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Introduction

Aging is a complex, inevitable biological process induced 
by a wide variety of genetic, temporal, environmental and 
other factors. It is one of the primary risk factors for the 
progression of cardiovascular diseases such as hyperten-
sion and atherosclerotic vascular disease, independently 
from traditional risk factors.1 With aging, the arterial 
endothelia, vascular walls and adventitia undergo struc-
tural, mechanical and functional changes that induce vas-
cular stiffening and increased vascular tone; these changes 
are characterized by endothelial dysfunction,2 thickening 
of the vascular wall3 and remodeling of the adventitial 
extracellular matrix,4 respectively. Endothelial dysfunc-
tion has been widely recognized as a key contributor to 
this process of vascular aging.5

Multiple mechanisms are involved in aging-related 
endothelial dysfunction, including reduced nitric oxide 
(NO) dilator activity, increased reactive oxygen species 

(ROS), the stimulation of proinflammatory cytokines, and 
accelerated endothelial cell senescence; however, most 
important is the activation of the renin-angiotensin system 
(RAS), which plays a central role in the regulation of 
endothelial function.6–9 Increased RAS activity has been 
widely described in association with the onset and progres-
sion of vascular aging, and RAS blockade has been shown 
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to protect against aging-related deleterious effects and to 
promote longevity.10–11 Although the molecular mecha-
nisms of vascular aging have been well investigated, effec-
tive therapeutics are extremely scarce and interventions 
are limited to the improvement of lifestyle habits, such as 
engaging in moderate exercise and limiting caloric 
intake.12–13 With the continuous increase in the proportion 
of the population who are elderly, there is a great need for 
interventions in vascular aging.

Sulfur dioxide (SO2) has traditionally been thought of 
an industrial waste gas that can cause respiratory and car-
diovascular diseases with chronic exposure.14 However, 
in recent years, increasing evidence suggests that SO2 
could not only be endogenously generated from the oxida-
tion of sulfur-containing amino acids, such as cysteine 
and homocysteine, catalyzed by aspartate aminotrans-
ferase (AAT) in the cardiovascular system,15 but may also 
play an important physiological role in maintaining 
homeostasis, including regulating heart rate,16 vasodila-
tion17 and negative regulation of cardiac function.18 An 
increasing number of studies have shown that endogenous 
SO2 also participates in many pathophysiological pro-
cesses related to vascular diseases. It can attenuate 
increased blood pressure and vascular remodeling in 
spontaneously hypertensive19 and hypoxic pulmonary 
hypertensive rats,20 and it significantly ameliorates vascu-
lar calcification in association with downregulation of the 
TGF-β/Smad pathway.21 Studies have also found that the 
downregulation of the SO2/AAT pathway is involved in 
the pathogenesis of atherosclerosis.22 In addition, a recent 
study reported that SO2 attenuates vascular smooth mus-
cle cell proliferation in angiotensin II (Ang II)-induced 
hypertensive mice.23 However, although many studies 
have revealed various cardiovascular protective effects of 
SO2, its action on vascular aging, especially on aging-
related endothelial dysfunction, has not been fully inves-
tigated, and the underlying mechanisms remain to be 
established.

With this in mind, the aim of this study was to investi-
gate a possible role of SO2 in aging-related endothelial 
dysfunction by using an animal model of aging induced by 
D-galactose (D-gal). Moreover, we attempted to explore 
whether SO2 exerts its protective effects via downregulat-
ing of the Ang II/Ang II type 1 receptor (AT1R) pathway.

Materials and methods

Animals and experimental protocol

Eight-week-old male Sprague Dawley rats were pur-
chased from Vital River Laboratories and housed under 
constant environmental conditions (12-hour light/dark 
cycle) in a temperature controlled (22 ± 1°C) facility with 
free access to water and food. All animal experimental 
procedures were performed according to the Guide for the 
Care and Use of Laboratory Animals of the US National 

Institutes of Health (NIH) (publication number 85-23, 
revised 1996).

