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Abstract

Here, we perform cross-generational GS analysis on coastal Douglas-fir (Pseudotsuga menziesii), reflecting trans-
generational selective breeding application. A total of 1321 trees, representing 37 full-sib F; families from 3 environments in
British Columbia, Canada, were used as the training population for (1) EBVs (estimated breeding values) of juvenile height
(HTJ) in the F, generation predicting genomic EBVs of HTJ of 136 individuals in the F, generation, (2) deregressed EBVs
of F; HTJ predicting deregressed genomic EBVs of F, HTJ, (3) F; mature height (HT35) predicting HTJ EBVs in F,, and (4)
deregressed F; HT35 predicting genomic deregressed HTJ EBVs in F,. Ridge regression best linear unbiased predictor (RR-
BLUP), generalized ridge regression (GRR), and Bayes-B GS methods were used and compared to pedigree-based
(ABLUP) predictions. GS accuracies for scenarios 1 (0.92, 0.91, and 0.91) and 3 (0.57, 0.56, and 0.58) were similar to their
ABLUP counterparts (0.92 and 0.60, respectively) (using RR-BLUP, GRR, and Bayes-B). Results using deregressed values
fell dramatically for both scenarios 2 and 4 which approached zero in many cases. Cross-generational GS validation of
juvenile height in Douglas-fir produced predictive accuracies almost as high as that of ABLUP. Without capturing LD, GS
cannot surpass the prediction of ABLUP. Here we tracked pedigree relatedness between training and validation sets. More
markers or improved distribution of markers are required to capture LD in Douglas-fir. This is essential for accurate forward
selection among siblings as markers that track pedigree are of little use for forward selection of individuals within controlled
pollinated families.

Introduction

There is a strong drive to incorporate genomic selection
(GS) methodologies, as first proposed by Meuwissen et al.
2001, into forest tree selective breeding. With a proliferation
of genomic technologies and a steady decline in genotyping
costs (Heffner et al. 2010; Thomson 2014), breeders are
taking full advantage of the availability of large SNP data
sets. With these large SNP sets, it is envisaged that linkage
disequilibrium (LD) between the markers and most sources
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of variation for valued complex phenotypes can be tracked.
In doing so, capturing more variance than the well-
established marker-assisted selection (MAS), which relies
on fewer, large effect quantitative trait loci (QTLs) (El-
Kassaby 1982). Genetically complex traits (such as height,
growth, and wood quality) are now amenable to selection
with the use of dense marker data. Given this statistical
advantage, it is anticipated that GS may be implemented into
tree selective breeding, as it has been done in livestock
breeding (Van Eenennaam et al. 2014), resulting in higher
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genetic gain per unit time for traits of interest. This will
largely be achieved through the reduction of trait evaluation
time for such late expressing traits, leading to a faster turn-
over in breeding generations, a significant time-sink in
current breeding programs (Hayes et al. 2009; Heffner et al.
2010). Furthermore, breeding programs will become more
dynamic as they will be able to ensure adaptation to capri-
cious influences such as climate change and biotic dis-
turbance in less time (Grattapaglia 2014).

Early deterministic simulations by Grattapaglia and
Resende (2011) of GS that modeled forest tree species
reported promising results. Following this, several experi-
mental investigations have built upon this concept with
varying success (Bartholomé et al. 2016; Beaulieu et al.
2014a, 2014b; Fuentes-Utrilla et al. 2017; Gamal El-Dien
et al. 2015; Grattapaglia 2014; Isik et al. 2016; Miiller et al.
2017a; Ratcliffe et al. 2015; Resende et al. 2012a, 2012b,
2012c, 2017; Tan et al. 2017; Thistlethwaite et al. 2017). In
general, the following phases are involved in the GS pro-
cess: (1) the genetic and phenotypic evaluation of a random
subset of samples from within a selected population forming
the training set from the tree breeding population under
investigation; (2) creating a predictive model using this
data, in which alleles at all marker loci have their effects
simultaneously estimated; (3) implementing a validation or
cross-validation process to test the developed models’
robustness; and (4) genomic prediction on a different subset
of individuals from the same breeding population and
selection of candidates from this population for next-
generation breeding based on their genomic estimated
breeding values (GEBVs) (Meuwissen et al. 2001; Gratta-
paglia 2014). The repercussion of this is a paradigm shift, in
which the model unit of these breeding analyses shifts from
being the line of descent to the allele.

Factors influencing the success of GS are varied, but one,
which is entirely at the discretion of the investigator, is the
statistical prediction method. Many methods have been
proposed for GS and can be differentiated largely by their a
priori assumptions of variance distribution. Ridge regres-
sion best linear unbiased prediction (RR-BLUP) and gen-
eralized ridge regression (GRR) have been selected for their
computational efficiency. RR-BLUP assumes marker
effects to be normally distributed (mean =0) and to have
equal variance. Conversely, GRR allows for heterogeneous
variances and so employs a step that sets marker-specific
shrinkage parameters on BLUP. In addition to these two
methods, Bayes-B will also be implemented. The former
have been shown to be highly sensitive to genetic rela-
tionships, leading to the accuracy of GEBV predictions
based on markers tracking this relationship rather than LD
(Habier et al. 2007; Thistlethwaite et al. 2017). This con-
clusion led Habier et al. (2007) to recommend the use of
Bayes-B as an alternative.

Other features which independently and collectively alter
the success of GS include: (1) The extent of LD between
markers and QTL, (2) density of marker coverage; (3)
training population size; (4) relatedness of samples (Habier
et al. 2007), (5) trait heritability; (6) genetic architecture of
trait (number of loci and effect size) (Hayes et al. 2009;
Grattapaglia 2014); and (7) effective population size (N,)
(Lorenz et al. 2011). Again features 2, 3, and 7 are (to a
certain extent) under the control of the experimenter.

Regarding relatedness between individuals (feature 4),
the parent average effect on EBVs was removed in this
study following Garrick et al. (2009). The deregressed
information is used as an alternative to EBVs in genomic
selection to reduce the bias and increase reliability. Using
the BLUP procedure shrinks both individual and progeny
information toward the parent average EBV, and so there is
motivation to remove this effect for the following rationale:
(1) those records with an EBV but no individual or progeny
information do not contribute to genomic estimation. Their
EBV is calculated purely on the parental average and
therefore do not afford any additional information besides
that of the parental EBVs and genotypes and (2) to avoid
the shrinking of major effects that are potentially segre-
gating in the parents. Without deregression the EBVs of the
offspring will all be shrunk toward the parent average,
regardless of whether they inherit the favorable or unfa-
vorable allele (Garrick et al. 2009).

