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Highlights
Infectious diseases greatly impact
human health, biodiversity, and global
economies, highlighting the need to
understand and predict their
distributions.

Ecological niche modeling (ENM) was
not originally designed to explicitly
reconstruct complex biological phe-
nomena such as diseases or parasit-
ism, requiring a reevaluation of the
traditional framework.

We provide an integrative ENM frame-
work for disease systems that consid-
ers suitable host availability, parasite
ecologies, and different scales of
modeling.

Disease transmission is driven by fac-
tors related to parasite availability and
host exposure and susceptibility,
which can be incorporated in ENM
frameworks.
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Ecological niche modeling (ENM) is widely employed in ecology to predict
species’ potential geographic distributions in relation to their environmental
constraints and is rapidly becoming the gold-standard method for disease risk
mapping. However, given the biological complexity of disease systems, the
traditional ENM framework requires reevaluation. We provide an overview of
the application of ENM to disease systems and propose a theoretical frame-
work based on the biological properties of both hosts and parasites to produce
reliable outputs resembling disease system distributions. Additionally, we
discuss the differences between biological considerations when implementing
ENM for distributional ecology and epidemiology. This new framework will help
the field of disease ecology and applications of biogeography in the epidemi-
ology of infectious diseases.

Challenges and Opportunities to Map Disease Risk
The recent rise of emerging infectious diseases (EIDs) (see Glossary) [1] has increased the
burden of infectious diseases and negatively impacted the global economy [2–5]. Approxi-
mately 60% of emerging human diseases are caused by pathogenic parasites of animal origin
(zoonoses), particularly wildlife [6]. As human activities intensify, contact with wildlife and
exposure to novel parasites increase, potentially driving zoonotic disease emergence [1,7].
Given the threat that EIDs pose to human populations, understanding the underlying drivers of
parasite geographic distribution and their spillover to humans is particularly relevant for
epidemiologists, public-health practitioners, and policy makers [9].

Ecological niche modeling (ENM) has proven useful to forecast the distribution of a vast
number of organisms [10–13] and is increasingly employed to predict parasite distributions
locally and globally [14–17]. Despite great strides made in the implementation of ENM to
forecast complex biological phenomena such as disease systems [18], traditional frame-
works may render biologically unrealistic predictions and thus must be revised, as we show in
this review. We provide an overview of the current state of disease ENM and propose a
framework based on the biological properties of both parasites and hosts to produce reliable
outputs resembling disease systems distributions. Specifically, our theoretical framework: (i)
addresses the selection of an appropriate modeling approach and highlights the importance of
including biologically sound predictor variables; (ii) proposes the concept of a microscale
parasitic niche defined by host traits to identify relevant parasite–host associations; and (iii)
integrates traditional parasite ENM with the proposed microscale niche to better understand
geographic distributions and improve fine-scale predictions of disease transmission risk.

ENM and Biotic Interactions
ENM estimates the distributions of species by linking their geographic occurrence with their
environmental constraints, often utilizing correlative approaches (detailed explanations in [18]).
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Glossary
Allee effect: correlation between
population size or density and the
per capita growth rate (mean
individual fitness) of a population.
Basic reproductive number (R0):
expected number of secondary
cases caused by a single infectious
individual in a population.
Biotic, abiotic, and movement
(BAM) framework: simplified
representation of a species’
geographic distribution determined
by the intersection of suitable abiotic
conditions (A), biotic interactions (B),
and the species’ dispersal capacity
(M).
Bridge host: host population
capable of facilitating transmission
between two otherwise
geographically disconnected
maintenance and target populations.
Coinfection: simultaneous infection
of a host by multiple parasite
species.
Disease system: set of species,
including parasites, susceptible
hosts, and vectors, involved in the
maintenance, transmission, and
expression of a disease.
Ecological niche modeling (ENM):
computational method used to
predict species geographic
distributions by combining factors
A plethora of algorithms is available to perform ENM (e.g., MaxEnt, Regression Trees) and
methods for the development of accurate models have been described at length (see [19,20]
for comparisons). Ecological interactions are hypothesized to affect species distributions only
locally (i.e., the Eltoniannoise hypothesis [10]) and areusually considered irrelevant in traditional
coarse-scale ENM applications [10,21]. However, growing evidence suggests that biotic inter-
actions may have a larger role in shaping broad-scale species distributions, especially under
changing conditions (e.g., climate change) [10,22–24]. For example, continental-scale distribu-
tions of the North American warbler are better explained when coupling biotic interactions (e.g.,
vegetation requirements) with abiotic factors (climate data) [23]. Biotic interactors can be included
in ENM by incorporating interacting species as predictor variables (preprocessing), restricting the
distribution of the focal species to regions where interactions may occur (post-processing), and
linking demographic population models to the final ENM [10,25–27].

