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ABSTRACT Expression of the serum- and glucocorticoid-inducible kinase 1
(SGK1) is up-regulated by several types of cell stress, such as ischemia, radia-
tion and hyperosmotic shock. The SGK1 protein is activated by a signaling cas-
cade involving phosphatidylinositide-3-kinase (PI3K), 3-phosphoinositide-
dependent kinase 1 (PDK1) and mammalian target of rapamycin (mTOR).
SGK1 up-regulates Na'/K'-ATPase, a variety of carriers including Na'-,K*-,2CI'-
cotransporter (NKCC), NaCl cotransporter (NCC), Na*/H" exchangers, diverse
amino acid transporters and several glucose carriers such as Na'-coupled glu-
cose transporter SGLT1. SGK1 further up-regulates a large number of ion
channels including epithelial Na* channel ENaC, voltage-gated Na' channel
SCN5A, Ca”" release-activated Ca”* channel (ORAI1) with its stimulator STIM1,
epithelial Ca” channels TRPV5 and TRPV6 and diverse K* channels. Further-
more, SGK1 influences transcription factors such as nuclear factor kappa-B
(NF-kB), p53 tumor suppressor protein, cCAMP responsive element-binding
protein (CREB), activator protein-1 (AP-1) and forkhead box O3 protein
(FOX03a). Thus, SGK1 supports cellular glucose uptake and glycolysis, angio-
genesis, cell survival, cell migration, and wound healing. Presumably as last
line of defense against tissue injury, SGK1 fosters tissue fibrosis and tissue
calcification replacing energy consuming cells.
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Abbreviations:

mTOR — mammalian target of
rapamycin,

NF-xB- nuclear factor-kappa B,

SGK1 — serum- and glucocorticoid-
inducible kinase 1,

TGFB — transforming growth factor
beta,

VSMC — vascular smooth muscle cell.

INTRODUCTION

The ubiquitously expressed [1-4] serum- and glucocorti-
coid-inducible kinase 1 (SGK1) has originally been cloned as
a gene up-regulated by serum and glucocorticoids in rat
mammary tumor cells [1, 5]. The human SGK1 has been
identified as a gene up-regulated by cell shrinkage [6].

SGK1 expression

Expression of SGK1 is highly variable and subject to regula-
tion by a wide variety of triggers including hyperosmotic or
isotonic cell shrinkage, dehydration, excessive glucose con-
centrations, mechanical stress, oxidative stress, heat shock,
radiation, DNA damage, ischemia, neuronal injury and neu-
ronal excitation [1, 3, 7-12]. SGK1 transcription is further
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up-regulated by several hormones and mediators including
glucocorticoids, mineralocorticoids, gonadotropins,
gestagens, 1,25(0OH),D;, erythropoietin, morphine, trans-
forming growth factor B (TGFB), interleukin-6, fibroblast
and platelet-derived growth factor, thrombin, endothelin,
advanced glycation end products (AGEs) and activation of
peroxisome proliferator-activated receptor y (PPARy) [1].
Inhibitors of SGK1 expression include serum starvation,
heparin, dietary iron, nucleosides and nephrilin [1]. Overall,
SGK1 expression declines with age [13].

Signaling of transcriptional SGK1 regulation involves cy-
tosolic Ca®*, cyclic AMP, stress-activated protein kinase-2
(SAPK2 or p38 MAPK kinase), protein kinase C (PKC), pro-
tein kinase RAF, big mitogen-activated protein kinase 1
(BMK1, also known as extracellular signal-regulated kinase
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ERK5), extracellular signal-regulated kinase 1/2 (ERK1/2),
phosphatidylinositide-3-kinase (PI3K), reactive oxygen spe-
cies, NADPH oxidases, nitric oxide and EWS/NOR1 (NR4A3)
fusion protein [1].