The extent of marker-QTL LD is dictated by the rela-
tionship between N, and the number of markers used
(Grattapaglia and Resende 2011). In accordance with
established theory, in a population with low N,, genetic drift
has a stronger effect, resulting in an increase in non-random
association of markers and QTL (LD). Thus, in this situation
fewer markers are required to capture the variation of the
trait of interest. In outbreeding populations, recombination
negates LD and so, long-ranging LD is lost over generations.
Because of this, models must be continually updated
according to the distance between generations. Wu et al.
(2015) found that increasing the generational gap between
training and testing populations, reduced predictive accuracy
of GS. Two factors can be garnered from this information,
and their interaction is thought to have the highest impact on
the success of GS in trees: (1) N, must dictate the scale of
marker density and (2) LD can be controlled through
choosing the N, (Grattapaglia 2014). Larger training popu-
lation sizes were shown to increase predictive accuracy up to
a threshold of around 1000 individuals, beyond which there
were negligible gains (Grattapaglia and Resende 2011).
Although Meuwissen et al. (2001) reported findings that
suggested larger training populations negated somewhat the
effects of low trait heritability, this had little effect on GS
predictive accuracy of more complex traits (50-100 + QTL)
(Grattapaglia and Resende 2011).
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Substantial work has been carried out on testing the
efficacy of GS in forest tree selective breeding. Validation
populations (or cross-validation) have largely been com-
prised of individuals from within the same generation as the
training population, aside from work performed by Isik
et al. (2016) and Bartholomé et al. (2016). This practice has
resulted in effectively side-stepping the issue of the gen-
erational gap. To address this issue, we performed a cross-
generational GS analysis on coastal Douglas-fir (Pseu-
dotsuga menziesii Mirb. (Franco)). The training population,
on which the predictive models were trained, was collected
from the parental generation (F;). The set was composed of
1321 randomly selected, 38-year-old trees, representing 37
full-sib families with replications over three environments
in British Columbia (Canada) (Thistlethwaite et al. 2017).
The validation population was collected from the progeny
of the parental generation (F,, n = 136) with shared pedi-
gree to the studied 37 full-sib families. A total of 69,551
SNPs were used in the GS analyses to produce a predictive
model for juvenile height, which was compared to pedigree-
based (ABLUP) predictions.

Methods
Experimental population

Samples from a 38-year-old replicated coastal Douglas-fir
(Pseudotsuga mencziesii Mirb. (Franco)) progeny testing
population (F;) was used as the training set to develop the
GS predictive models. The breeding program was estab-
lished by the Ministry of Forests, Lands and Natural
Resource Operations of British Columbia (BC), Canada in
1975. A total of 37 of 165 full-sib families were randomly
selected for sampling from 3 environments in British
Columbia, Canada (Adams (Lat. 50° 24’ 42" N, Long. 126°
09’ 37" W, Elev. 576 mas), Fleet River (Lat. 48° 39’ 25” N,
Long. 128° 05" 05” W, Elev. 561 mas), and Lost Creek
(Lat. 49° 22’ 15" N, Long. 122° 14’ 07" W, Elev. 424
mas)). A total of 1321 individuals (N, = 21) from these 3
environments (Adams: N = 449, Fleet River: N =441, Lost
Creek: N =431) were selected for genotyping and to train
the GS models and ABLUP validation model. The N, was
estimated using a program developed by Dr. Milan Lsti-
burek (Faculty of Forestry and Wood Sciences, Czech
University of Life Sciences Prague, Prague, Czech Repub-
lic) based on the status number concept of Lindgren et al.
(1997).

The validation population (F;) is represented by
247 samples from control pollinated offspring derived from
the 37 full-sib families described above with offspring from
an additional 5 full-sib families selected from the same
progeny testing population (F;) (42 F, families total).
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ABLUP accuracies were derived using these 247 samples.
Due to missing genotype information some F, samples were
discarded for GS analysis. The remaining 136 samples were
used as the GS validation population, representing 17 par-
ents located at Jordan River, BC (Lat. 48° 25’ 52.6N, Long.
124° 02’ 46.2W, Elev. 150 mas) and established in 2003.

In order to derive best possible estimates for the EBVs,
an increased number of individuals (total N = 36,311) was
used to provide as much information as possible when
fitting the ABLUP model in ASReml 4.0 (Gilmour et al.
2009). Information was used from 11 environments of the
38-year-old progeny testing population (F;) (N =33,931),
plus their wild progenitors (N = 108) as described pre-
viously (Yanchuk 1996), an ungenotyped replicate of the
F, Jordan River validation population (N =2025) (North
Arm, Lat. 48° 50" 41.7" N, Long. 124° 06’ 34.8” W), and
the Jordan River environment itself (N =247) were also
incorporated into the analysis (total N=36,311). The
EBVs of a genotyped subset were used in the training of
all models (Table 1). The “original” EBVs of the geno-
typed subset from Jordan River were used to validate each
model.

Phenotyping, deregression, tissue sampling, DNA
extraction, and genotyping

Early-rotation (juvenile height) (1988 for the training
population and 2010 for the validation population) height
measurements of the studied trees were recorded (HTJ: in
cm). EBVs for HTJ were obtained in ASReml 4.0 (Gilmour
et al. 2009) and used as phenotypes for the genomic pre-
diction analysis. In addition, the EBVs were deregressed
and parental averages removed, using the method
“Removing parent average effects” proposed by Garrick
et al. (2009). The resulting deregressed estimated breeding
values (DEBVs) were used as alternative phenotypes for GS
analysis. This type of deregressed data can be obtained by
approximating and back-solving the evaluation equations.
The following equations were solved for each individual
tree:

Z,pAZPA+4/1 —21 :| |: PA :| i |: YrA :|

=24 Z'i paLipp + 21| | EBV Yipa ]

(1)

where PA and EBV represent the parental average and
estimated breeding value vectors, respectively; yps and
vi—pa represent information equivalent to the right-hand-
side elements referring to the PA and individual respec-
tively; A= (1 — h®)/h?; Z'ppZps and Z';_ppZ;_ps express
the unknown information content of the parental average,
and individual effect without parental average, respectively.
These latter terms can be equated by solving firstly Eq. (2)
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z?hi.:ﬁi;vi(siﬁz;?gg zii?ﬁ)gﬁlrzr?zr Environment n Number genotyped ~ Generation ~ Model contribution ~ Heritability (h?)

and to which models they Wild progenitors 108 Py ABLUP? NA

contributed
Adams 3478 449 F, ABLUP, GS 0.19
Fleet River 2944 441 F, ABLUP, GS 0.22
Lost Creek 3244 431 F; ABLUP, GS 0.13
Sechelt 2909 F, ABLUP 0.20
Squamish River 3153 F, ABLUP 0.25
Eldred River 3395 F; ABLUP 0.13
Tansky Creek 2974 F, ABLUP 0.27
Sproat Lake 2881 F, ABLUP 0.20
White River 3010 F, ABLUP 0.17
Gold River 3067 F, ABLUP 0.09
Menzies 2876 F, ABLUP 0.17
Jordan River 247 136 F, ABLUP, GS 0.39
North Arm 2025 F, ABLUP 0.31

#Pedigree only, “GS” includes all three genomic selection methods (RR-BLUP, GRR, and Bayes-B), and
only genotyped individuals were used in the construction and validation of these models. Heritability was
calculated within environments (with n individuals), using a full pedigree containing all generations

and using the result to solve for Eq. (3):
16
Z'oaZpp = 2(0.5a —4) +0.54 | | a® + =) 2)

Z'i paZipn = 6L paZpa + 24(25 — 1), (3)

where a = 1/(0.5 — r5,); and 6 = (0.5 — ra )/(1 — 17). 13, is
defined as the reliability of the PA for individual i with
parents “sire” and “dam”, and can be calculated by:
ray = Dmlam While r? the reliability of the EBV, was
calculated as the square of the correlation between the true
and predicted breeding values (r;) according to Gilmour
et al. (2009):
52

S (A @
where s? is the prediction error variance for individual ; f; is
the inbreeding coefficient for individual i calculated in
ASReml 4.0 (Gilmour et al. 2009); and a/% is the additive
genetic variance.

