an experimental study to quantify how interaction
types vary when the globally distributed marine diatom,
Phaeodactylum tricornutumwas exposed to different intensities
of stressors, over acute and chronic exposure periods. Two
biological responses (photosynthetic and growth inhibition)
were used to measure the effects of three common water
quality stressors. These stressors include dissolved inorganic
nitrogen (DIN) enrichment, diuron (a photosystem II (PSII)-
inhibiting herbicide) exposure and light limitation, which
were expected to have both positive and negative effects
on algae growth. These laboratory experiments act as an
environmentally relevant case-study, as degrading water
quality from common anthropogenic inputs has been
identified as a substantial risk to marine and coastal ecosys-
tems, globally [3,18,19]. Pesticides, nutrients and decreased
light (from increased turbidity) are three key stressors threa-
tening coastal ecosystems [20] and are expected to have
interactive effects on primary producers (e.g. marine micro-
algae and seagrass) that vary across different levels of
biological organization [11]. A marine diatom was chosen for
use in this study, as they are important primary producers
that form the base of many food-webs and contribute to nutri-
ent cycling in marine waters [21,22]. Ammonium (NH4

þ) is a
source of inorganic nitrogen that is readily available for
phytoplankton uptake and assimilation [23,24]. Increased tur-
bidity due to elevated total suspended sediments alongside
increased phytoplankton biomass as a result of eutrophication
cause a decrease in the amount of photosynthetically active
radiation available to aquatic photosynthetic organisms such
as seagrasses, macroalgae and microalgae [25–27]. Diuron, a
PSII-inhibiting herbicide, was chosen based on Queensland
catchment and marine monitoring data adjacent to the Great
Barrier Reef (GBR) [20,28–31] that indicates it is one of the
most frequently detected pesticides year-round in waters
entering the GBR [32,33].

The aims of this research were (i) to predict the nonlinear
effects of diuron exposure, DIN enrichment and reduced light
on two response variables, photosynthesis and growth;
(ii) to identify how interaction types for the two response
variables vary over different exposure durations; and (iii)
to compare the interaction types for the two response vari-
ables at the same experimental treatment levels. To address
these aims, we used an experimental study and applied a
novel approach to access stressor interaction types. This
was done by integrating a regression-based block design
with continuous nonlinear modelling, which subsequently
translates the nonlinear effects into a standard interaction-
type classification. This allowed us to assess how interactions
change with experimental context. The innovation of this
study is in the integration of the experimental design with
the statistical framework for nonlinear analysis.
2. Methods
(a) Multi-stressor laboratory-based exposure assays
Marine microalga, P. tricornutum, is a globally distributed
primary producer in estuarine and coastal areas [34] and is
considered to be an excellent model species for assessing
physiological and biological endpoints in laboratory experiments
[35]. P. tricornutum was exposed to diuron (C9H10Cl2N2O;
analytical standard, greater than 95%) with reduced light avail-
ability; and DIN (NH4Cl; analytical standard greater than or
equal to 99.5%) with reduced light availability as detailed in
the electronic supplementary material, S1. Range finding tests
were conducted to identify levels of each stressor that were
likely to cause a 0–90% effect on a sensitive endpoint [36]. Defini-
tive toxicity tests used the level at which an approximately 50%
effect occurred as the highest exposure threshold (to allow for
increased effect when combined with the other stressor). All tox-
icity tests were performed on four separate occasions (blocks),
using independent algae cultures. Paired combinations of environ-
mentally relevant levels of diuron, DIN and light reduction were
tested under laboratory conditions. For the DIN experiments, a
total of nine flasks were used per block, containing two NH4Cl
treatments (2.76 and 27.6 mg l−1) plus an algae control, each at
three light levels of 5, 20 and 80 µmol photons m−2 s−1 (n = 36).
For the diuron experiments, 18 flaskswere used per block, contain-
ing four diuron concentrations (0.1, 0.3, 1 and 3 µg l−1) plus a
methanol control (at 0.08%) and an algae control, each at three
light levels of 5, 20 and 80 µmol photons m−2 s−1 (n = 72).
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Measurements of photosynthetic yield, determined as effective
quantum yield of PSII measured using variable chlorophyll-a flu-
orescence [37], were recorded at 0 (immediately before), 0.3
(immediately after), 2, 24, 48 and 72 h after stressor addition.
Measurements of cell density (growth), determined via measures
of spectrophotometric absorbance at 685 nm (OD685) [34], were
recorded at 0, 48 and 72 h after stressor addition. A regression-
based experimental design was used to enable the study of how
interactions varied at different stressor intensities [14,38].
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(b) Identifying interaction types
The framework used to classify interactions is critical [4,39,40],
because it influences the prevalence of different interaction
types. Here, we developed a nonlinear continuous modelling fra-
mework that (i) enabled us to predict how interactions varied
across time and stressor intensities and (ii) predicted uncertainty
intervals under these different contexts. Gaussian generalized
additive models (GAMs) with identity links were used to
model the interactive effects of multiple stressors (diuron, DIN
and reduced light) on P. tricornutum, for the two biological
response variables across all samples and exposure durations.