Modeling Disease Systems
The two most common disease distribution modeling methods are black-box and component-
based approaches (Table 1; [18]). Black-box approaches model the overall geographic
distribution of a final manifestation of host–parasite interactions (e.g., disease outbreaks),
assuming that this outcome summarizes all biotic interactions involved in transmission [28–
30]. This approach provides a pragmatic framework to generalize disease distributions and is
useful when transmission dynamics are poorly understood and data are limited, which is
frequently the case for EIDs [31]. However, the black-box oversimplification may be perilous as
it neglects ecological complexity (e.g., the identity of key host species for transmission).
Alternatively, component-based approaches consider the individual ecologies of all species
involved in disease transmission (e.g., parasites, hosts) [16,17,32]. This approach allows the
identification of host species and prioritization of areas for disease surveillance and control.
Component-based approaches require in-depth knowledge of the disease system (e.g., the
identity and ecologies of relevant species, transmission cycle), which may not be readily
related to a species’ environmental
requirements with those related to
occurrence and dispersal.
Ecophylogenetics: field in biology
that focuses on the study of
ecological patterns in biological
communities (e.g., community
assembly, species co-occurrence)
explained by the evolutionary
relationships among coexisting
species.
Eltonian noise hypothesis:
ecological hypothesis stating that
local-scale ecological interactions
have negligible effects on a species’
geographic distribution.
Emerging infectious disease
(EID): diseases that have increased
in incidence or geographic range,
found in novel hosts or caused by
newly evolved parasites.
Exposure: likelihood of contact
between a target population and
hazards. The degree of exposure will
depend on the contact rate, the
parasite’s transmission mechanism,
and the nature of a contact event.

Table 1. Applications of ENM Frameworks to Describe and Predict Disease Distributions

Modeling approach Description Advantage Limitation

Black box Considers disease
system as an
epiphenomenon, using
disease cases as
occurrences to calibrate
the model; for examples
see [28–30]

Useful when information
on the disease system is
limited or for exploratory
analysis to identify
potential areas for
disease surveillance

Ecologically relevant information
on disease transmission is limited;
location of disease cases may not
represent site of infection, limiting
transmission risk estimates.
Sampling biases amplify
inaccuracies in model
predictions.

Componentbased Considers key species
involved in disease
system (e.g., hosts,
vectors, parasite); for
examples see [16,17,32]

Useful in designing
evidence-based control
strategies and detailed
identification of potential
transmission areas to
allocate resources for
surveillance

Deep understanding of the natural
history of the disease is necessary
(e.g., all hosts are known).
Exclusion of key species when
modeling a disease system may
underestimate risk.
Assumes that the parasite is
uniformly distributed across the
landscape (e.g., a parasite can be
found across its host’s
geographic range).
Data for model calibration may
not be available.
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Hazard: relative number of available
parasites at a given space and time
acting as potential sources of harm
(e.g., disease outbreak) to a target
population.
Host: a living organism that can be
infected by a parasite or any other
infectious agent under natural
conditions.
Host breadth: the range of different
host populations that a parasite is
known to (occupied host breadth) or
could potentially (potential host
breadth) infect and persist in.
Maintenance: ability of a host or
group of host species to keep a
parasite circulating within an
epidemiologically connected group of
individuals over the long term.
Niche: set of abiotic (e.g., physical,
environmental) and biotic (e.g.,
interactions with other species)
conditions that allow a species’
persistence in a given area when
accounting for its dispersal ability.
Niche conservatism: retention of
niche-related ecological traits over
time, frequently among related
species.
Parasite: an organism dependent on
a different organism (host) for its
survival and reproduction that may or
may not cause negative effects on its
host.
Pathogen: a parasite, usually a
microorganism (e.g., bacterium,
virus) capable of causing disease in
its host.
Phylogenetic clustering: pattern
observed in ecological community
structure when driven by
environmental filtering where species
within a community are more closely
related than expected by chance.
Phylogenetic overdispersion:
pattern observed in ecological
community structure when driven by
competition where species within a
community are more distantly related
than expected by chance.
Reservoir: habitat in which a
parasite can grow, reproduce, and
survive. Reservoirs are typically
considered to be biotic (e.g., hosts);
however, they can also be abiotic.
Risk: likelihood of an adverse event
(e.g., disease outbreak) occurring in
a target population because of
exposure to a hazard.
Risk factor: factor capable of
facilitating or limiting risk by
modifying either hazard or exposure.
available, especially for emerging diseases (e.g., Middle East respiratory syndrome) [18].
Obtaining the necessary information on disease systems can be labor intensive, time consum-
ing, and economically unfeasible [18]. Choosing between these two approaches for disease
distribution modeling should be done in accordance with the research question, data avail-
ability, and implicit assumptions [18,22].