We can now complete and solve the coefficient matrix
(Eq. (1)) using Egs. (2) and (3), and multiply this by the
vectors PA and EBV. The deregressed information regard-
ing the individual without PA effects is obtained using this
simplified formula:

Yi—PA

(5)

Z';_paZi pa

Cambial tissue was collected from the mature trees of the
training population; this was an elegant solution to over-
come the difficulty of obtaining foliage tissue from older/
taller trees. Using a hammer and punch tool (approx. 2 cm
diameter) two small circular disks of bark, cambium and
developing tissue were removed from each tree. Once
separated, the cambial tissue was immediately stored in a
2ml collection tube with 1 ml of storage buffer (10 mM
EDTA pH 8.0, 10 mM Na,S0O3), these were kept at 4 °C
until DNA extraction. Foliage DNA extraction is easier
using a standard protocol, therefore leaf bud tissue was
collected from the juvenile trees. Two samples from each
juvenile tree were taken and stored in the same way as the
cambial tissue (in 1 ml of storage buffer and kept at 4 °C).
The same DNA extraction protocol was used on both forms
of the tissue samples. This was a modified protocol devel-
oped by Ivanova et al. 2008 (R. Whetten, unpublished,
North Carolina State University, personal communications).
Whole exome capture genotyping was carried out in a
commercial facility (RAPiD Genomics©, FL, USA), with
probes designed using the available Douglas-fir tran-
scriptome assembly (Howe et al. 2013). For further details
on the genotyping process see Thistlethwaite et al. (2017),
both the training and validation populations were genotyped
at the same time using the same procedure. For more
information regarding exome capture, see Neves et al.
(2013).

EBV prediction and accuracy

ASReml 4.0 (Gilmour et al. 2009) was used to fit EBVs,
using information from the 11 F; parental environments,
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their parents (Py) and the 2 F, juvenile environments (total
N=236,311) (Table 1). As environmental effects are an
important consideration in forestry (Cappa et al. 2016), and
to account for site (environment) and age differences, a
linear mixed model analysis was carried out,

y=Xp+Zia+ Zysa+ Zzs(rep) + Zssf +Zsf +e, (6)

where y is the phenotypic trait measurement; f is a vector of
fixed effects (i.e., mean, site, and age effects); a is a vector
of individual random additive effects following ~N(O,
Ac,%); sa is a site x additive genetic interaction following
~N(0, Io>); s(rep) is a vector of the block effect nested
within site following ~N(O, Icss(mp)z); sf is a random effect
site x family interaction following ~N(0, Io?); fis the effect
of family and following ~N(O, Icfz); and e is the random
residual effect following ~N(O, Is.”); X and Z,5 are
incidence matrices assigning fixed and random effects to
each observation at vector y; lastly I is the identity matrix
and A the average numerator relationship matrix (Wright
1922). We chose to use a common variance for all
environments since this is the most parsimonious model
when using a large number of environments. This avoids
over-fitting the model since the number of parameters
increases much faster than the number of environments (Isik
et al. 2017). Theoretical accuracy of the EBVs () was
calculated following Dutkowski et al. (2002).

SE?
F=yll ——)t— 7
TN T a+R)e @)

where SE; is the standard error of breeding value, and F; is
the inbreeding coefficient of the ith individual. Narrow-
sense heritability was calculated as = r)'azl(aa2 + osaz +
Gsfz + af2 —I—aez), where oaz, asaz, Gsfz, Ufz, and 062 are the
variances of additive genetic, site x additive genetic, site X
family, family, and residual effects, respectively.

ABLUP validation was carried out in ASReml R v4.1,
predicting the breeding values of the validation population
using an expected relationship matrix (A) based on pedigree
information. A tenfold validation approach was used.
Briefly, samples from the F; parental generation at Adams,
Fleet River, and Lost Creek (N=1321) were randomly
partitioned into ten training subsets. Nine of these subsets
(approximately 90% of the F; samples) were used as the
training set, on which the ABLUP model would be trained
to estimate breeding values. On the basis of this model
training, EBVs of the validation set were predicted. The
validation set was composed of the 136 individuals from the
F, Jordan River environment. This was repeated ten times
until all F; subsets had been included in the training set.
Then the whole process was repeated ten times, randomly
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assigning the training subsets. Prediction accuracy was
measured as the correlation between the predicted EBVs
from the cross-validation, and their original EBVs calcu-
lated using all possible pedigree information. In addition,
the predictive ability was calculated as the correlation
between predicted EBVs and actual height phenotypes.

Genomic selection analysis

Three statistical methods were used to perform genomic
selection: RR-BLUP, GRR, and Bayes-B (Lorenz et al.
2011). Four GS analyses were performed: (1) models were
trained on EBVs for juvenile height of the F; trees, GEBVs
for height of the F, validation set were predicted (HTJ
EBVs — HTJ GEBV5s); (2) models were trained on DEBVs
for juvenile height of the F; trees, genomic estimates of
deregressed breeding values (GDEBVs) for height of the F,
validation set were predicted (HTJ DEBVS — HTJ
GDEBV5s); (3) GS models were trained on EBVs of mature
height (age 35) of the F; samples and GEBVs of the F,
validation set were predicted and correlated with their
juvenile EBVs to ascertain any relationship (HT35
EBVs — HTJ GEBV5s); (4) models were trained on DEBVs
for mature height of the F; samples, GDEBVs of the F,
validation set were predicted and correlated with their
juvenile DEBVs (HT35 DEBVs — HTJ GDEBVs). A ten-
fold validation process repeated ten times, was again used to
randomly select individuals from the F; generation to con-
struct the training set of the models. Prediction accuracy for
each model in all four analyses was calculated as the mean
of the replications of the Pearson product-moment correla-
tion between the original EBVs (as calculated with all
pedigree information N =36,311) for HTJ of the 136 F,
validation trees from Jordan River and their predicted
GEBVs. Alternatively, using DEBVs to train the models,
the prediction accuracy is the Pearson product-moment
correlation between DEBVs of the validation set and their
predicted GDEBVs. Similarly to the ABLUP investigation,
the predictive ability was calculated as the correlation
between predicted GEBVs and actual height phenotypes.

Ridge regression best linear unbiased predictor

RR-BLUP (Whittaker et al. 2000) was implemented using
the R package “bigRR” (Shen et al. 2014). The predicted
heights (or GEBVs) are obtained by the summing of all the
marker effects of an individual tree. Marker effects were
estimated as in Henderson (1976), under the following
mixed model:

Yp(EBV) = Tu+2zg+e, (8)
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where ypggy) is the vector of n tree height records (EBVs
or DEBVs in this case), 1 is a vector of 1, u is an intercept, g
is the vector of random marker effects, Z is the design
matrix for the random marker effects, and e is the residual
vector for random effects. In RR-BLUP the residuals and
marker effects follow normal distributions with constant
variance, i.e., e ~ N (0, Iaz) and g ~ N(O, Icr;), where I is an
identity matrix. The solution for the marker effects is given
by the following equation:

§=(ZZ+i)"'Zy ©)

where {=o, /o, is the ridge penalization parameter. An
assumption of this method is that all marker effects are
distributed equally, and therefore all effects are equally
shrunk towards zero.

Generalized ridge regression

GRR was implemented in the R package “bigRR” (Shen
et al. 2014). The first step, in this two-step variable selection
method, is to use linear mixed models optimizing 4, to
estimate marker effects (the same as RR-BLUP). Where it
differs from RR-BLUP is in a second step. In which an
alternative, marker-specific shrinkage parameter is imposed
on the BLUP for g.