The SGK1 promoter binds receptors for glucocorticoids
(GR), mineralocorticoids (MR), progesterone (PR),
1,25(0OH),D; (VDR), retinoids (RXR), farnesoids (FXR), sterol
regulatory element-binding protein (SREBP), PPARy, cAMP
response element-binding protein (CREB), p53 tumor sup-
pressor protein, Spl transcription factor, activator protein
1 (AP-1), activating transcription factor 6 (ATF6), heat
shock factor (HSF), reticuloendotheliosis viral oncogene
homolog (c-Rel), nuclear factor kappa- B (NF-kB), signal
transducers and activators of transcription (STAT), TGFp-
dependent transcription factors SMAD3 and SMAD4, fork-
head activin signal transducer (FAST) and the transcription
factor TonE binding protein (TonEBP or NFATS) [1].

SGK1 translation is stimulated by PI3K and requires ac-
tin polymerization [14].

SGK1 activation and its degradation

Once expressed SGK1 requires activation. Stimulators of
SGK1 activity include insulin, IGF1, hepatic growth factor
(HGF), follicle stimulating hormone (FSH), thrombin and
corticosterone [1]. Signaling involving activation of SGK1
includes PI3K and 3-phosphoinositide (PIP3)-dependent
kinase PDK1 [6]. Interaction of SGK1 and PDK1 is supported
by the scaffold protein Na'/H" exchanger regulating factor
2 (NHERF2) [3]. PIP3 is degraded and activation of SGK1
thus suppressed by the phosphatase and tensin homolog
PTEN [3]. SGK1 activation further involves WNK1 (lysine
deficient protein kinase 1) and mammalian target of ra-
pamycin mTOR complex-2 (MTORC2) composed of mTOR,
Rictor (rapamycin-insensitive companion of mTOR), Sinl
(stress-activated protein kinase-interacting protein 1),
mLST8 and Protor-1 [1, 15-27]. SGK1 is further up-
regulated by p38a MAPK, ERKS5, cAMP, lithium, Ca™-
sensitive calmodulin-dependent protein kinase kinase
(CaMKK), G-protein Racl, neuronal depolarization, oxida-
tion, hypertonicity, and fibronectin [1, 3, 6, 28].

SGK1 degradation is triggered by ubiquitination involv-
ing NEDD4-2 (neuronal precursor cells expressed develop-
mentally down-regulated) [1, 3] and Rictor/Cullin-1 [1, 29-
31]. SGK1 degradation is inhibited by glucocorticoid-
induced leucine zipper protein-1 (GILZ) [32].

SGK1 kinase targets

The optimal consensus sequences for phosphorylation by
SGK1 are R-X-R-X-X-(S/T)-phi and R-R-X-S/T (X = any amino
acid, R = arginine, S = serine, T = threonine, phi = hydro-
phobic amino acid) [3, 33]. Specific SGK1 targets are N-myc
down-regulated genes NDRG1 and NDRG2 [1, 3]. Other
SGK1 targets are shared by other kinases including SGK and
protein kinase B (PKB/Akt) isoforms [3].

SGK1 influences a variety of enzymes including ubiqui-
tin ligase NEDD4-2, inducible nitric oxide synthase iNOS,
phosphomannose mutase 2 (PMM2), phosphatidylinositol-
3-phosphate-5-kinase (PIKfyve), serine/threonine kinase
WNK4, ERK2 (MAPK1), mitogen-activated protein ki-
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nase/ERK kinase kinase 3 (MEKK3), stress-activated kinase
(SEK1), B-Raf kinase, glycogen synthase kinase 3 (GSK-3),
p53-ubiquitinating MDM2 and Notch1-IC protein degradat-
ing Fow7 [1].

SGK1 up-regulates transcription factors such as CREB,
AP-1 and NF-kB [1, 34-37]. On the other hand, SGK1 phos-
phorylates and thus activates NDRG1, which in turn down-
regulates NF-kB signaling [1, 38]. Moreover, SGK1 down-
regulates transcription factor p53 and forkhead box O3
protein (FOX03a) [1, 39, 40].