Traditional ENM Framework Limitations for Disease Systems
Data Quality and Availability
A major challenge of the application of ENM to disease systems is the lack of reliable, high-
quality disease occurrence repositories. This has led to the widespread use of black-box
modeling for disease outbreaks [28–30] and component-based modeling of hosts only [17,32].
The use of outbreak data to model disease distributions raises methodological issues. Disease
data are generally aggregated at coarse politicoadministrative levels (e.g., province, country),
losing crucial information on the local natural history of the disease [1,33]. Additionally, the
geographic site of infection and the associated uncertainty are generally not reported and may
instead refer to the health-care facility where it is diagnosed [1], potentially misleading the
identification of ecological conditions favoring disease occurrence. This could be further
complicated by centralized health-care infrastructures and scarce epidemiological resources,
resulting in predictions of the site of diagnosis instead of the site of infection and parasite
persistence [34]. Lack of information on the ecology of a disease system may hinder proper
identification of the parasite species (or strain in the case of viruses) causing the disease and/or
the hosts involved in their transmission. This is particularly true for EIDs [31], posing a significant
challenge to the prediction of geographic distributions in an ENM framework.

Host–Parasite Interactions
At least two interacting species – a parasite and a host [35,36] – are present in a disease system.
These systems vary in complexity as some parasites can infect multiple hosts, potentially requiring
the presence of keystone host species for their transmission (e.g., vectors) and maintenance
(e.g., reservoir hosts). Here we define ‘parasites’ broadly to encompass all organisms capable of
causing disease (i.e., pathogens), including microparasites (e.g., viruses, bacteria, fungi, proto-
zoa) and macroparasites (e.g., flatworms, nematodes). Similarly, we broadly define ‘hosts’ to
include arthropod vectors and vertebrate reservoir hosts of parasites.

Since biotic interactions lie at the core of disease systems, neglecting interacting species and
their role in parasite dynamics (maintenance, reproduction, and transmission) may lead to
failure to forecast disease distributions (Figure 1). Parasite transmission is strongly influenced by
interactions among infected and susceptible hosts, which can be altered by host behavior and
demography [6,37,38]. For example, parasite transmission was found to be related to spider
monkey (Ateles hybridus) grooming activity [39] and to aggregation behavior during hibernation
in bat colonies of multiple species [40].

Transmission dynamics can be further altered by the structure of the ecological community
[9,41–44]. For example, host species living at higher population densities with smaller body
sizes and shorter generation spans were more likely to be competent reservoirs for multihost
vector-borne diseases [37]. Likewise, host species diversity was found to alter transmission by
decreasing host density (i.e., dilution effect) and increasing contact rates between host species
(i.e., amplification effect) in a rodent-borne disease [45]. Host immunity and parasite–parasite
interactions may also shape disease distributions as they may facilitate or limit transmission
[6,7,41,46]. For instance, decreased competence of the bacterium Rickettsia conorii was
observed in dogs previously infected by other Rickettsia species [47]. Given the complexity of
Trends in Ecology & Evolution, July 2019, Vol. 34, No. 7 657



Spillover: process in which a
pathogen is transmitted into a novel
host species, mainly referring to the
transmission of zoonotic diseases to
humans.
Susceptibility: possibility of a given
exposure to hazard resulting in harm;
also termed vulnerability by some
authors.
Target population: population that
is the focus of a study or public
health intervention.
Vector: a living organism, typically
invertebrate, acting as intermediary in
the transmission of a parasite from a
source to a target population.
Zoonoses: diseases that can be
transmitted between humans and
animals under natural conditions.
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Figure 1. Host versus Parasite
Ranges. Gray points represent a hyper-
volume of 15 satellite-derived global bio-
climatic variables as described by the first
three axes of a principal components
analysis (PCA); red ellipsoids and blue
polyhedra are 3D representations of n-
dimensional hypervolumes of host and
parasite niches, respectively. (A) Parasite
matching the niche of the host. The niche
of dengue virus (blue polyhedron) coin-
cides with that of its vector, the mosquito
Aedes aegypti (red ellipsoid), suggesting
a coevolutionary history. In this case,
modeling of the host would be a good
proxy of the potential distribution of the
parasite. (B) Parasite does not match the
niche of the host. The niche of the amphi-
bian chytrid fungus (Batrachochytrium
dendrobatidis, blue polyhedron) coin-
cides only partially with that of its main
reservoir, the African clawed frog (Xeno-
pus laevis, red ellipsoid). Niche dissimilar-
ity may suggest that this host species
may not be the natural reservoir of the
parasite. Modeling only the host would
underestimate the potential distribution
of the parasite. Data sources: environ-
mental variables [89]; species occur-
rences represent global compendiums
for A. aegypti [8], dengue virus [90], X.
laevis [91], and B. dendrobatidis [92,93].
these interactions, traditional single-species ENM approaches could fail to accurately predict
disease distributions and transmission risk, particularly at finer scales. However, traditional
approaches may be sufficient for some disease systems, especially if they are simple or well
understood (e.g., dengue). Therefore, appropriate selection of the approach will depend on
data availability and the question at hand.