The measured biological responses (Rt,i,j) for the growth and
photosynthesis models were cell density and effective quantum
yield, respectively. Cell density values were ln-transformed for
use in the models because algal cells grow exponentially, and
thus, the residuals were heteroscedastic on the untransformed
scale. Models were formulated as per equation (2.1).

Rt,i,j ¼ ci,j þ f1(t)þ f2(Li,Si,t)þ g1(j)þ et,i,j, ð2:1Þ
whereRt,i,j is themeasured biological response at time t in sample i,
and block j (equation (2.1)), c is an offset that accounted for
the starting values of the response (i.e. photosynthetic yield and
ln-transformed cell density, at time zero), for each sample (i), f1(t)
is a one-dimensional thin-plate smoother for time, f2 is a two-
dimensional thin-plate smoother that captured the interaction
between the level of light (Li) in the sample and the level of the
other stressor (Si; either diuron or DIN) at each time point (t); g
is the penalized random effect term to account for natural
differences among blocks ( j ) and ɛ is an error term [41].

Visual checks of the model residuals were undertaken to
ensure that the model was appropriately specified, and that the
assumptions for homoscedasticity, normality and independence
were not violated. These checks revealed all model assumptions
to be verified. The models were fitted with the R statistical
software package, ‘mgcv’ [41].

The mean of the measured biological responses at each time
point (Rt) was predicted with 95% credible intervals computed
using the empirical Bayesian approach, following the resampling
procedure in [41]. We interpreted effect sizes by reference to the
95% credible intervals. The 95% credible intervals are conserva-
tive in that they marginalize over all variation in random
effects, so they represent effect sizes relative to all modelled
sources of variation.

We then predicted the interactive effects from the fitted GAMs.
Interaction effects were measured with a statistic that represented
the type of interactions that would be observed in a two-way
experimental design (IR); equation (2.2)). The IR statistic was pre-
dicted with 95% credible intervals as above. Control treatments
were set at 0 µg l−1 of diuron, 0 mg l−1 of DIN and 80 µmol pho-
tons m−2 s−1 of light. The simple statistic (IR) incorporates the
predictedmean value of the biological response at a time t variable.
We denoted the predicted response values (Y ) asYtA,YtB,YtAB and
YtC, where the terms A, AB and C refer to the treatments with
either stressor A, B, both A and B or the control, respectively.
The IR statistic produced a negative value for a synergistic inter-
action, because the denominator of the fraction is larger than the
numerator (i.e. ln(x) less than 0, when 0 < x <1). Similarly, the IR
statistic produced a positive value for an antagonistic interaction
and zero for no (additive) interaction.

IR ¼ ðln (YtAB)� ln(YtC)Þ � (ðln (YtA)� ln(YtC))

þ ðln (YtB)� ln(YtC)ÞÞ

¼ ln
YtAB=YtC

YtAYtB=Y2
tC

� �
: ð2:2Þ

This approach compares the observed response to the
combined stressors (after accounting for the block and the
starting concentration) to the response predicted by the indepen-
dent action (IA) model of joint action. The IA model is commonly
used in ecotoxicology analyses to quantify the environmental
impact of multiple stressors on organisms [42]. Using our
approach, an IR = 0 characterizes an observed interaction that is
the same as the IA model. This approach was then tested
with simulated data to verify whether it was able to accurately
identify interaction types in idealized scenarios (electronic
supplementary material, S2).
3. Results
(a) Individual and paired responses
Cell density (growth) of the lowest DIN treatment (2.76 mg l−1)
under all light scenarios was similar to the controls (95%
confidence intervals overlapped the means) (figure 1a). Visible
reductions of cell densityoccurred in the highestDIN treatment
(26.7 mg l−1); however, a marked reduction of cell density was
only observed when high DIN was coupled with the lowest
light treatment (5 µmol photons m−2 s−1; figure 1a).