A total of 24 rats were randomly divided into three 
groups with eight rats in each group: control, D-gal, and 
D-gal + SO2. The rats in the D-gal and D-gal + SO2 groups 
were injected subcutaneously daily with D-gal (150 mg/kg) 
dissolved in saline for 8 consecutive weeks, and the control 
group rats were administered the equivalent volume of 
saline. In the D-gal + SO2 group, sodium sulfite (Na2SO3) 
and sodium bisulfite (NaHSO3) were used as the SO2 
donors (molar ratio of Na2SO3 and NaHSO3 was adjusted 
to 3:1, pH 7.4), and were administered intraperitoneally at 
a dose of 85 mg/kg daily for 8 consecutive weeks. The con-
trol and D-gal group rats were intraperitoneally adminis-
tered with the equivalent volume of saline at the same time 
points.

Measurement of blood pressure

After eight weeks, mean arterial pressure (MAP) was 
measured noninvasively by tail-cuff plethysmography 
(BP-100A, Chengdu, Sichuan, China) after the rats were 
stabilized and remained quiescent. The value was taken as 
the average of at least three measurements after removing 
the outliers and any readings associated with excess noise 
or animal movement on each occasion.

Rat aorta preparation and isometric force 
studies

After 8 weeks, the rats were sacrificed by CO2 suffocation, 
and the thoracic aorta was dissected, cleaned of connective 
tissue and cut into ring segments (3 mm lengths). Then 
vasodilatation function was assessed in these isolated 
intact thoracic aortic rings, as previously described.24 
Briefly, an optional baseline tone of 2 g was applied to all 
rings as a resting tension. After 60 min equilibration, arter-
ies were precontracted with phenylephrine (1 μmol/L). 
When the steady contraction was achieved, acetylcholine 
(ACh, 10−8~10−4 mol/L) or sodium nitroprusside (SNP, 
10−9~10−6 mol/L) was added in a cumulative manner to 
record the endothelial-dependent relaxation or endothe-
lial-independent relaxation response curve. The extent of 
relaxation was expressed as the percentage of the relaxa-
tion arising from a submaximal phenylephrine-induced 
constriction.

Measurement of plasma Ang II level

Radioimmunoassay was used to measure plasma Ang II 
concentration. Blood samples were collected and centri-
fuged at 3000 r/min for 15 minutes at 4°C. The plasma was 
collected and detected with an Ang II radioimmunoassay 
kit (China Institute of Atomic Energy, Beijing, China), 
according to the manufacturer’s instructions.
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Measurement of ROS and antioxidant enzyme 
activities

The thoracic aortas were dissected and snap-frozen at 
−80°C. After homogenization with 50 mmol/L potassium 
phosphate buffer and centrifugation at 10,000 × g for 5 min, 
hydrogen peroxide (H2O2) and malondialdehyde (MDA) 
concentrations, as well as superoxide dismutase (SOD) 
activities, in the supernatant were measured with the cor-
responding assay kits (Jiancheng Bioengineering Institute, 
China), according to the manufacturer’s instructions. These 
indicators were all standardized by protein content, deter-
mined using a bicinchonininc acid (BCA) protein assay kit.

Measurement of plasma NO concentration

Plasma NO concentrations were determined with commer-
cially available kits (Jiancheng Biomedical Engineering, 
China), according to the manufacturer’s instructions.

Western blot analysis

Protein extracted from the thoracic aorta was quantified using 
BCA reagent and protein samples (50 μg/lane) were subjected 
to 10% sodium dodecyl sulfate-polyacrylamide gel electropho-
resis gels, transferred to polyvinylidene fluoride membranes 
and blocked with 5% nonfat milk for 1 hour. The membranes 
were then incubated overnight at 4°C with primary antibodies: 
Nox2, Nox4, AT1R, SOD1, endothelial nitric oxide synthase 
(eNOS) (1:1000, Abcam, USA) and phosphorylated eNOS 
(p-eNOS) (Ser1177, 1:1000, Abcam, USA), with glyceralde-
hyde 3-phosphate dehydrogenase as the internal control 
(1:2000, Proteintech, USA). After washing with Tris-buffered 
saline with Tween three times, the membranes were then incu-
bated with horseradish peroxidase-conjugated secondary anti-
bodies at room temperature for 1 hour. Target bands were 
detected with SuperSignal West Pico Chemiluminescent 
Substrate (Thermo Scientific-Pierce, USA). The band intensity 
was quantified using Image J software.