Parasite Occurrence versus Disease Expression
A common assumption of disease ENM is that predicted host distributions and disease
presence are equivalent [17,32]. This should be considered with caution since susceptible
hosts may occur where parasites are absent, and even when infection occurs, disease may be
absent [7,48]. For example, flying foxes (Pteropus medius) are necessary hosts for Nipah virus
persistence; however, this virus can be absent in areas where flying fox populations are present
[48]. Therefore, host presence should be considered only as ‘vessels’ available for parasite
introduction, establishment, and spread (Box 1). Likewise, parasites are generally assumed to
be homogeneously distributed across the host’s range (uniform prevalence; Figure 1A) and
fine-scale mechanisms underlying parasite transmission (e.g., host movement, behavior,
demographics) are usually not considered.
658 Trends in Ecology & Evolution, July 2019, Vol. 34, No. 7



Box 1. Guidelines for ENM to Predict Disease Distributions

The predictive power and biological realism of ENM forecasts of diseases is likely to improve by the inclusion of biotic
interactors [10,43]. However, reliable parasite, or disease, occurrence records and information on disease natural
history may be lacking, posing an exceptional challenge for disease distribution modeling. Knowing the data limitations
of a disease system is crucial for predictor variable and evaluation metric selection and the incorporation of biotic
interactors [24]. Understanding of the biological meaning, assumptions, and units of outputs is equally important for
proper model interpretation. We discuss the most frequently encountered scenarios in disease ENM and how biotic
interactors should be included accordingly (Figure I).
(1) Available occurrence data and known transmission mechanism: When parasite occurrence data are available, these

should be preferred over disease outbreak data to minimize spatiotemporal uncertainty. However, if reliable site of
infection data are available these should ideally be used. In this case, component-based approaches focused on
modeling the geographic potential of the parasite can be implemented. Information on host species (e.g., distribution,
abundance) can be incorporated as predictor variables (preprocessing) to complement abiotic variables. However,
model outputs should be interpreted with caution as proper definition of units may be difficult [24].

(2) Unavailable occurrence data and known transmission mechanism: Given the reliance of parasites on host species,
component-based modeling of hosts could be used to identify suitable areas for parasite persistence. That is,
estimated host distributions are used as a proxy for potential parasite distributions. Selection of host species (e.g.,
identity, number) for modeling will depend on their role in the disease system as well as the nature of the system
itself. If parasite persistence depends on interactions between different host species, stacked or joint host
distribution models (post-processing) can be used, assuming parasite presence is equal or more likely in areas
where all of its hosts are found than where only one host species is found [24]. Likewise, seasonal factors capable of
affecting transmission (e.g., rainfall, migration patterns) should be accounted for whenever possible. However,
excessive use of abiotic and biotic variables could generate over-fit and complex models, which may be difficult to
parameterize and interpret.

(3) Unavailable occurrence data and unknown transmission mechanism: This situation warrants black-box modeling
[18]. The point-radius method can be used to mitigate geographic uncertainty inherent to human disease data [91].
Additionally, to reduce uncertainty in environmental dimensions, outlying disease cases reported in areas of
inconsistent environmental conditions (e.g., imported cases) can be removed. Due to the temporal lag between
infection and disease expression, temporal uncertainty of exposure should be considered to ensure that environ-
mental variables match disease reports.

Parasite          
occurr ence  data 

avail able ? 

Tran smiss ion
mechan ism

kno wn?  

Yes

Yes

No

No

Black-box
model dise ase  outbreaks

Component- base d
mode l host

Component- base d
model paras ite

Figure I. Modeling Approach Selection for Disease Ecological Niche Modeling (ENM). The appropriate
selection of the modeling approach (black box vs component based) for diseases will depend on data availability and
knowledge of disease transmission dynamics.
Outcomes of host–parasite interactions are highly variable, ranging from no apparent negative
effects on the host (e.g., asymptomatic or subclinical infection) to host mortality [49–51]. A
review of mammal–virus associations reported that the vast majority of infected mammal
species were asymptomatic (224 of 312 mammal–virus pairs) [52]. Hantavirus infections in
Trends in Ecology & Evolution, July 2019, Vol. 34, No. 7 659



North America can result in hantavirus pulmonary syndrome, which is often fatal in humans
while having no discernible impact on deer mice (Peromyscus maniculatus), its primary host
[46]. Host immunity, genetics, and physiology also play important roles in disease expression,
varying among individuals [6,49,53] and populations [54]. The generalist amphibian chytrid
fungus (Batrachochytrium dendrobatidis) can cause disease in some amphibian species but
not others; thus, mapping a single host would underestimate the parasite’s geographic
distribution (Figure 1B).

