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Interleukin-25 (IL-25), also known as IL-17E, is a recently identified cytokine of

the IL-17 family. Numerous studies illustrated that the expression of IL-25 is

regulated by multiple pathogens, including parasitic, viral, and bacterial

infections. IL-25 has a dual function in infectious diseases. On the one hand,

IL-25 activates type 2 immunity via the relevant cytokines, including IL-4, IL-5,

and IL-13, which are associated with the development of pathogenic infection-

related allergic diseases. On the other hand, IL-25 involves in the recruitment of

group 2 innate lymphoid cells (ILC2) to enhanced T helper 2 (Th2) cell

differentiation, which are important to the clearance of pathogens. However,

the precise roles of IL-25 in infectious diseases remain largely unknown. Thus,

the current review will shed light on the pivotal roles of IL-25 in

infectious diseases.
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Introduction

Interleukin-17 (IL-17) was discovered and described in 1993 (1). IL-17 family

consists of six members including IL-17A-F (2). IL-17E was also named interleukin-25

(IL-25), which was initially identified by sequence alignment from human genomic DNA

sequence information in 2001 and located on the q-arm of chromosome 14 (14q11.2)

with two exons and encodes 161 amino acids (3). Il-25 possesses approximately 16% to

20% homology with other IL-17 family members, and binds to specific homologous IL-17

receptors to transmit signals (4). Murine Il-25 is located on chromosome 7 and encodes

160 amino acids, which has 80% sequence homology with the human Il-25 (5).

Since the finding of IL-25, the exploration of the cellular origin of IL-25 has been

dedicated. Initially, Fort et al. reported that IL-25 is mainly produced by T helper 2 (Th2)
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cells (4); subsequently, IKeda et al. found that mast cells may

produce IL-25 by enhancing Th2-type immune response (6);

and Kang et al. successfully used TiO2 to induce the secretion of

IL-25 in alveolar macrophages in vitro (7); further studies

identified tuft cells in the intestinal system also contributed to

the expression of IL-25 (8, 9); Wang et al. found that human

chorionic gonadotropin promoted the expression of IL-25 in

decidual stromal cells (10); furthermore, IL-25 is also produced

by activated eosinophils, basophils, liver cells, kidney cells, lung

cells, innate immune cells, fibroblasts, and endothelial cells (11).

In light of the above, IL-25 is widely secreted and expressed in

various tissues and systems.

In fact, IL-25 has a dual role in regulating immune responses

in different diseases. On the one hand, IL-25 is a driver of multiple

allergic diseases (12). IL-25 is an amplifier of Th2 immune

responses and binds to its receptor composed of interleukin 17

receptor A (IL-17RA) and IL-17RB for signal transduction (13).

IL-25 activates nuclear factor of activated T cells c1 (NFATc1) and

JunB transcription factors to induce the expression of interleukin

4 (IL-4), which enhances Th2 cell differentiation (2, 14, 15). Upon

meeting with the stimulation of IL-25, nuclear transcription factor

kappa B activator 1 (Act 1) binds to IL-17RB and then mediates

the secretion of IL-5 and IL-13, which participates in the

development of allergic diseases, via recruiting and activating

eosinophils and stimulating the production of immunoglobulin E

(IgE) (16–20). On the other hand, IL-25 also has positive effects.

One of the characteristics of inflammatory bowel disease (IBD) is

a low level of IL-25, and IL-25 treatment inhibits Toll-like

receptors (TLRs)-induced inflammation and further alleviates

the symptoms of IBD (21, 22). IL-25 suppresses IL-22-induced

osteoclastogenesis via activation of signal transducer and activator

of transcription 3 (STAT3) and p38 mitogen-Activated Protein

Kinase (MAPK) pathway, participating in arthritic anti-

inflammatory responses (19). Sonobe et al. reported that IL-25

down regulated the expression of junction adhesion molecule

claudin 5 to maintain blood-brain barrier (BBB) in multiple

sclerosis (23). Furthermore, IL-25 may also have anti-

inflammatory effects in parasites infection, type 1 diabetes and

systemic lupus erythematosus (2, 24).