In this heterogeneous error model, I becomes diag(«) in

Eq. (4):
&= (Z'Z +diag(2))"'Z'y (10)

Here ( is a vector of p shrinkage parameters. For the kth
element: & = o2 /(r;k, is the parameter, where sz is the
variance of marker effect k ((;ék = g;/(1 — hi)). Where g is
the BLUP marker effect (from step 1), and Ay is the effect
of the dependant variable on the fitted value for observation
k. To wit, hy, represents the diagonal element (n + k) of the

influence matrix H = T(T’T)’]T’, and

1 VA
TZ(O diag(l)) (1)

Bayes-B

Bayesian methods, as first proposed by Meuwissen et al.
(2001), seek to relax the assumption that genetic effects are
evenly distributed across the genome (as in RR-BLUP). In
this analysis, we use Bayes-B, another variable selection
method, in which there exists a probability that a marker has
no effect (). This would correspond to a situation where the
genetic architecture of the trait was such that genetic variance
was present at few, major effect loci only (Heftner et al. 2009;

Lorenz et al. 2011). Bayes-B is thought to be a more realistic
prior since some genomic regions will be absent of QTL
(Heffner et al. 2009). An assumption of this model is that
marker effects are normally distributed with zero mean and
finite variance. The prior distribution of the marker effect
variance, is a mixture of two finite prior densities: var (g) =0,
with probability 7; and var (g) ~ ¥ 2 (v, S), with probability
(1 — ) (Lorenz et al. 2011; Gezan et al. 2017). «t is assumed
known and specified arbitrarily, the default value of 0.5 was
used. The Bayes-B analysis was carried out in the R package
BGLR v1.0.4 (Perez and de los Campos 2014), with the
Gibbs sampler run for 100,000 iterations and a burn-in of
20,000, with a thinning rate of 100. Default rules of the
BGLR R package (Perez and de los Campos 2014) were used
for the initial hyper-parameter values.

The data sets supporting the results of this article will be
available in the Dryad Digital Repository upon acceptance.

Results
Heritability and EBV accuracy

Juvenile height (HTJ) heritability was estimated using a
pedigree-based relationship matrix (ABLUP), including
individuals from the 11 parental (F;) environments, their
parents (Pgy), and the 2 progeny (F,) environments. A
summary of the contribution of each environment to both
the ABLUP and GS models is in Table 1, along with
environment heritabilities for HTJ which ranged from 0.09
to 0.39. The overall HTJ heritability estimate was 0.14 (SE
0.025). The average theoretical accuracy for the EBVs of
the sampled, genotyped individuals (from 3 parental
environments: Adams, Fleet River and Lost Creek; and 1
progeny environment: Jordan River) was 0.68, and 0.61 for
the validation environment (Jordan River) alone.

Validation in the progeny generation
ABLUP

The average prediction accuracy for Jordan River EBVs
derived from ABLUP was 0.92 (SE 0.001) (Table 2), using
a pedigree including genotyped samples only, i.e., the
validation set and the F, samples from the three environ-
ments (Adams, Fleet River, and Lost Creek). Using a larger
pedigree based on the full 11 F; environments (plus their
parents), and two progeny environments, the prediction
accuracy becomes 0.95 (SE 0.0005). While the pedigree for
the ABLUP analyses included multiple generations, phe-
notypic information from the F; generation only was used to
predict the validation (F,) EBVs in the cross-validation. For
comparison with the GS analyses, it is these results that we
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Table 2 Genomic selection analyses of four models using three GS statistical methods (RR-BLUP, GRR, and Bayes-B)

Analysis Accuracy (SE)
ABLUP RR-BLUP GRR Bayes-B

HTJ EBVs - HTJ GEBVs 0.92 (0.001) 0.92 (0.0002) 0.91 (0.0003) 0.91 (0.0007)

EBV < 20! 0.43 (0.003) 0.42 (0.003) 0.42 (0.004)

EBV <20° 0.43 (0.004) 0.38 (0.005) 0.38 (0.005)

EBV <20 0.45 (0.006) 0.43 (0.006) 0.44 (0.005)

EBV > 20! —0.005 (0.004) —0.05 (0.004) —0.02 (0.006)
EBV > 20? —0.04 (0.004) —0.11 (0.004) —0.10 (0.005)
EBV > 20° 0.54 (0.009) 0.52 (0.010) 0.99 (0.0001)

HTJ DEBVS — HTJ GDEBVs 0.10 (0.008) 0.05 (0.007) 0.48 (0.002)

EBV < 20! —0.12 (0.004) —0.11 (0.004) —0.02 (0.005)
EBV < 20? —0.12 (0.004) —0.14 (0.004) —0.09 (0.005)
EBV <20° —0.08 (0.004) —0.07 (0.004) —0.07 (0.004)
EBV > 20! 0.17 (0.004) 0.26 (0.004) 0.16 (0.006)

EBV > 20? 0.14 (0.004) 0.17 (0.004) 0.13 (0.006)

EBV > 20° —0.23 (0.003) —0.22 (0.003) 0.09 (0.009)

HT35 EBVs - HTJ GEBVs 0.60 (0.010) 0.57 (0.002) 0.56 (0.002) 0.58 (0.003)

EBV <20! 0.15 (0.004) 0.20 (0.004) 0.04 (0.007)

EBV < 20? 0.13 (0.004) 0.18 (0.004) 0.04 (0.007)

EBV <20° 0.35 (0.005) 0.41 (0.005) 0.36 (0.007)

EBV > 20! —0.21 (0.002) —0.24 (0.002) —0.28 (0.004)
EBV >20? —0.22 (0.002) —0.25 (0.002) —0.30 (0.003)
EBV >20° —0.23 (0.003) —0.22 (0.003) —0.27 (0.003)
HT35 DEBVs — HTJ GDEBVs —0.15 (0.005) —0.11 (0.005) 0.11 (0.007)

EBV < 20! —0.08 (0.003) —0.02 (0.003) —0.02 (0.003)
EBV <20° —0.08 (0.003) —0.07 (0.003) —0.06 (0.003)
EBV <20° 0.06 (0.002) 0.07 (0.003) 0.06 (0.003)

EBV > 20! 0.02 (0.004) 0.07 (0.004) —0.06 (0.004)
EBV >20° 0.02 (0.005) 0.03 (0.006) —0.07 (0.003)
EBV >20° 0.07 (0.004) 0.08 (0.004) —0.01 (0.006)

ABLUP is a pedigree only model with no marker information used. Results are from the validation procedure replicated 10 times, in which a
random 90% of the genotyped F; generation (1321 trees from Adams, Fleet River, and Lost Creek) was used as the training set and the validation
set was comprised of the 136 genotyped F, trees from Jordan River. Accuracy was calculated as the mean of the replications of the Pearson
product-moment correlation between the original EBVs for HTJ of the 136 F, validation trees from Jordan River and their predicted GEBVs or
GDEBVs. The four analyses are: F; juvenile height EBVs predicting F, juvenile height EBVs (HTJ EBVs — HTJ GEBVs); F; juvenile height
DEBVs predicting F, juvenile height DEBVs (HTJ DEBVS — HTJ GDEBVs); F; mature (age 35) height EBVs predicting F, juvenile height EBV
(HT35 EBVs — HTJ GEBVs); and F; mature height DEB Vs predicting F; juvenile height GDEBVs (HT35 DEBVs — HTJ GDEBVs). Results for
the validation set as a whole are in bold (N = 136), following these are the results for each of the two clusters EBV <20 (N = 83) and EBV > 20 (N
= 53), with indices representing different training set composition: ! all genotyped F, individuals; Zall genotyped F, individuals minus the parents

of the opposing cluster; > only the F; parents of the cluster in question

shall concentrate on. The average predictive ability for HTJ
using ABLUP was calculated as the correlation between
EBV and juvenile height measurements. The predictive
ability of ABLUP in the validation set was calculated as
0.71 (SE 0.003) using a pedigree including genotyped
samples only, i.e., the validation set from Jordan River (F,)
and the F; samples from the three environments: Adams,
Fleet River, and Lost Creek (Table 3). Higher than the
theoretical accuracy (0.61) calculated for the validation
environment (Jordan River) alone.
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GS Scenario 1: HTJ EBVs — HTJ GEBVs