Environmental Predictors
Selection of ecologically relevant predictor variables is necessary to generate reliable modeling
outputs and should be supported by the biology of the species and the spatiotemporal scale at
hand [26,55]. Variables directly affecting a species’ physiology are preferred since their
relationships with its geographic distribution are assumed to be stable across spatiotemporal
scales [26,56]. Indirect variables may be employed as proxies for direct variables, although
these should be avoided if they are correlated with factors driving the demography, dispersal, or
distribution of biotic interactors [26]. For example, in the tropics, altitude could serve as a proxy
for temperature and has been used to predict the distribution of mosquito-borne diseases,
since vector distribution is restricted by low temperatures. However, elevation can be a
confounding factor not related to the species’ physiology, as compared with temperature,
and in general, should be avoided.

In disease systems, the effects (direct/indirect) of abiotic variables depend on the parasite’s
ecology and relationship with its hosts. Parasite life cycles range from having free-living stages
to being completely restricted within a host. Leptospira bacteria (the causative agent of
leptospirosis) are capable of persisting in humid soils and waterlogged environments [57].
In this case, environmental variables such as precipitation or the presence of seasonal water
bodies are more likely to have direct effects. Conversely, parasites unable to persist outside
their hosts, like rabies viruses [58], are likely to be influenced by environmental variables (e.g.,
climate) indirectly. Hence, host availability may directly affect the maintenance of host-restricted
parasites. The nature of the parasite–host association will determine the ecological relevance of
environmental variables and how these should be employed to model parasite distributions.

ENM Implementation for Disease Control
Epidemiological strategies to control diseases focus on regulating parasite transmission from a
source population (usually wildlife or domestic hosts) to a target population (usually humans or
domestic animals) [38,59,60]. Component-based ENM (details in Modeling Disease System
section) can be used to identify areas where potential disease sources and target populations
overlap, allowing informed interventions [60,61]. This requires a comprehensive understanding of
the natural history of the disease system to properly identify host species acting as sources and
spreaders of infection [38]. Misidentification of the host and parasite species involved in epidemics
and spillover events, or their functional roles in disease maintenance, may lead to ineffective or
counterproductive control measures with potential social and economic costs [6,38,61].

In single-host systems (Figure 2A), disease control strategies should target regions where
source populations overlap with the target population (Figure 2B; [38,61]). This can rapidly
become complicated in multihost systems as changes in the host community may impact
parasite maintenance or transmission (Figure 2C; see [41,61]). Further complications arise
when hosts act as bridges facilitating parasite transmission between spatially disjoint host
populations (Figure 2C,D) [38]. For example, wild birds associated with wetlands and aquatic
environments, such as shorebirds (Charadriiformes; gulls, terns, and waders) and waterfowl
660 Trends in Ecology & Evolution, July 2019, Vol. 34, No. 7



(A) (B)

(D)(C)

Figure 2. Disease System Components. (A) Single-host–single-vector disease system (e.g., dengue fever). Only the
host and vector are necessary to sustain parasite transmission. In this case, a vector is the only possible source of infection.
(B) Component-based ecological niche modeling (ENM) that considers the distributions of the vector (purple polygon) and
the target population (light-gray polygon) to identify geographic areas where the two may overlap as a proxy of disease
transmission risk (dark-shaded area). Control and prevention strategies should focus on overlapping regions. (C) Multihost
disease system (e.g., avian influenza). Multiple waterfowl and shorebird species constitute the natural hosts of the parasite
(shaded area). The parasite, however, can infect other species (domestic or wild). In this example, interspecific transmis-
sion (spillover) of the parasite among wild and domestic bird species, and among bird and mammal species, has resulted in
human infection. (D) In this scenario, ENM should consider overlap among species to identify transmission mechanisms
with greater propensity to threaten human health. Here, domestic mammals play a critical role in parasite spillover, and
control strategies should aim to reduce overlap between birds, both wild and domestic, and domestic mammals to reduce
transmission risk to humans. Animal silhouette source: [94].
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(Anseriformes; ducks, geese, and swans), constitute the host reservoir for avian influenza
(Figure 2C). Since shorebirds and livestock are spatially disjunct (Figure 2D), strategies aimed at
this group only would not stop influenza transmission from waterfowl to livestock and conse-
quent human infection, despite them being part of the reservoir.

Niches in Host-Space
Appropriate selection and inclusion of biotic interactors in parasite ENM requires prior identifi-
cation of suitable host species (Figure 3A); that is, host species that possess characteristics
supporting parasite survival, reproduction, and transmission and are therefore essential for
parasite persistence [35,36,62,63]. For a given parasite, different suitable host species must
share particular traits enabling its establishment and persistence [9,35,63]. Here, we propose
an adaptation of the niche concept that considers host traits as microscale abiotic and biotic
dimensions of parasite niches, defined here as host-space (H-space in Figure 3B).