Statistical analyses

Results were expressed as means ± SEMs. Statistical anal-
ysis was performed using an SPSS software package, ver-
sion 17.0 (SPSS, Inc., Chicago, IL, USA). The results for 
three or more groups were compared using one-way analy-
sis of variance followed by a Student–Newman–Keuls 
test. Comparisons between two groups were made using 
the Students’ t-test. p < 0.05 was considered significant.

Results

SO2 attenuated the impairment in endothelial 
function in D-gal-induced aging rats

After 8 weeks of treatment, there was a significant increase 
in MAP (Figure 1(a)) in the D-gal group (99.38 ± 2.71 

mmHg) compared with the control group (81.13 ± 2.70 
mmHg, p < 0.01), but 8 weeks of SO2 treatment signifi-
cantly decrease the MAP in D-gal-induced aging rats 
(89.25 ± 3.03 mmHg, p < 0.05).

Isometric studies showed impairment of ACh-induced 
relaxation in the aortas of the D-gal group rats (Emax 
64.87 ± 5.67 % vs 91.75 ± 4.19 % in the control group, p < 
0.05). Treatment with SO2 for 8 weeks markedly improved 
ACh-induced endothelium-dependent relaxation (85.02 ± 
4.58 %, Figure 1(b)). In contrast, SNP-induced endothe-
lium-independent relaxation showed no difference 
between the groups (Figure 1(c)).

SO2 upregulated the eNOS/NO pathway in 
D-gal-induced aging rats

As shown in Figure 2(a), the plasma NO concentration 
was significantly lower in the D-gal group rats than those 
in the control group (22.66 ± 2.42 μmol/L vs 38.74 ± 2.98 
μmol/L, p < 0.01). Meanwhile, p-eNOS at the activation 
site of Ser1177 was also decreased in the aortas of the 
D-gal group rats (p < 0.01) (Figure 2(b)). Eight weeks of 
SO2 treatment significantly reversed the downregulation 
of p-eNOS (p < 0.05) and increased the plasma NO con-
centration (p < 0.05)

SO2 resists oxidative stress in D-gal-induced 
aging rats

There was a significant increase in oxidative stress 
reflected by the increased levels of H2O2 and MDA in the 
aortas of the D-gal group rats compared with the control 
group (both p < 0.01), but these increases were markedly 
attenuated in the D-gal + SO2 group (both p < 0.05), indi-
cating that SO2 prevented oxidative stress injury in D-gal-
induced aging rats (Figure 3(a) and (b)).

Concomitant with the increased H2O2 and MDA levels, 
there was a significant decrease in the activity of the anti-
oxidant enzyme SOD in the D-gal group compared with the 
control group (19.44 ± 2.17 U/mg protein vs 29.64 ± 5.30 
U/mg protein, p < 0.05), while treatment with SO2 did not 
change the activity and protein expression of SOD in the 
aortas of D-gal-induced aging rats (Figure 3(c) and (e)).

However, western blot analysis showed that the protein 
level of nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase subunits Nox2 and Nox4 were elevated in 
the thoracic aortas of the D-gal group rats, but that this increase 
was reduced in the D-gal + SO2 group (Figure 3(f) and (g)).

SO2 inhibited the Ang II/AT1R pathway in D-gal-
induced aging rats

As is shown in Figure 4(a), the plasma concentration of 
Ang II was significantly increased in the D-gal group com-
pared with the control group (124.49 ± 8.84 pg/mL vs 
86.50 ± 7.53 pg/mL, p < 0.01). However, treatment with 
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SO2 for 8 weeks lowered the Ang II level to 99.79 ± 5.88 
pg/mL (p < 0.05).

Western blot analysis (Figure 4(b)) was used to deter-
mine AT1R protein expression in the thoracic aorta in the 
three groups of animals. The results showed that the pro-
tein levels of AT1R were elevated in the D-gal group rats 
compared with the control group (p < 0.01), and that this 

overexpression was reversed in the D-gal + SO2 group (p < 
0.05).

Discussion

The two main findings of the present study were that: (a) 
SO2 improved the endothelium-dependent relaxation of 

Figure 1. Sulfur dioxide attenuated the impairment in endothelial function in D-galactose-induced aging rats.
(a) The changes of mean arterial pressure. (b) Acetylcholine-induced endothelium-dependent relaxation in the thoracic aorta. (c) Sodium nitro-
prusside-induced endothelium-independent relaxation in the thoracic aorta. Results are means ± SEMs. *p < 0.05 vs control group; #p < 0.05 vs 
D-galactose group. A p of < 0.05 was considered significant.
Ach: acetylcholine; D-Gal: D-galactose; SNP: sodium nitroprusside; SO2: sulfur dioxide.