Prediction accuracies for GEBVs derived from RR-BLUP,
GRR, and Bayes-B are shown in Fig. 1. In the first cross-
generational GS analysis, GS prediction accuracies for
validation were determined by the correlation between EBV
and GEBVs for the F, validation (progeny generation) set at
Jordan River. GS prediction accuracies with models trained
on F; EBVs were very similar over all GS methods used
(Table 2), the average was 0.91. Their corresponding
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Table 3 The corresponding predictive abilities for GS analyses in Table 2, calculated as the correlation between the raw phenotype (juvenile
height: HTJ) and their genomic estimated breeding values (GEBVs) or deregressed genomic estimated breeding values (GDEBVs)

Analysis Predictive ability (SE)
ABLUP RR-BLUP GRR Bayes-B

r (HTJ, HTJ GEBVs) 0.71 (0.003) 0.43 (0.0004) 0.42 (0.0006) 0.43 (0.0007)

EBV <20' 0.10 (0.002) 0.07 (0.002) 0.07 (0.003)

EBV < 20? 0.04 (0.002) —0.01 (0.003) —0.01 (0.003)
EBV <20° —0.10 (0.003) —0.12 (0.004) —0.09 (0.003)
EBV >20! 0.05 (0.002) 0.03 (0.002) 0.07 (0.004)

EBV >20? 0.04 (0.002) 0.01 (0.002) 0.07 (0.003)

EBV >20° 0.15 (0.004) 0.12 (0.005) 0.59 (0.0004)

r (HTJ, HTJ GDEBVs) 0.06 (0.008) 0.009 (0.007) 0.40 (0.003)

EBV <20! —0.20 (0.006) —0.21 (0.005) —0.04 (0.006)
EBV < 20? —0.22 (0.005) —0.25 (0.005) —0.15 (0.007)
EBV <20° —0.21 (0.006) —0.20 (0.006) —0.21 (0.006)
EBV > 20! 0.23 (0.004) 0.31 (0.005) 0.20 (0.005)

EBV > 20? 0.19 (0.005) 0.22 (0.005) 0.16 (0.006)

EBV >20° 0.15 (0.007) 0.11 (0.007) 0.07 (0.010)

r (HTJ, HT35 GEBVs) 0.21 (0.001) 0.21 (0.001) 0.22 (0.002)

EBV <20/ —0.19 (0.001) —0.13 (0.002) —0.09 (0.005)
EBV < 20? —0.23 (0.001) —0.17 (0.002) —0.14 (0.004)
EBV <20° —0.10 (0.002) —0.07 (0.002) —0.06 (0.004)
EBV > 20! —0.03 (0.001) —0.04 (0.001) —0.09 (0.002)
EBV > 20? —0.03 (0.0009) —0.05 (0.001) —0.07 (0.002)
EBV >20° —0.04 (0.001) —0.04 (0.002) —0.06 (0.001)
r (HTJ, HT35 GDEBVs) —0.17 (0.005) —0.13 (0.004) 0.04 (0.006)

EBV <20 —0.18 (0.003) —0.13 (0.003) —0.13 (0.003)
EBV <20? —0.18 (0.003) —0.18 (0.003) —0.18 (0.003)
EBV <20° —0.05 (0.003) —0.03 (0.004) —0.05 (0.004)
EBV > 20! 0.08 (0.005) 0.13 (0.004) 0.003 (0.004)

EBV >20? 0.09 (0.005) 0.09 (0.006) —0.01 (0.003)
EBV >20° 0.15 (0.005) 0.15 (0.005) 0.06 (0.006)

Results for the validation set as a whole are in bold (N = 136), below each are the results for each of the two clusters EBV <20 (N = 83) and EBV
> 20 (N = 53), with indices representing different training set composition: 1 all genotyped F1 individuals; 2 all genotyped F1 individuals minus

the parents of the opposing cluster; 3 only the F1 parents of the cluster in question

predictive abilities were also similar to each other with an
average of 0.43, somewhat lower than that of ABLUP
despite similar prediction accuracies (Table 3).

As is evident from the Fig. la—c, there is a pattern of
distinct grouping characterized by those individuals with
EBV over 20 and those below. We suspected this was the
major factor in causing such high prediction accuracies. To
this end, we further analyzed these groups, or clusters,
separately, each with 3 different training set combinations
represented by indicies 1-3. EBV<201, EBV < 202, and
EBV < 20° represent the analysis of validation individuals
within the lower cluster, using: 'all genotyped F, indivi-
duals (1321 trees from Adams, Fleet River, and Lost Creek)
as the training set; > all genotyped F, individuals minus the

parents of the high cluster as the training set (total = 1104);
and 3using only their parents from the F, generation as the
training set (total = 132). Similarly EBV >20' represents
the analysis of validation individuals within the higher
cluster (EBV > 20), using all genotyped F, individuals as
the training set (total = 1321); EBV > 207 is the analysis of
validation individuals within the high cluster, using all
genotyped F; individuals minus the parents of the low
cluster as the training set (total = 1189); and EBV > 20% is
the analysis of validation individuals within the high cluster,
using only their parents from the F; generation as the
training set (total =217).

We subsequently found more limited correlations
between EBVs and GEBVs within these clusters. When
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Fig. 1 GS correlation in the validation set (correlation in the validation e GRR, and f Bayes-B; EBVs for HTJ vs. GEBVs for mature height
set of: EBVs and genomic estimated breeding values (GEBVs) for age 35 years (HT35) using g RR-BLUP, h GRR, and i Bayes-B; and
juvenile height (HTJ) using a RR-BLUP, b GRR, and ¢ Bayes-B; DEBVs for HTJ vs. DGEBVs for HT35 using j RR-BLUP, k GRR,
deregressed estimated breeding values (DEBVs) and genomic dereg- and 1 Bayes-B)

ressed estimated breeding values (GDEBVs) using d RR-BLUP,

analyzed separately the lower cluster, with individuals with  all training set combinations and GS statistical methods
EBVs lower than 20 (hereafter referred to as EBV <20), (Table 2), obtaining an average of 0.42. GS method RR-
observed similar yet moderate predictive accuracies across ~ BLUP and training set EBV <20? performed only slightly
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better than the other combinations. The higher cluster, the
group with individuals with EBV over 20 (hereafter referred
to as EBV>20), observed markedly low prediction
accuracies for EBV > 20! and EBV > 20? (average: —0.05).
Yet with a training set comprised only of the parents of this
cluster (EBV > 203), that rose to an average of 0.68 over all
GS methods (Table 2). Bayes-B, in this case, outperformed
the other GS methods significantly, and indeed provided the
best prediction accuracy in this investigation (0.99), greater
than that of the ABLUP model.