Chlorophyll-a fluorescence (photosynthetic efficiency) of
both DIN treatments was similar to the controls (95% confi-
dence intervals overlapped the means) (figure 1b). When
exposed to increased DIN and reduced light in combination,
photosynthetic efficiency remained high, while cell density
(growth) was reduced (figure 1a,b).

As the intensity of diuron and shading increased, cell
density decreased (figure 2a), with the largest decrease occur-
ring when exposed to 3 µg l−1 diuron and the lowest light
level of 5 µmol photons m−2 s−1. Chlorophyll-a fluorescence
was affected by increasing diuron concentrations (figure 2b),
with the largest decrease in chlorophyll-fluorescence occurring
at 3 µg l−1 diuron and the highest light level of 80 µmol photons
m−2 s−1, compared to the controls. Chlorophyll-a fluorescence
was considerably reduced as early as 2 h following exposure
to high diuron (3 µgl−1) treatments under all light scenarios
(figure 2b).

Photosynthetic efficiency (chlorophyll-a fluorescence) was a
more sensitive endpoint than cell density (growth) when
measuring the individual and paired effects of diuron exposure,
DIN enrichment and reduced light on P. tricornutum. Generally,
the predicted responses were negatively affected when
P. tricornutumwas exposed toDINordiuronunder 5 µmol pho-
tons m−2 s−1, indicating interactions among stressors. For
example, high exposure to diuron had little effect on cell
density (growth) at the higher light levels but the effect was
substantially reduced at the lowest light level (figure 2b).

(b) Interaction responses
There was limited evidence for an interactive effect of DIN and
reduced light on chlorophyll-a fluorescence (figure 3a), as the
credible intervals for IR overlapped 0, and the interaction
between diuron and reduced light was generally additive
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Figure 1. The predicted mean response (solid lines) with 95% confidence intervals (shading) of (a) cell density and (b) chlorophyll-a fluorescence following exposure
to DIN (individual panels; mg l−1) and reduced light (colours; µmol photons m−2 s−1) over time. Dotted horizontal lines indicate the starting cell density in (a) and
chlorophyll-a fluorescence units in (b), at hours = 0 (immediately before stressor addition). The first measurements begin at hours = 0.33 (i.e. approximately 20 min,
or immediately after stressor addition). (Online version in colour.)
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(i.e. approximately 80% of treatments) on chlorophyll-a
fluorescence (figure 3b).

Antagonisms occurred for some diuron and low light
combinations at 24 and 48 h (figure 3b). Notably, all treat-
ment combinations except those with the highest diuron
concentration had antagonisms at 24 h. The strength of the
antagonisms weakened between 24 and 48 h, with some com-
binations shifting to being indistinguishable from additivity.
By 72 h, antagonisms were only marginally significant for the
three lowest diuron concentrations (0.11 to 1 µg l−1) at the
lowest light level (figure 3b).

It is unlikely that the photosynthetic effects of lightwould be
triggered at 0.33 and 2 h, resulting in an antagonistic interaction
or no interactive effect; thus, the outcomes at these time points
should be treated with caution (figure 3a,b). For example,
when high diuron (3 µg l−1) was coupled with low light at
0.33 and 2 h, there was a high probability (greater than 0.99)
of antagonistic effects on photosynthetic inhibition (figure 3b)
which can be explained by the lack of effect from light. When
the effects of light on photosynthetic inhibition begin to occur
at 24 h exposure, all combinations of diuron and reduced light
were highly antagonistic, except for three treatment combi-
nations where the 95% credible intervals overlapped with the
IR equals zero line. The highest diuron concentration (3 µg l−1)
coupled with 20 and 5 µmol photons m−2 s−1 light levels had
median estimated effect values that suggested antagonisms
but with 95% credible intervals that also suggested strong
potential for additivity or synergy (figure 3b). In addition, the
0.33 µg l−1 diuron treatment coupled with 20 µmol photons
m−2 s−1 light had credible intervals that overlapped IR = 0,
meaning the effect could not be statistically differentiated from
an additive interaction (figure 3b).