Under this proposed approach, associations between parasites and host populations can be
summarized by adapting the traditional biotic, abiotic, and movement (BAM) framework
(A)

(B) (C)

Parasite ENM

Occurrence
points

Abio�c
stressors

Bio�c
interactors

H-space

G-space

Figure 3. Graphic Representation of Niches in Host-Space (BAM-H) as a Framework Complementary to
Traditional Parasite Ecological Niche Modeling (ENM). (A) Traditional parasite ENM generates estimates of species’
occupied geographic space (GO) using data on species occurrence, abiotic stressors (e.g., climate), and biotic interactors
as inputs. (B) Adaptation of the BAM framework to host-space (BAM-H). BH represents the set of dynamically linked biotic
factors favoring parasite persistence and AH comprises the set of suitable host traits for pathogen establishment and
persistence, while MH represents host populations available for transmission dispersal. HO, occupied host breadth; HP,
potential host breadth; HDE, dead-end hosts unable to sustain parasite maintenance (i.e., sink populations). (C) Theoretical
example of how the host-space concept can be linked to host phylodynamics (tree) and ecologies to further our
understanding of parasite distributions across landscapes (tan rectangle below). Blue represents suitable host populations
where the parasite is present (HO) and red represents suitable host populations where the parasite is not found (HP), which
may be separated by geographic barriers such as rivers (thick blue line), while gray represents dead-end hosts (HDE).
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(Box 2) to host-space. We refer to this adapted framework as BAM-H (Figure 3B). Here, BH

represents the set of dynamically linked (biotic) factors favoring persistence in hosts where
bidirectional effects with parasite load can be observed (i.e., affected by parasite abundance)
[26,64], such as immune response (similar to predator–prey interactions) [46,49,54] or
Box 2. BAM: A Simple Framework to Represent Species Distributions

The BAM framework represents species’ geographic distributions by summarizing the interaction of three factors:
dynamically linked biotic interactors (B), unlinked abiotic stressors (A), and dispersal capacity (M) (Figure II). Areas where
all three of these conditions are met (B \ A \ M) represent the species’ actual distribution and a proxy of the species’ realized
niche. Traditional ENM applications consider the B component to have negligent effects (the Eltonian noise hypothesis [10])
when modeling species’ geographic distributions under the BAM framework. However, biotic interactions play a critical role
in parasitic relationships in nature, so they should be considered with caution in disease ecology.

Implementing a traditional ENM framework [i.e., A \ M (Figure IIB)] to map the distribution of dengue virus in Guatemala
provides different predictions than a model accounting for biotic interactions [B \ A \ M (Figure IIC)]. Adding information
on vector abundance, immunity of hosts, and behavior, among other variables, would add complexity to the final risk
estimation but may provide a more complete history of the plausible manifestation of the disease in the area of interest.

A B

M

(A) BAM fram ework in disea se modeli ng

Mode l cali bra�on 
area

Bio�c variable
(vect or)

Abio�c variab les
(cli mate)

A

M
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(B) N iche  modeling  neg lec�ng  B  (C) N iche  modeling  con side ring  B 

y
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Figure II. Applying the Biotic, Abiotic, and Movement (BAM) Framework to Real-World Situations. (A)
Transferring the theoretical representation of the BAM framework (left) to an empirical ecological niche modeling (ENM)
application using real-world data to reconstruct the geography of dengue virus in Guatemala (right). Here, the biotic
component of the parasite, B, is denoted by the fundamental niche of the dengue vector, the mosquito Aedes aegypti
(red polyhedron) [8]. A (gray points) summarizes global bioclimatic variables [89] condensed in three principal
components. Finally, the dispersal potential, M, was restricted to Guatemala as the area of interest (black polyhedron).
(B,C) Model predictions of disease distributions are affected by the inclusion of biotic interactions within the ENM
framework.
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coinfection (similar to facilitation/competition) [65–67]. HIV infection, for example, facilitates
the establishment of other parasitic organisms including viruses, bacteria [65], and protozoa
[68]. AH comprises the set of physical and chemical (e.g., body temperature, pH, presence of
cell receptors in the membrane) host traits representing suitable conditions for establishment
and persistence with generally unidirectional effects on parasite load [6,26,36,41,64]. For
example, rabies virus can survive only in hosts with a specific body temperature range
(�4–39 �C) [58], resulting in a predominance of mammalian hosts (�37 �C) but not birds
(�40 �C). Similarly, SARS coronavirus cannot infect cells lacking angiotensin-converting
enzyme 2 (ACE2), its entry receptor [69]. Last, MH represents the set of host species
populations that have been accessible for the parasite to disperse (i.e., transmit). Transmission
between individuals is essential to guarantee parasite maintenance [also expressed as basic
reproductive number (R0) > 1] in a host population (i.e., intraspecies transmission) or
community (i.e., interspecies transmission). Although dispersal-related parasite traits (e.g.,
free living vs host restricted) are important determinants of transmissibility, parasite mobility
can be further constrained by host demography and ecology [18,70]; however, these traits may
be less relevant for parasites with environmental reservoirs (e.g., anthrax). For example,
parasite persistence may not be possible if the host population size is too small (similar to
Allee effects). Social contact, grooming rate, or burrowing behavior limits the transmission of
parasites (e.g., fleas in small mammals) [71]. Factors constraining transmission can operate
across multiple spatial scales, ranging from limited dispersal between individuals in a population
(e.g., decreased host population size for density-dependent transmission) to barriers between
host populations (e.g., geographic barriers).