SGK1 is a powerful regulator of several ion channels [1,
3, 41], including epithelial Na* channel ENaC, voltage-gated
Na“ channel SCN5A, renal outer medullary K* channel
ROMK1, voltage-gated K* channels KCNE1/KCNQ1, KCNQ4,
Kvl1.3, Kv1.5, Kv7.2/3, Kv4.3 and hERG, the Ca®' release-
activated Ca®" channel ORAI1 and its stimulator STIM1,
transient receptor potential channels TRPV4, TRPV5 and
TRPV6, kainate receptor GIuR6, unselective cation channel
4F2/LAT, CI' channels CICka/barttin, CIC2, CFTR (Cystic fi-
brosis transmembrane conductance regulator) and VSOAC
(volume-sensitive osmolyte and anion channel) as well as
acid-sensing ion channel ASIC1 [1, 3].

SGK1 stimulates diverse carriers including Na*-,K’-,2CI"-
cotransporter NKCC2, NaCl cotransporter NCC, Na'/H" ex-
changers NHE1 and NHE3, glucose carriers SGLT1, GLUT1
and GLUT4, amino acid transporters ASCT2, SN1, B(0)AT1,
EAAT1, EAAT2, EAAT3, EAAT4 and EAATS, peptide trans-
porters PepT, Na'dicarboxylate cotransporter NaDC-1,
creatine transporter CreaT, Na‘,myoinositol cotransporter
SMIT as well as phosphate carriers NaPilla and NaPillb [1,
3]. Furthermore, SGK1 up-regulates the Na'/K'-ATPase and
albumin uptake [1, 3].

Further targets of SGK1 include nephrin, type A natriu-
retic peptide receptor (NPR-A), Ca’*-regulated heat-stable
protein of apparent molecular mass 24 kDa (CRHSP24), the
adaptor precursor (APP) Fe65, NDRG1 and NDRG2, myosin-
V¢, filamin C, microtubule-associated protein tau, Cyclin-
dependent kinase inhibitor 1B (p27"), and huntingtin [1,
3, 40, 42-44).

The present review discusses the role of SGK1 in the
orchestration of cellular response to stress such as energy
depletion. The case is made that SGK1 supports cellular
energy supply by stimulation of glucose uptake and glycol-
ysis, as well as by stimulation of angiogenesis. SGK1 sup-
ports cell survival and cell migration, a prerequisite of tis-
sue repair. As last line of defense, SGK1 replaces energy
consuming cells with extracellular matrix by stimulation of
tissue fibrosis and tissue calcification. In order to limit the
number of citations some of the earlier original papers
have been replaced by reviews.

GLUCOSE UPTAKE AND GLYCOLYSIS

SGK1 stimulates cellular glucose uptake and thus enhances
the availability of glucose for glycolysis [3]. SGK1 further
stimulates the Na’/H" ion exchanger [36] which generates
an alkaline cytosolic pH, a prerequisite for an increase of
glycolytic flux [1]. The up-regulation of SGK1 in ischemia
thus supports energy supply by glycolysis [2, 3, 10, 45].
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ANGIOGENESIS

SGK1 is required for angiogenesis during embryonic devel-
opment [46] and following ischemia in the adult [47]. In
myocardial ischemia, lack of SGK1 blunts the phosphoryla-
tion of SGK1 target protein NDRG1 and compromises the
up-regulation of transcription factor NF-kB and its target
protein, VEGF-A (vascular endothelial growth factor A).
Lack of SGK1 further impairs endothelial cell (ECs) migra-
tion and tube formation in vitro, and decreases in vivo an-
giogenesis after myocardial infarction [47].