There was also limited evidence for an interactive effect of
DIN and reduced light on growth inhibition (figure 4a), thus
the interaction could not be distinguished from an additive
null for all treatment combinations over the 72 h exposure
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period. The lack of interactive effects could be explained by
the limited effects of DIN at the intensities tested.

Diuron and reduced light likely had no interactive effect
on growth inhibition at 0.33 and 2 h (figure 4b). At 24 h,
synergistic responses for growth inhibition became stronger
(higher probability) as diuron concentrations increased,
under reduced light and over time (figure 4b). At 20 µmol
photons m−2 s−1 of light and 3 µg l−1 of diuron, growth inhi-
bition was likely to be synergistic at 24 h; however, the
probability of additivity or antagonisms increased at 48 and
72 h (figure 4b). At 5 µmol photons m−2 s−1 light, the high
diuron treatments (1 and 3 µg l−1) were strongly synergistic
for growth inhibition at 48 and 72 h (figure 4b).

Simulation testing of the nonlinear modelling was under-
taken for both endpoints (i.e. photosynthetic and growth
efficiency) by classifying known stressor interactions
(electronic supplementary material, S2). It was found that the
model correctly detected and classified stressor interaction
types with accuracy. The model performed consistently
better than using a raw statistic for both endpoints when the
natural variation was low to moderate, and the stressor inter-
actions were stronger.
4. Discussion
The predicted nonlinear effects of diuron, nutrient (DIN)
enrichment and reduced light on P. tricornutum changed
depending on the duration of the experiment and the intensity
of the stressors. Our approach of applying GAMs to translate
these nonlinear effects into standard interaction types revealed
that non-additive interaction types were more prevalent in the
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diuron and reduced light treatments, compared to the DIN and
reduced light treatments. Generally, DIN and reduced light
resulted in additive interactions, while diuron and reduced
light resulted in additive, antagonistic or synergistic inter-
actions, depending on the stressor intensity, exposure period
and the measured biological response.

Each individual stressor exerts its impact via a specific
mode of action, meaning that the type of interaction observed
is dependent on multiple direct and indirect pathways of
impact [43,44]. It is important to understand the physiology
of the study organism’s response to stressors, as this drives
the nonlinearities in organismal response that underpin gen-
eral patterns with interactions. The interactive effects
observed in this study are consistent with the physiological
responses underlying the algal stress-response, suggesting
that this knowledge of the mode of action will help predict
interactive effects in unmeasured contexts.

Photosynthetic activity is a specific and sensitive bioindi-
cator of plant stress and is quick and easy to measure [45–47].
Photosynthetic efficiency is strongly affected by diuron and
other PSII-inhibiting herbicides, as these herbicides block
electron transport in the PSII-complex, inhibiting photo-
synthesis [48]. Thus, interactive effects for photosynthetic
inhibition were observed much sooner at 2 h or less, com-
pared to that of growth inhibition observed at 24 h or more.
This is because diuron can inhibit photosynthesis almost
immediately, indicating a specific effect on the algae due to
the direct impairment of PSII [49], while later readings may
indicate delayed phytotoxicity and include both specific
and non-specific effects [50]. By contrast, reduced light can
decrease (rather than block) electron transport [51] but
increase effective and maximum quantum yields of PSII—
ultimately leading to increased photosynthetic efficiency
[52,53]. Additionally, pigment content (e.g. chlorophyll) can
increase to compensate for low-light stress, increasing
photon capture that also increases photosynthetic efficiency
[54]. However, high photosynthetic efficiency or pigment
does not necessarily correlate to increased growth.