BH \ AH defines a parasite’s potential host breadth (HP) (Figure 3B,C): host populations that
the parasite could theoretically infect and persist in, in the absence of dispersal or demographic
barriers [36,72,73]. BH \ AH \ MH determines a parasite’s occupied host breadth (HO)
(Figure 3B,C): the subset of potential host species it can infect considering dispersal limitations
at different scales (e.g., geographic barriers, demographic constraints). HO constitutes the suite
of host populations that the parasite effectively occupies. Parasites may be absent in suitable
hosts due to local parasite extinction, seasonality (e.g., host migration patterns, precipitation
patterns needed for parasite transmission), dispersal, or transmission limitations (e.g., geo-
graphic barriers, low host density, host immunity) and in the case of economically important
hosts (e.g., livestock) due to disease management control (e.g., vaccination, disease control
programs). Transient infections could also occur in dead-end hosts (HDE) (Figure 3B,C),
unsuitable hosts limiting their persistence (R0 � 1; i.e., sink populations). Our approach is
complementary to traditional parasite ENM and classic transmission models. By identifying
parasite host breadth, BAM-H would allow the proper identification of relevant biotic interactors
that inform parasite ENM and should therefore be used jointly (Figure 3).

Closely related host species tend to share ecological, physiological, and immunological traits,
making them more likely to share parasites [36,74–76]. The identification of closely related
hosts (i.e., sharing similar traits) could help to identify potential reservoirs and predict potential
spillover (HP), analogous to predicting suitable geographic areas (novel hosts) for species
invasion (parasite spillover) in invasion ecology. Parasite sharing among closely related host
species (phylogenetic clustering) could be interpreted as parasite niche conservatism in
host-space [as observed in kissing bug species (Triatoma sp.) in North and Central America]
[77]. Potential hosts (HP) would therefore be more likely to be closely related to known hosts.
Conversely, parasite sharing among distantly related host species (phylogenetic overdis-
persion) implies that parasite sharing among known hosts is driven by factors other than host
relatedness, important to consider when determining HP. Such factors may include broad
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Box 3. Improving Epidemiological Surveillance: Using Ecophylogenetics to Estimate Host Breadth

Epidemiological surveillance aims to identify and monitor disease-causative agents and to use this information to inform
public health policy. However, how can we possibly achieve these goals when we do not know which areas or host
species should be targeted for surveillance? Ecophylogenetics provide a basis to disentangle the relative contribu-
tions of host relatedness (phylogeny) and host ecology (e.g., interaction networks, demography) to parasite-sharing
patterns among different host populations (Figure 3C [78]). Integrating phylogenetics with community ecology could
help in understanding patterns of host phylogenetic clustering and overdispersion across spatiotemporal scales. This
holds great potential for the development of new tools to predict parasite host breadths (HP and HO in our proposed
framework), a key component of understanding disease transmission dynamics at the landscape level [56,77].
Additionally, ecophylogenetics may provide insights on potential spillover events that could result in disease emergence,
a highly relevant topic under global change and increased international movement of species leading to shifts in host
communities and translocation of parasites to new areas and hosts [79,80]. Adoption of the host-space framework
under ecophylogenetics could improve epidemiological surveillance, allowing early targeting of potentially suitable hosts
(HP) [62,63].

Current initiatives such as the Global Mammal Database [81], the Malaria Atlas Project [82], and COMADRE [83] could
lay the groundwork to implement the host-space framework and serve as a platform to integrate data from different
sources similar to large-scale biodiversity repositories (e.g., the Global Biodiversity Information Facility [84]). Coupling
ecophylogenetics with ENM could increase our understanding of how external environmental conditions (e.g., climate)
and host traits explain disease distributions, although these approaches have rarely been applied until recently [78].
Nevertheless, although the theoretical basis to target potential hosts via ecophylogenetics exists, further work is
required to successfully implement this approach.
physiological tolerances (large AH) or increased transmissibility (MH) between host populations
with overlapping geographic ranges (Figure 3C [36,75]). Furthermore, parasites may experi-
ence expansions in their occupied host breadth (HO) following landscape alterations or shifts in
their geographic distributions [75,78] (see Box 3 for applications).

From Disease Distributions to Risk Mapping
Despite widespread recognition of the need for risk assessments to ensure successful disease
intervention strategies, definitions of risk remain inconsistent. These definitions seem to
confound the different processes contributing to risk, hindering proper quantification and
comparisons between assessments [85]. A recently proposed framework aimed to disentangle
the underlying mechanisms of risk by decomposing it into three processes: parasite availability
(hazard), contact with parasites (exposure), and likelihood of infection (susceptibility) [85].