Figure 2. Sulfur dioxide upregulated the endothelial nitric oxide synthase/nitric oxide pathway in D-galactose-induced aging rats.
(a) Nitric oxide levels in plasma. (b) Representative western blots and quantitative analysis for phoshorylated/nonphosphorylated endothelial nitric 
oxide synthase expression. Results are means ± SEMs. A p of < 0.05 was considered significant.
D-Gal: D-galactose; eNOS: endothelial nitric oxide synthase; NO: nitric oxide; p-eNOS: phosphorylated eNOS; SO2: sulfur dioxide.
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Figure 3. Sulfur dioxide resisted oxidative stress in D-galactose-induced aging rats.
(a) Hydrogen peroxide levels in the thoracic aorta. (b) Malondialdehyde levels in the thoracic aorta. (c) Superoxide dismutase activity in the thoracic 
aorta. (d) Representative western blots for SOD1, Nox2 and Nox4 protein expression in the thoracic aorta. Glyceraldehyde 3-phosphate dehydro-
genase was used as the internal control. (e)–(g) Quantitative analysis of SOD1, Nox2 and Nox4 protein expression in the thoracic aorta. Results are 
means ± SEMs. A p of < 0.05 was considered significant.
D-Gal: D-galactose; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; H2O2: hydrogen peroxide; MDA: malondialdehyde; SO2: sulfur dioxide; 
SOD: superoxide dismutase.
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the aging aortas and (b) that SO2 downregulated the Ang 
II/AT1R pathway and oxidative stress in a rat model of 
aging induced by D-gal. Taken together, the results suggest 
that SO2 could improve aging-related endothelial dysfunc-
tion by inhibiting oxidative stress injury by downregulat-
ing the Ang II /AT1R pathway in D-gal-induced aging rats. 
Moreover, the findings suggest a potential role for SO2 in 
clinical interventions to reverse the adverse Ang II profile 
in aged populations.

Advancing age is a complex and irreversible process in 
which a progressive loss of physiological integrity results 
in functional impairment and decreased quality of life. 
Age-related alteration of the structure and function of the 
vasculature is a dominant risk factor for cardiovascular 
diseases, the leading cause of death worldwide. Given the 
increasing elderly population, interventions to combat vas-
cular aging could not only improve the health of the elderly 
but might also extend their life span by delaying cardio-
vascular disease-related deaths.

Several animal models have been used to gain a better 
understanding of aging and to help establish methods to 
prevent its effects on various organs. Amongst these, the 
D-gal-induced aging model is the most common model for 
mimetic aging.25–27 D-gal, a reducing sugar normally pre-
sent in the body, can be oxidized by galactose oxidase to 
form H2O2, leading to oxidative stress, inflammation and 
apoptosis at high levels.28 Evidence has shown that abnor-
mal D-gal metabolism can cause aging-related changes, 
and that D-gal-induced aging rodents exhibit features that 
are in many ways markedly similar to those of rodents that 
have aged naturally.29 Therefore, the chronic injection of 
D-gal has been regarded as an ideal model for studying the 
possible mechanisms of aging-related diseases, especially 
for vascular aging.30

In the current study, chronic systemic D-gal exposure for 
8 weeks resulted in impaired endothelium-dependent vas-
orelaxation with an associated increase in blood pressure, 