GS Scenario 2: HTJ DEBVs — HTJ GDEBVs

The second GS analysis used the correlation between
DEBVs and GDEBVs, of the F, validation set at Jordan
River, as an indication of predictive accuracy. Deregression
was carried out using the procedure of Garrick et al. (2009),
to account for family means and their effect on EBVs. The
resulting deregressed EBVs (DEBVs) contain information
regarding individuals only, without influence from parental
BVs. Model accuracy fell dramatically when trained on
DEBVs of the F; training set rather than on EBVs, 0.10 (SE
0.008) for RR-BLUP (Fig. 1d), 0.05 (SE 0.007) for GRR
(Fig. le), and 0.48 (SE 0.002) for Bayes-B (Fig. 1f). The
Bayes-B analysis being noticeably higher than the other two
analyses due to the aforementioned clustering structure of
the validation set. Similarly, the predictive abilities of these
three models were much lower for RR-BLUP and GRR and
moderate for Bayes-B: 0.06 (SE 0.008), 0.009 (SE 0.007),
and 0.40 (SE 0.003), respectively (Table 3). In this scenario,
Bayes-B seemed to out-perform the other two GS models,
however, the appearance of clustering in Fig. 1f called for
further investigation.

Again, separate analyses were carried out according to
the grouping of individuals mentioned previously. Although
it is not immediately obvious in Fig. 1d, e, there is the
emergence of a grouping pattern in Fig. 1f. The average
predictive accuracy for EBV <20 across all training set
combinations and GS methods was —0.09 and the average
predictive ability for EBV <20 was —0.19. For EBV > 20
the average predictive accuracy of the training set combi-
nations EBV >20' and EBV >20* was 0.17. This contrasts
the results using only the parents of this high cluster as the
training set, which gives an average predictive accuracy of
—0.12 (Table 2). The average predictive ability for EBV >
20 was 0.18 (Table 3).

GS Scenario 3: HT35 EBVs — HTJ GEBVs

The third GS analysis, using EBVs for mature height (age
35) of the F; samples as the training set for the models, and
juvenile height GEBVs of the F, generation at Jordan River
as the validation set. The prediction accuracies achieved

were similar between all three GS models, with an average
of 0.57 (Fig. 1g—i). They were comparable but lower than
the result of the ABLUP analysis in which HT35 was used
to predict HTJ EBVs (0.60, SE 0.010) (Table 2). Likewise,
their predictive abilities were generally quite similar to that
of the ABLUP analysis (0.24, SE 0.005) with an average of
0.21 across all GS methods (Table 3):

The appearance of groups again appears in Fig. 1g—ias a
result of individual EBV in the validation set. For the group
EBV <20 the prediction accuracy was on average 0.12 for
EBV <20! and EBV <20% However, this increased to an
average of 0.37 using a training set made up of the parents
of the low cluster only. Prediction accuracy for the EBV >
20 cluster was more consistent across all training sets and
GS methods (Table 2), with an average of —0.25. Although
in this latter case the predictive accuracy correlation is
driven by the presence of two smaller sub-groups within the
EBV > 20 group. These subgroups have limited structure on
their own.

GS Scenario 4: HT35 DEBVs — HTJ GDEBVs

Finally in the fourth analysis, using DEBVs for mature
height of the F; samples as the training set for the models,
and GDEBVs for juvenile height of the F, generation at
Jordan River as the validation set; the average prediction
accuracy or correlation between DEBVs and GDEBVs was
—0.05 across all GS methods (Fig. 1j-1). The average pre-
dictive ability for this scenario was —0.09. All results were
much lower than those for the ABLUP analysis for HT35
predicting HTJ EBVs (Tables 2 and 3).

The same groupings as before were tested for their pre-
diction accuracies within the fourth analysis. The predictive
accuracies for EBV <20 were generally very low across all
training set combinations and GS methods. The average for
EBV <20' and EBV <20” was —0.06. With the direction of
the linear relationship changing when only the EBV <20
parents made up the training set (Table 2). The average for
this training set combination over all GS methods was 0.06.
Their average predictive abilities were: —0.16 for EBV <
20" and EBV < 20%; with a slight drop in predictive ability
in EBV<20® to —0.04. For EBV>20 the predictive
accuracies were similar in magnitude for all training set
combinations and GS methods, with an average of 0.02.
However, whilst RR-BLUP and GRR gave slight positive
correlations, Bayes-B results were all negative in their
direction. All within-cluster results were close to zero for
this scenario, although the variation in the sign of the linear
relationship causes some doubt as to their reliability. The
predictive abilities for EBV >20 were on average 0.08,
predictably with the limited training set of EBV > 20°
having slightly higher predictive abilities than the other
training sets (for RR-BLUP and GRR only).
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Discussion
Heritability of juvenile height

The estimated heritability of juvenile height was sub-
stantially low (0.14), but only slightly lower than previous
studies suggest for Douglas-fir given the age of the trees
used in the estimation (Yeh and Heaman 1982; Dean and
Stonecypher 2006; Ukrainetz et al. 2008; Thistlethwaite
et al. 2017). However, it should be noted that information
from many more environments was used to estimate this
heritability (N =36,311), increasing the genotype X envir-
onmental interaction, effectively shrinking the heritability.
Using only the 1321 F; trees, the heritability estimate is
0.17. The effect of heritability appears to be minimal in this
case, since high predictive accuracies were obtained for
validation models for HTJ predicting HTJ: 0.92 for
ABLUP, 0.92, 091, and 0.91 for RR-BLUP, GRR, and
Bayes-B, respectively (Fig. la—c), using EBVs as the GS
model input; and for HT35 predicting HTJ: 0.60 for
ABLUP, 0.57, 0.56, and 0.58 for RR-BLUP, GRR, and
Bayes-B, respectively (Fig. 1g—i). The negligible effect of
heritability in this instance is likely a consequence of the
large sample size and low N, used in the present investi-
gation (Meuwissen et al. 2001).

Pedigree vs. marker-based models

Although some results were similar, most predictive
accuracies and especially predictive abilities for GS models
trained on EBVs were still lower than those of ABLUP
(Tables 2 and 3), a common issue in forestry (Bartholomé
et al. 2016). It is thought that since the Douglas-fir genome
is so exceedingly large and complex (Neale et al. 2017),
many more markers will be needed in order to track LD
between sources of variation and markers (Thistlethwaite
et al. 2017). Simulations have yielded evidence that GS
prediction accuracy increases markedly with marker density
at least up to 8N,/Morgan (Solberg et al. 2008). In this
study, we have been moderately successful in capturing
both contemporary and historical pedigree information.
Although this is somewhat driven by groupings in the
validation generation (F,) characterized by high and low
juvenile height values. Further investigation led to the dis-
covery that the ultimate cause of this clustering was familial
grouping. Each cluster contains whole families which can
be traced back to distinct parents in the previous generation
(Fy). There are no parents who are represented in both
groups. In addition to this, the average heights and EBVs of
the parents of the ‘“high” cluster (EBV >20) were
765.04 cm and 60.70, respectively; and are indeed higher
than those parents of the “low” cluster (EBV <20),
709.88 cm and 0.81, respectively.
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Analysis of each cluster provided mixed results. For
those scenarios in which the GS models were trained on
EBV data (scenarios 1 and 3), the within-cluster results
were always lower than the overall predictive accuracy (and
ABLUP predictive accuracy) with one exception. Convin-
cing evidence that relationship tracking was the major
driving force behind the strong overall correlations. Again
within these two scenarios, the training set composition had
an effect. Unsurprisingly the analyses with training sets
comprised of parents of the cluster in question only, gen-
erally gave higher prediction accuracies due to the high
relationship between the two sets. Indeed the only scenario
in which the GS prediction accuracy surpassed the ABLUP
prediction accuracy was for the correlation between HTJ
EBVs and HTJ GEBVs with the limited training set EBV >
20° and using Bayes-B as the GS method (0.99 vs. 0.92 for
ABLUP). Although in some cases, the effect of training set
composition was minimal (scenario 1: EBV <20 and, Sce-
nario 3: EBV >20) (Table 2). Taking into account their
clustering, predictive abilities for scenarios 1 and 3 fell far
short of their ABLUP predictive abilities (Table 3). With
the exception of the correlation between HTJ and HTJ
GEBVs, which showed moderate success with a value of
0.59. This yet still falling short of the ABLUP value of 0.71.
Within-cluster correlations between HTJ and HT35 GEBVs
(scenario 3) were all negative, whilst the overall correlations
were marginally positive due to the structure of the data as a
whole.