Our proposed integrative ENM framework combines traditional parasite ENM with the host-
space concept, allowing a more comprehensive estimate of the potential geographic distribu-
tion of diseases across scales, and could therefore be implemented to estimate hazard
(parasite availability). However, we must note that this is only one component driving disease
risk for a target population (Box 3). Several often interacting factors such as behavior [59],
nutrition [86], immune history [47], and social status [33,87,88] are critical for successful
parasite maintenance. When possible, these factors should be considered and incorporated
into ENM frameworks to enrich risk assessments. Exposure can be incorporated by overlaying
the geographic distribution and densities of the target population (e.g., humans) [14]. Suscep-
tibility factors could be added by including information on socioeconomic (e.g., GDP, age) or
cultural (e.g., taboo systems, traditional practices) factors influencing exposure to hazard. An
example of susceptibility factors increasing exposure is the traditional funeral practices involv-
ing the touching and kissing of dead bodies that contributed to the spread of Ebola in the 2014
West African outbreak [59].

Disease risk mapping still faces considerable challenges. Gathering information of parasite
occurrence data, in both animals and humans, can suffer from logistic (e.g., sampling in remote
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Outstanding Questions
How can disease occurrence data be
improved? Besides spatial and tempo-
ral biases, disease occurrence data
may also be skewed by uneven sam-
pling of host species (e.g., reservoirs)
and reports of the locality of develop-
ment of symptoms or the locality of the
diagnosis, misrepresenting the locality
of infection. Active surveillance efforts
targeting parasite sampling in host
taxa could help to reduce these biases,
increase understanding of parasite dis-
persal, and improve occurrence
reporting.

Can host traits be used to predict par-
asite host breadth? We have proposed
a niche-conservatism approach to
identify potential hosts given their phy-
logenetic relatedness with known
hosts. Host traits essential for parasite
establishment can be determined in a
more mechanistic manner through
experimental testing of parasite physi-
ological niches and may be validated in
laboratory essays.

How can risk factors be integrated
into ENM frameworks to quantify dis-
ease transmission risk? Behavioral
and clinical surveillance provides
insights on factors influencing exposure
and susceptibility to infective parasites.
However, an interdisciplinary approach
is necessary to adequately generate
data-driven models useful for policy
making. Integration of quantitative and
qualitative approaches remains a chal-
lenge in ENM disease risk mapping,
which usually neglects the human
dimension of disease transmission.
areas, ethical human-subject-research regulations) and ecological (e.g., low prevalence,
latency) limitations. Parasite detection may be limited by the choice of clinical screening
method. Serology tests report past infection whereas PCR or deep-sequencing methods
detect parasites present at the moment of collection. Data on susceptibility factors are limited
and their effects are not always understood, hindering proper quantification of susceptibility.
We believe that a next frontier in disease risk mapping should focus on overcoming these
limitations. Investment in active surveillance efforts in wildlife and human populations, as well as
new technologies and tools (Box 3) for parasite detection and identification techniques, may
improve our ability to collect more reliable disease occurrence data. Interdisciplinary
approaches integrating ecology and social sciences may further our understanding on how
biological and socioeconomic factors interact to influence disease risk.

Concluding Remarks
ENM is a powerful tool to better understand the distributional ecology of diseases. We
described how biotic interactions make disease systems more ecologically complex than
the traditional biodiversity studies for which ENM was designed. Limited knowledge on disease
natural history (e.g., transmission mechanism, host species involved) may considerably change
modeling assumptions, resulting in ecologically unrealistic outputs. Here, we present a new
framework – the host-space niche – that is complementary to traditional parasite ENM, which
should improve the integration of parasite–host interactions. This host-space niche framework
will help in identifying relevant biotic interactors and understanding disease distributions across
landscapes.

Finally, we point out that risk can be defined only when a target population is identified. Risk
depends on multiple interacting factors including parasite presence, exposure, and the sus-
ceptibility of the target population. We emphasize the need for a clear and uniform definition of
risk as well as a unified methodological framework to quantify it. Quantification of disease
transmission risk is also important for strategic allocation of resources for public health and the
conservation of endangered host populations.

The ideas presented here should encourage discussion towards a comprehensive methodo-
logical framework to quantify and map disease distributions and risk that are based on
ecological and epidemiological theory (see Outstanding Questions). However, challenges
remain, particularly ensuring that disease occurrence data reflect the site of infection and
the biological realism of model assumptions. Increased epidemiological surveillance and data
sharing via online repositories will facilitate the establishment of a renovated field of disease
mapping based on ecological theories. We provide guidelines (Box 1) to estimate the geo-
graphic distribution of diseases via ENM by accounting for data limitations and different
ecological scales. The incorporation of biotic interactors into the models will allow more realistic
estimates of disease distributions that could help to guide cost-effective disease control efforts.
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