As exposure to diuron decreases photosynthetic efficiency,
reduced light activates compensatory responses within the
plant that increase photosynthetic efficiency. This compen-
sation may explain the antagonistic interactions that were
observed between the two stressors at 24 to 48 h. Antagonisms
were also predicted when assessing the combined effects of
diuron and low-light stress on photophysiological responses
(i.e. photosynthetic efficiency) and biochemical responses (i.e.
oxidative stress and energetic reserves) [11], which typically
occur within hours to days following exposure [17]. As
exposure to low-light stress gets longer (24 h ormore), compen-
satory photosynthetic responses become exhausted, thus
decreasingphotosynthetic efficiency [55].As a result, ourobser-
vations were consistent with previous hypotheses that the
interactive effect of diuron and low-light stresswould be antag-
onistic at shorter time-scales (i.e. less than 48 h), but switch to
additive or synergistic interactions after longer exposure
durations (i.e. greater than 24 h) [11].

The strong synergistic effects on growth when algae were
exposed to high diuron concentrations and the low-light
levels were consistent with earlier hypotheses of synergistic
interactions as the stressor magnitudes intensify [11], and
are consistent with literature findings that reported a lower
toxic response when marine microalgae were exposed to a
mixture of PSII-inhibiting herbicides in lower light
conditions, compared to higher light conditions [56].
Growth inhibition of microalgae is influenced by multiple
underlying physiological responses. Diuron and/or low-
light stress both impact photophysiology (photosynthetic
efficiency), as found in this study, but also biochemistry (pig-
ment content, reactive oxygen species (ROS) and oxidative
stress) and whole-plant (growth and mortality) responses
[17]. Diuron inhibits photosynthesis and increases the for-
mation of ROS [48,57], where chronic low-light stress may
maintain or reduce ROS concentrations via increased ROS-
scavenging enzymes [58–60]. Prolonged exposure to elevated
concentrations of ROS can cause irreversible cell damage, inhi-
bit growth and lead to cell death [57]. As the effects of low-light
stress generally take longer to appear (more than 24 h) and
cytotoxic responses (i.e. cell damage) occur after approximately
24 h of exposure, all compensatory processesmentioned earlier
would likely be exhausted. Therefore, the synergywe observed
at longer exposure durations and higher stressor intensities
may be explained by multiple physiological pathways for
diuron and low-light stress, which negatively affect growth.

Multi-stressor studies are simplifications of complex
systems and therefore have several limitations. First, meta-
analyses from laboratory-based experiments should be
interpreted with caution, as the extrapolation of laboratory
conditions to field scenarios is challenging [8]. For example,
the frequency and intensity of co-occurring stressors vary
both spatially and temporally; however, laboratory exper-
iments do not yet capture that degree of complexity [14].
Second, multi-stressor experiments are laborious and costly,
often leading to low levels of replication that can hinder the
detection of true stressor interactions [61]. Future studies
would benefit from measuring additional biological, physical
and/or chemical response variables such as ROS and photo-
synthetic pigments or by-products of chemical reactions, to
further understand the interactive effects of PSII-inhibiting her-
bicides, reduced light and increased DIN. Finally, increasing
the size of the experimental dataset may decrease parameter
uncertainty and credible intervals within the modelling com-
ponent of this study. This means that replicating experiments
would help strengthen generalities in nonlinear effects [61].
5. Conclusion
Previous studies have called for regression-based experimental
designs to predict interaction types among multiple stressors
[12,14], because interaction types will vary with experimental
context such as stressor intensity and the exposure duration
at which responses are measured [12,16,62]. This study
showed howGAMs can be applied to translate nonlinear stres-
sor effects into a common interaction classification, to illustrate
the importance of experimental context when determining
interaction types. Interaction types were not consistent across
the different experimental treatments, and notably could
change for different response variables measured at the same
time. These changes were explained by the physiological pro-
cesses underlying the algae stressor responses. These results
emphasizewhymeta-analyses of interaction types have largely
failed to find generalities across studies that used simple two-
way designs, because interactions are an emergent outcome
of organism responses that change depending on stressor
intensity and exposure duration. Thus, we concur with calls
for future experimental studies to use regression-based designs
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[12,14] and nonlinear modelling [15]. With sufficient studies,
meta-analyses should classify interactions based on contextual
variables and the underlying stressor/s mode of action. This
approach will help advance predictive models for stressor
responses that are required for the management of important
ecosystems facing multiple stressors, such as the GBR.
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