but there were no changes in endothelium-independent 
relaxation. Our data were consistent with several previous 
studies on vascular aging, which showed a linear rise in sys-
tolic blood pressure induced by arterial stiffness and a con-
current increase in diastolic blood pressure resulting from 
endothelial dysfunction-induced high peripheral vascular 
resistance with advancing age.31 Long-term treatment with 
SO2 can notably ameliorate all the D-gal-induced changes. 
SO2 has historically been regarded as a toxic gas and envi-
ronmental pollutant. However, research in recent years has 
demonstrated that it is endogenously synthesized during the 
oxidation of sulfur-containing amino acids by AAT in mam-
malian tissues. Endogenous SO2 is now regarded to be the 
fourth gasotransmitter after NO, carbon monoxide and 
hydrogen sulfide, and it performs various important regula-
tory functions that maintain homeostasis.32–34 Increasing 
numbers of studies have shown that SO2 participates in 
pathophysiological processes related to various vascular 
diseases. In spontaneously hypertensive and pulmonary 
hypertensive rats, the SO2/AAT pathway is significantly 
downregulated, accompanied by an increase in blood pres-
sure; however, treatment with SO2 can attenuate the increase 
in blood pressure through its vasorelaxant effect and can 
inhibit vascular remodeling by suppressing the proliferation 
of vascular smooth muscle cells, promoting apoptosis and 
inhibiting the synthesis of extracellular collagen while pro-
moting its degradation.35–37 The findings of the present 
study clearly demonstrate that SO2 can, to some extent, 
improve endothelial dysfunction, one of the major vascular 
changes caused by D-gal-induced aging; however, the spe-
cific molecular mechanisms for this remain to be 
established.

Under healthy conditions, the endothelium plays a piv-
otal role in maintaining vascular homeostasis, attributed to 
the balance between the production of endothelium-
derived relaxing factors and contracting factors. NO pro-
duced by eNOS is a major endothelium-derived relaxing 

Figure 4. Sulfur dioxide inhibited the Ang II/AT1R pathway in D-galactose-induced aging rats.
(a) Angiotensin II levels in the plasma. (b) Representative western blots and quantitative analysis for AT1R expression. Results are means ± SEMs. A 
p of < 0.05 was considered significant.
Ang II: angiotensin II; D-Gal: D-galactose; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; SO2: sulfur dioxide.
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factor, and it has been proposed that the decreased bioa-
vailability or synthesis of NO is a common molecular 
mechanism underlying predisposition to aging-dependent 
disorders, including endothelial dysfunction.38 Thus, new 
strategies to restore NO bioavailability may have thera-
peutic benefit. Our results showed that the plasma NO 
concentration decreased after treatment with D-gal alone, 
but that this decrease was significantly attenuated when 
SO2 was administered concomitantly with the D-gal. This 
indicated that SO2 could improve D-gal-induced endothe-
lial dysfunction by increasing NO concentrations. 
Similarly, Lu et al. observed that SO2 reduced blood pres-
sure and increased vasorelaxation in spontaneously hyper-
tensive rat arteries by increasing the NO level in the aortic 
tissues.19 In the endothelial cells, NO is endogenously pro-
duced from L-arginine by eNOS, one of three NOSs, with 
the formation of L-citrulline. A further finding of the pre-
sent study was that the phosphorylation of eNOS at the 
activation site of Ser1177 decreased in D-gal-induced 
aging rat aortas and that SO2 treatment significantly 
reversed the downregulation of p-eNOS. These results are 
consistent with the study by Li et al.,39 who reported that 
SO2 could upregulate the eNOS-NO-cyclic guanosine 
monophosphate pathway, resulting in vasodilation. They 
also found that SO2 could increase the NO/eNOS pathway 
and significantly reduce atherosclerotic lesions.22 
Conversely, the excessive generation of ROS can impair 
NO availability. Oxidative stress induced by increased 
oxygen-derived free radicals is widely acknowledged to be 
an important factor associated with the aging process. 
Excess superoxide (O2-) can react with NO to produce per-
oxynitrite (ONOO-), a powerful oxidant that impairs 
endothelial cell function and results in vascular aging.40 
This reaction can reduce NO bioavailability, which then 
increases vascular tone and blood pressure. We therefore 
investigated the antioxidant effects of SO2 in D-gal-
induced aging rats. Our results suggested that SO2 could 
reduce the levels of two final products of lipid oxidation, 
MDA and H2O2, to reduce the oxidative stress injuries 
induced by the presence of D-gal. As a reductant, the anti-
oxidant effects of SO2 have been confirmed by a growing 
number of articles,41–42 although the detailed mechanisms 
remain unclear.