CELL SURVIVAL

SGK1 supports cell survival and cell proliferation of both
tumor cells and neurons [1, 3, 7, 10, 48-52]. SGK1 is highly
expressed in several tumors [10], including non-small cell
lung cancer [53], colon cancer [10], prostate cancer [54],
ovarian tumors [1], myeloma [55], and medulloblastoma
[1]. SGK1 confers resistance of breast cancer cells to chem-
otherapy [3, 10, 56], and inhibition of SGK1 sensitizes tu-
mor cells to cytotoxic drugs or radiation [12]. SGK1 con-
tributes to androgen-induced growth of prostate cancer
cells [2]. SGK1 counteracts the pro-apoptotic effect of
membrane androgen receptors (mAR) [1] in colon carci-
noma cells [57-59]. Lack of SGK1 blunts the development
of spontaneous tumors in APC-deficient mice [2] and
chemically-induced colonic tumors in wild-type mice [1].

SGK1 stimulates cell proliferation and inhibits cell death
in part by up-regulating channels and transporters, such as
the store-operated Ca>* entry (SOCE) accomplished by
ORAI1/STIM1 [1, 12, 34, 35, 60, 61]. SOCE maintains oscil-
lations of cytosolic Ca** activity, which are required for
depolymerization of the actin filament network, a prereq-
uisite for cell proliferation [3, 10]. Ca*" entry is driven by
the cell membrane potential, which is generated by SGK1
sensitive K* channels [3, 10]. The protective effect of SGK1
on neurons similarly involves, at least in part, up-regulation
of ORAI1/STIM1 [51].

SGK1 further inactivates the pro-apoptotic forkhead
transcription factor FOXO3A/FKRHL1 [1], inhibits GSK-3 and
up-regulates oncogenic B-catenin [3, 7], activates IKKB with
subsequent phosphorylation and degradation of the inhibi-
tory protein IkB and translocation of NF-kB into the nucleus
[10], activates the ubiquitin ligase MDM2 with subsequent
MDM2-dependent ubiquitination and proteosomal degra-
dation of pro-apoptotic transcription factor p53 [1], dis-
rupts binding of SEK1 to JNK1 and MEKK1 [3, 10] and up-
regulates Ran binding protein (RanBP), an effect affecting
microtubule network and blunting taxol sensitivity of can-
cer cells [52, 62].

CELL MIGRATION

SGK1 is part of the machinery stimulating cell migration [47,
57, 58, 63, 64]. As shown in vascular smooth muscle cells
(VSMCs) [64], the stimulation of migration by platelet-
derived growth factor PDGF is paralleled by up-regulation
of both, SGK1 expression and SGK1 activity [65, 66]. Genet-
ic knockout of SGK1 decreases migration [64]. SGK1 is ef-
fective, at least in part, by up-regulation of the store-
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operated Ca®" entry (SOCE), which is accomplished by the
Ca®* channel ORAI1 and its regulator STIM1. Expression of
ORAI1 and STIM1 is stimulated by NF-kB, a transcription
factor up-regulated by SGK1 [1, 64]. In VSMCs, SGK1 trig-
gers nuclear translocation of transcription factor NF-kB

[64].

INFLAMMATION AND FIBROSIS

SGK1 contributes to the orchestration of inflammation [52,
67-70]. The kinase is required for the interleukin-23 (IL-23)-
sensitive generation of interleukin-17 (IL-17)-producing
CD4" helper T cells (T,17 cells) [71]. T417 cells up-regulate
the pro-inflammatory cytokines GM-CSF, TNF-a and inter-
leukin-2 (IL-2) [71].

SGK1 further contributes to fibrosis in several clinical
conditions, including lung fibrosis, diabetic nephropathy,
glomerulonephritis, experimental nephrotic syndrome,
obstructive nephropathy, cardiac remodeling, liver cirrho-
sis, fibrosing pancreatitis, peritoneal fibrosis, Crohn’s dis-
ease and coeliac disease [1, 3, 72-75]. The expression of
SGK1 is upregulated by TGFB [3], a pivotal stimulator of
fibrosis [69, 76-81]. Signaling of TGFB includes activation of
transcription factors SMAD2/3 [1], which are ubiquitinated
and, thus, tagged for degradation by NEDDA4L [1]. The
ubiquitin ligase is inactivated by SGK1 which thus aug-
ments TGFB action [1]. SGK1 supports inflammation and
fibrosis further by activating NF-kB [3], a proinflammatory
and profibrotic transcription factor [1, 82, 83]. NF-kB up-
regulates connective tissue growth factor (CTGF), which in
turn contributes to stimulation of cardiac remodeling and
fibrosis [1, 3, 84-87], renal proteinuria and failure [88], skin
aging [15], as well as fibronectin formation at hyperglyce-
mia [1].