Following the removal of family means by deregression
(scenarios 2 and 4), the lack of available marker-QTL LD
failed to raise the GS prediction accuracies enough to even
approximate those of ABLUP. However, Bayes-B notably
performed better than both RR-BLUP and GRR in scenario
2 using the correlation between HTJ DEBVs and HTJ
GDEBVs of the whole F, validation set as an indication of
prediction accuracy (Table 2). A fundamental difference
between the GS methods used is that, as opposed to RR-
BLUP and GRR, Bayes-B gives different variances to each
locus (including zero), therefore it allows for more weight
to be put on the causative SNPs. As is evident from the
results here, this drives up the prediction accuracy (Meu-
wissen et al. 2001). No such differences were seen between
the GS methods subsequent to cluster analysis in these
scenarios. When analyzed to their full extent given the
aforementioned data groupings, these deregressed analyses
showed a dramatic drop in prediction accuracy. Suggesting
the strong correlation was merely driven by tracking family
means. Meanwhile, their predictive abilities show some
striking trends. In both deregression scenarios (2 and 4) the
EBV <20 cluster has only negative prediction abilities,
averaging —0.19 and —0.12 for scenarios 2 and 4, respec-
tively. Conversely, the EBV > 20 cluster has only positive
prediction abilities (with one exception), averaging 0.18 and
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0.08 for scenarios 2 and 4, respectively. The discrepancy in
the direction of the linear relationship casts some doubt on
the reliability of the within-cluster results. A likely symp-
tom of the reduced sample size necessitated for these
analyses.

Although it is disappointing to not have captured enough
LD to raise the prediction accuracy above ABLUP in a
diverse validation population, in terms of real-world appli-
cation there is a positive finding. This use of marker-based
selection nevertheless reduces the need for time-intensive
practices such as performing specific crosses and building a
structured pedigree (El-Kassaby and Lstiburek 2009; El-
Kassaby et al. 2011). Potentially quickening the breeding
process, and perhaps off-setting costs involved in

genotyping.
GS across generations

Once GS becomes a viable option for tree breeders it will
likely, in most cases, be deployed to select progeny of the
training population without the need for explicit crosses and
a lengthy testing phase. Bearing this in mind, it is important
to validate models across generations rather than cross-
validate within the same generation, as many have done
before.

GS relies on LD between markers and causal gene var-
iants. LD breaks down after every breeding cycle due to
recombination. This is especially pertinent to breeding
within the forestry sector, for forest tree species have lower
observed levels of LD (Neale and Kremer 2011). Given
these circumstances, large SNP sets will be required to
provide dense coverage of the genome to find LD between
SNPs and QTL (Jaramillo-Correa et al. 2015). In a simu-
lation study, it was shown that higher marker densities
allowed prediction accuracies to be maintained over longer
generational gaps (Miiller et al. 2017b). Thus, without
addressing this issue, predictive accuracy is expected to fall
dramatically (Habier et al. 2007; Atefi et al. 2016).

There are a reported 54,830 gene models in the Douglas-
fir genome (Neale et al. 2017). With our 69,551 SNPs,
using the juvenile height of an F; generation as the training
set and an F, generation as the validation set, we obtained
an overall predictive accuracy of 0.92, 0.91, and 0.91 for
RR-BLUP, GRR, and Bayes-B, respectively for juvenile
height. This is in line with results from a previous study of
GS in Douglas-fir (0.79-0.92) using cross-validation within
the same generation (Thistlethwaite et al. 2017).

The results we present here did not show a drop in
predictive accuracy as one would expect (with a caveat
described later). As has been shown before, prediction
accuracy increases when the genetic relationship between
training and validation sets is closer (Habier et al., 2007;
Lorenz et al. 2012; Sallam et al. 2015). Indeed, it is the case

here that our validation set is closely related to the training
set by virtue of being their (the training set’s) offspring.
Although our results are not as disparate, Bartholomé et al.
(2016) observed a similar trend. When progeny validation
was used, prediction accuracies of GS methods were higher
(0.70 using genomic BLUP (GBLUP), and 0.71 using
Bayesian LASSO (B-LASSO)) than when within genera-
tion cross-validation was carried out (0.66, for both GBLUP
and B-LASSO). With that in mind, there may be some
benefit in combining phenotypes across generations which
helps to infer the Mendelian sampling term.

However, as is evident from Fig. la—c, g—i, two distinct
data groups had arisen which had caused the high correla-
tions. These two groups were characterized by (a) those
individuals with low juvenile height values (mean =
641.81 cm) and (b) those with high juvenile height values
(mean = 696.79 cm). They were later found to be the result
of familial clusters, with no overlapping parents from group
to group. The estimation of breeding values exacerbated this
trend and thus two non-overlapping groups can be seen
defined as EBV <20 (individuals with EBVs less than 20)
and EBV > 20 (individuals with EBV over 20).

Given this data structure, further analysis showed that
prediction accuracies for scenario 1 EBV <20 were in fact
only moderate, with an average of 0.42 for all GS methods
compared to ABLUP (0.92). In the case of EBV >20 sce-
nario 1 results were close to zero with the exception of
EBV >20°. High prediction accuracies, in this case, were
driven by close relationships between the training and
validation sets and small sample size.

These results might possibly be improved by re-
estimation of EBVs using a realized relationship matrix
(G-matrix) rather than the estimated relationship A-matrix
used here (Munoz et al. 2014).

Prediction accuracies for deregressed values reported
here, align with those reported in an earlier investigation
also carried out on Douglas-fir. Thistlethwaite et al. (2017)
describe obtaining prediction accuracies for GS models,
trained on DEBVs of height at age 12, that were also
approximately 0. These models were cross-validated with
individuals from within the same generation. Here, using
similar parameters but using a cross-generational validation
process, we have obtained similar results with a few
exceptions. Once data grouping was taken into account,
correlations between HTJ DEBVs and HTJ GDEBVs
(scenario 2) were low-moderately negative, —0.12 to —0.02
for EBV <20 and —0.23 to 0.26 for EBV > 20.