ROS are oxygen-containing chemically reactive mole-
cules. The mitochondria, endoplasmic reticulum and 
NADPH oxidase system are the major sites for the genera-
tion of ROS, which are produced by cellular respiration, 
metabolism and phagocytosis. O2- generated by NADPH 
oxidase is converted by SOD to H2O2, which can then be 
converted either to H2O by catalase or to hydroxyl radicals 
in the presence Fe2+. Further, H2O2 can also be reduced by 
antioxidants such as glutathione peroxidase.43 An imbal-
ance between prooxidant stimuli and antioxidant defenses 
can result in cellular damage referred to as oxidative stress. 
Jin et al.44 reported that SO2 preconditioning increased 

plasma SOD, GSH and GSH-Px levels, and myocardial 
SOD1 protein expression, in rat with myocardial ischemia-
reperfusion injury. We attempted to verify whether SO2 
increased the antioxidative capacity of the aortas of D-gal-
induced aging rats by upregulating the expression or 
increasing the activity of SOD1. We found that treatment 
with SO2 did not affect the activity and protein expression 
of SOD1, which were reduced in both groups of rats treated 
with D-gal. This implied that the inhibition of ROS by SO2 
takes place via a different pathway, with further study 
needed.

Several studies have reported that the mitochondrial 
and membrane NADPH-oxidase complexes are the major 
enzymatic sources of ROS production in vascular cells. 
Nox proteins, the catalytic subunits of NADPH oxidase, 
produce high levels of extracellular O2- by transferring an 
electron to oxygen. Nox upregulation has been implicated 
in the oxidative stress that is related to the pathogenesis of 
several age-related diseases such as hypertension, diabetes 
and atherosclerosis. Nox isoforms include Nox1, Nox2, 
Nox4 and Nox5, of which Nox2 and Nox4 are the most 
important isoforms in vascular cells.45 In the present study, 
we measured the expression of Nox2 and Nox4 and found 
that treatment with D-gal alone significantly increased the 
protein expression levels of Nox2 and Nox4 in aortic tis-
sue, but that concomitant treatment with SO2 normalized 
the expression levels. There is a large body of evidence in 
support of chronic elevation of Ang II activating intracel-
lular NADPH oxidase via AT1R to generate O2- during the 
process of aging.46–47

The RAS is widely recognized as a key factor con-
tributing to the pathophysiological processes of various 
aging-related disorders. Ang II is a key regulator of cell 
senescence, and the activation of AT1R signaling is a 
form of stimulation that promotes aging. Increased Ang 
II levels and markedly upregulated AT1R can be found 
in the aged arterial wall.48–49 However, several studies 
have shown that chronic treatment with ACE inhibitors 
and AT1R antagonists can prevent the ultra- and micro-
structural age-related changes and extend life  
span.50–51 Consistent with this, mice null for AT1R show 
increased longevity.52 Furthermore, AT1R deletion 
results in a decrease in the age-related progression of 
atherosclerosis.53 Consistent with the previous obser-
vation, we found that the plasma Ang II levels and the 
expression of AT1R protein in the vasculature were 
elevated in D-gal-induced aging rats as compared with 
those in the control group, but that treatment with SO2 
could suppress the increased activity of the RAS. Chen 
et al. have reported that SO2 prevented Ang II-induced 
myocardial hypertrophy accompanied by downregulat-
ing cardiomyocyte autophagy.54 SO2 also can inhibit 
extracellular signal-regulated kinase signaling to atten-
uate vascular smooth muscle cell proliferation in Ang 
II-induced hypertensive mice.23
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The present study had several limitations. Importantly, 
we did not test the endogenous SO2 levels in either the tis-
sue or the plasma. Whether changes in endogenous SO2 
levels cause or are the consequence of the pathological 
state is not well understood. Further studies are therefore 
needed to explore the roles of endogenous SO2 in the 
pathogenesis of D-gal-induced aging. In addition, if SO2 is 
to be used for clinical treatment, it is important its highly 
toxic actions at supraphysiological levels are fully consid-
ered, and great care should be taken during the develop-
ment of SO2-based therapeutic agents. Thus, there is still a 
long way to go.

Conclusion

In conclusion, the findings of this study suggested that SO2 
could attenuate the endothelial dysfunction observed in 
D-gal-induced aging rats, which might be associated with 
the inhibition of oxidative stress, the downregulation of 
Ang II and the expression of AT1R. These findings pro-
vided evidence that SO2 could become a potential thera-
peutic approach for aging patients presenting with 
endothelial dysfunction.
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