VASCULAR CALCIFICATION

SGK1 further participates in the orchestration of medial
vascular calcification [84], which results mainly from osteo-
/chondrogenic transdifferentiation of VSMCs [84]. Various
triggers of VSMC osteo-/chondrogenic transdifferentiation
induce a sharp increase of SGK1 expression [84]. Upregula-
tion of SGK1 was also observed in the vasculature of rats
with renal failure [89]. SGK1 increases the expression of
the osteo-/chondrogenic transcription factors MSX2 and
CBFA1, which in turn stimulate the expression of alkaline
phosphatase ALPL [84]. The enzyme fosters vascular calcifi-
cation by degrading the endogenous calcification inhibitor
pyrophosphate. The effect of SGK1 on osteo-
/chondrogenic transdifferentiation depends on transcrip-
tional activity of NF-kB, a decisive regulator of vascular
calcification [90, 91]. NF-kB also reduces pyrophosphate
release via tristetraprolin (TTP)-mediated destabilization of
ankylosis protein homolog (ANKH) mRNA [90, 91].

THE ROLE OF SGK1 |IN DISEASE - CLINICAL
IMPLICATIONS

A wide variety of observations point to a role of SGK1 in
human pathophysiology [12]. Excessive expression and
activity of SGK1 participates in the pathophysiology of di
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FIGURE 1: SGK1-sensitive NFkB-dependent transcription in the response to cell stress. Please note that additional NFkB-dependent
genes as well as NFkB-independent mechanisms contribute to the cellular response to stress.

verse disorders, such as hypertension, obesity, diabetes,
thrombosis, stroke, fibrosing disease, vascular calcification,
infertility, autoimmune disease, and tumor growth
[12,71,84]. A SGK1 gene variant (prevalence approx. 3-5%
in Caucasians and approx. 10% in Africans) is associated

with hypertension, stroke, obesity and type 2 diabetes [12].

Little is known about the clinical impact of SGK1 deficiency.
In a SV129 genetic background, the phenotype of SGK1
knockout mice is mild and SGK1-dependent functions are
apparently in large part maintained by other kinases [12].
In view of the putative role of SGK1 in neuronal survival
[51], however, the possibility must be kept in mind that
lack of SGK1 may accelerate the clinical course of neuro-
degeneration. Clearly, additional experimental and obser-
vational effort is required to define the pathophysiological
impact of deranged SGK1 activity in human disease.

CONCLUSIONS

Expression of the serum- and glucocorticoid-inducible ki-
nase SGK1 is steeply up-regulated following cell stress,
such as ischemia, radiation and hyperosmotic shock. The
SGK1 protein is activated by a signaling cascade involving
phosphatidylinositide-3-kinase (PI3K), 3-phosphoinositide-
dependent kinase 1 (PDK1) and mTOR. SGK1 is a powerful

OPEN ACCESS | www.cell-stress.com 4

stimulator of transport across the cell membrane, such as
Na’/K'-ATPase, Na'/H* exchangers, cellular glucose uptake
and ORAI1/STIM1-dependent store-operated Ca®* entry
(SOCE). SGK1 is further a powerful stimulator of transcrip-
tion factors including nuclear factor kB (NF-kB; Figure 1).
Upon cell stress such as energy depletion, SGK1 supports
cellular glucose uptake and glycolysis, angiogenesis, cell
survival, cell migration, and wound healing. If those func-
tions fail to remove the cell stress, SGK1 initiates replace-
ment of energy consuming cells by fibrotic and/or calcified
tissue.
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