Although a lower predictive accuracy for F, HTJ was
obtained when the GS models were trained on F; mature
height (age 35) (scenario 3), there was still a significant
positive correlation between the two (0.57, 0.56, and 0.58
for RR-BLUP, GRR, and Bayes-B, respectively). These
results are lower but similar to findings in Thistlethwaite
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et al. (2017) where a positive time—time correlation between
juvenile (age 12) and mature (age 35) height within the
same generation was found (0.71 (SE 0.0004) for both RR-
BLUP and GRR). However here again, the groups EBV <
20 and EBV >20 were the driving force behind these cor-
relations. For scenario 3 EBV <20 results were likewise
reduced, averaging 0.12 for EBV < 20' and EBV <20, and
0.37 for EBV <20* across all GS methods. The stronger
correlation coming from the increased relationship between
the training and validation sets, yet falling quite short
compared to ABLUP (0.60). In scenario 3 the EBV >20
accuracy results show a small-moderate but negative cor-
relation averaging —0.25 across all GS methods. Marker-
trait associations vary with tree age, and predictably the
ABLUP correlation here was found to be lower than in
scenario 1 (0.92) at 0.60. The high-positive EBV >20°
juvenile—juvenile correlation and small-moderate negative
EBV > 20 mature-juvenile correlation, may also be symp-
toms of the effect of tree age on marker-trait associations
(Lerceteau et al. 2001) and as seen here, recombination.
These results do not provide a sound basis on which to
perform selection decisions. However should there be an
improvement in GS accuracy with the re-estimation of
EBVs, useful information may still be procured from
moderate correlations, for input into early selection
decisions.

In the final scenario, deregressed breeding values for
mature height in the F; generation were used as training
data for the GS models. Predictive accuracy fell sig-
nificantly both for the validation set as a whole (—0.15 to
0.11), and for each of EBV <20 (—0.08 to 0.07) and EBV
>20 (—0.07 to 0.08).

In the absence of average parental information (i.e.,
deregressed phenotypes), the ability of the markers to pre-
dict phenotypes in the next generation was consistently poor
(Table 2). None of the GS analyses in these deregressed
scenarios (2 and 4) surpassed or even matched the pre-
dictive ability of the ABLUP models, despite having very
similar overall prediction accuracies in scenarios 1 and 3
(although this itself can be attributed to the effects of
clustering in the validation set). Predictive ability similarly
dropped dramatically after deregression and re-adjusting for
clustering. The opposing signs of coefficients for the high
and low clusters after deregression suggest some unrelia-
bility of these values. This trend is reflected in throughout,
thus any of these within-cluster GS “accuracies” should be
treated with caution.

Main factors that affect GS: relatedness and LD
Whilst some of our observations during this study align
with previously published work, the high predictive

accuracies using EBVs as the model input are a result of
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tracking family means as opposed to true LD being cap-
tured. GS BLUP methods are robust in most circumstances
and perform well; however, it is now known that these
methods primarily capture marker derived relatedness more
readily than actual LD (Habier et al. 2007; Zhong et al.
2009). We base this viewpoint on trends seen in Thistle-
thwaite et al. (2017) whereby removing family derived
means from trait breeding values, caused virtually no pre-
diction accuracies of GS methods. Simulation evidence
suggests that pedigree-based relationships contribute to
predictive accuracy for a few generations, especially given
low N, (Miiller et al. 2017b), which the progeny validation
set presented here certainly does have. In empirical studies,
there is also evidence that the relatedness of the training and
validation sets has an impact on the accuracy of GS
(Resende et al. 2012a; Beaulieu et al. 2014a; Bartholomé
et al. 2016; Mértens et al. 2016; Varshney et al. 2017). With
higher relatedness between sets producing more accurate
predictions. Our training and validation set are only a
generation apart; it is therefore likely that their relatedness is
the main force behind the GS prediction accuracies. Even
though the alternative, more computationally intense GS
method of Bayes-B was employed to help overcome this
(Habier et al. 2007), we have not been able to resolve any
additional LD using this method. In order to “reveal” the
effect of LD on GS predictive accuracy, empirical investi-
gations on multiple generations further apart will have to be
conducted using much denser SNP genotyping.

Apropos of marker density, we carried out analyses
concerning the effect of marker density on the prediction
accuracy of GS. We carried out a tenfold cross-validation
on HT35 EBVs within the genotyped parental (F,) gen-
eration samples using RR-BLUP. Randomly selected mar-
ker sets were chosen that had progressive totals from 200 to
50,000 SNPs. These sets were tested and replicated ten
times, with random SNP sampling for each repetition. Our
investigations led us to the conclusion that an increase in
marker density leads to an increase in GS prediction accu-
racy. A caveat being that the magnitude of prediction
accuracy gains falls to a plateau as the number of makers
approaches approximately 15,000 SNPs. This also happens
to be the point at which the prediction accuracy is similar to
the ABLUP prediction accuracy for HT35 EBVs for these
samples. When the same method was employed on dereg-
ressed HT35 EBVs, the prediction accuracies fell dramati-
cally for all SNP set totals. We believe that relatedness is
the driving force behind these additional GS predictive
accuracy results for the HT35 EBVs for a couple of reasons.
Firstly, the variance within each SNP set total was modest
even though the SNPs were randomly selected. Secondly,
the prediction accuracies fell dramatically when the EBVs
were deregressed to remove the parental average effects, for
the purposes of extricating LD from pedigree. Given this



Genomic selection of juvenile height across a single-generational gap in Douglas-fir 861

insight, in order to capture short-range marker-QTL LD in
conifer species, we recommend the use of deregression to
remove parental average effects and high-density marker
sets.

The effect of capturing marker derived relatedness may
lead to sibling coselection due to an increased correlation
between EBVs within families (Wray and Thompson 1990).
In the long-run, this will lead to a reduction in genetic
variation in subsequent generations, and a loss of potential
genetic gain (Hallander 2009). A reduction in Mendelian
segregation variance due to inbreeding (sibling coselection)
will eventually lead to a decrease in the Mendelian sam-
pling term of each individual, and population-wide additive
variance. Presenting a problem for breeders in that the
expectation of the rate of genetic gain in a population is
proportional to the Mendelian sampling term of selection
targets (Woolliams and Thompson 1994; Avendaiio et al.
2004).

Breeding programs often implement selection methods
that optimize the selection differential whilst constrained by
a limit on increasing coancestry. Hallander and Waldmann
(2009) tested such methods on a diallel progeny trial of
Scots pine (Pinus sylvestris L.) investigating height and
stem diameter and found optimum contribution (OC)
dynamic selection resulted in the highest genetic gain over
other methods (standard restricted selection). One of the
main drivers for the success is that the selective advantage
in the OC method is the Mendelian sapling term. The OC
method maximizes the selection differential between
families by using the best estimates of the Mendelian
sampling term for each tree when calculating the mating
contributions (Avendafio et al. 2004). Selection methods
must be considered when using GS results as a basis for
selection, to avoid inbreeding and to maintain Mendelian
segregation variance.

Conclusions

Our cross-generational GS validation of juvenile height in
Douglas-fir provided results that almost matched the
ABLUP predictive accuracy. However, we believe that the
predictive accuracy is driven by the relatedness between the
training and validation sets, and even more so in capturing
among-family effects. Whilst this relationship is exploited
for selection in current breeding programs, the ultimate aim
of using GS should be to capture true LD across populations
and traits to uncover presently unknown variation, and
possibly unknown traits (Beaulieu et al. 2014a; Grattapaglia
2017). Hence, we degregressed EBVs to tease apart LD
from familial relationships, which may subsequently be
preferential only in advanced breeding programs (Gratta-
paglia 2017). While the number of SNPs we have derived

from sequence capture represents the highest in forest trees
GS studies (Grattapaglia 2017), we have yet to observe
enough marker-QTL LD in our GS methods. Many more
markers may be required for this to be resolved since LD in
Douglas-fir survives only over short distances as in other
conifer species (Neale and Savolainen 2004). In addition,
multi-generational information may be required in order to
evaluate LD in this species. This must be explored further
before any such incorporation into applied selective
breeding programs is undertaken.
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