IL-25 can be induced by a variety of factors, and the most

common agents are allergens (25). IL-25 is highly expressed in the

murine model of asthma established by ovalbumin (OVA) or house

dustmite (26, 27). Pollen-allergic patients or pollen-challengedmice

have an enhanced expression of IL-25 in the respiratory tract (28,

29). IL-25 can also be induced by environmental pollutants such as

detergents, tobacco, ozone, particulate matter, diesel exhaust,

nanoparticles and microplastic in the air or water, which damage

epithelial cells and induce the secretion of IL-25 (30). What is of

great interest is that pathogenic infection is also reported to be one

of the factors that induce IL-25 secretion. It has reported that IL-25

is up-regulated during some parasitic, viral, and bacterial infections

(31–33). Notably, the biofunction of IL-25 in infectious diseases is

still unclear. Thus, in this review, we aim to briefly summarize the
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recent research progress on the functions of IL-25 in infectious

diseases and probe into the potential therapeutic effects.
The roles of IL-25 in
parasitic infections

Helminth infection

Helminths are multicellular organisms, and most of them

are parasites including digenean flukes (trematodes), tapeworms

(cestodes), and Nematoda (roundworms), which account for

millions of infections worldwide (34). Helminths could disturb

the host immune system, and the studies on helminths-host

interactions focus on the fields of allergy and autoimmunity (35).

Immunologically, chronic helminth infections are characterized

by a skewing towards Th2 response, in which IL-25 plays a

critical role (36, 37). IL-25 was strongly induced after multiple

helminths infection in intestinal epithelial cells, including

Heligmosoides polygyrus (H. polygyrus), Trichuris muris (T.

muris), Nippostrongylus brasiliensis (N. brasiliensis), Ascaris

lumbricoides (A. lumbricoides), and Schistosoma chinensis (S.

chinensis) (37, 38). As one of the main sources of IL-25 in human

intestinal, tuft cells are rapidly increased during helminth

infection (39). It is widely thought that IL-25 is an ‘alarmin’

for the helminth infection (40). Therefore, the biological

function of IL-25 in the helminth infection is intriguing.

First of all, IL-25 is crucial for the clearance of helminth

infections. Previous studies showed that Il-25 deficient mice

exhibited an increased burden of helminth infection (41). Il-

17rb deficient mice could not expel helminths in case of IL-25

overexpression (42). Group 2 innate lymphoid cells (ILC2) is

considered as the innate counterpart of Th2 cells and participates

in the host response against helminths (43). Fallon et al. clarified

the protective role of ILC2 in preventing helminth colonization

(44). Recombinant IL-25 (rIL-25) protein treatment promoted the

expansion of ILC2s in helminths-infected-mice (45). IL-25-

mediated-ILC2 activation resulted in the cooperation of Th2

and ILC2 and further promoted the secretion of Th2 cytokines,

such as IL-4, IL-5, and IL-13 (36). These cytokines are involved in

the recruitment of mast cells and eosinophil, which are important

for the clearance of helminths (46). In short, the IL-25/ILC2/Th2

axis may be a potential therapeutic target for helminth infections,

as shown in Figure 1. We perceive that the IL-25/ILC2/Th2 axis is

responsible for the positive effect of the Th2 response in helminth

infection related diseases.

Secondly, IL-25 also suppresses the inflammation caused by

helminth infection. It is reported that Il-25 deficient mice

developed an exaggerated intestinal inflammation via

increasing interferon gamma (IFN-g) expression following T.

muris infection (47). Overexpression of IL-25 could reduce IFNs

expression (48). The cytokines of Th1 response, such as IL-1, IL-

6, and tumor necrosis factor a (TNF-a), can be induced by the
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most of helminth infections (49–52), however, they can be

reduced by IL-25 (53, 54). Kleinschek et al. discovered an

elevated expression of TNF-a in Il-25 deficient mice, and the

administration of rIL-25 suppressed IL-1b and IL-6 expression

in dendritic cells in mice (55), whose suppression will expand the

response of Th2 cells.

Finally, IL-25 may also be involved in the pathogenic process

of helminths. For instance, Toxocara spp larvae migrate to the

lung and causing asthma-like symptoms, while IL-25 expression

is one of the key cytokines for the development of asthma (56,

57). Vannella et al. reported that IL-25 induced by helminth

infection was associated with the progression of pulmonary

fibrosis (58). The development of cancer was also associated

with helminth infections (59, 60). IL-25-activated ILC2s created

an innate cancer-permissive microenvironment (61). However,

there has been no direct evidence to verify that helminth

infection-induced IL-25 is associated with tumorigenesis,

which is a promising area that deserves us to explore in depth

in the future.
Protozoan infection

Protozoan parasites are single-celled organisms. Diarrheal

diseases caused by intestinal protozoan parasites is a major food-
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borne public health problem worldwide (62). The infection

induced by a protozoan parasite can reduce IL-25 expression

while the administration of rIL-25 protein can help control

amebiasis in mice (63). Similar to the helminth infection, IL-25

recruits ILC2, which mediates the clearance of protozoan

parasites (64). In addition, IL-25 was downregulated in mice

infected with Plasmodium berghei (P. berghei), and the incidence

of parasitemia in the Il-25 depleted mice were higher than that in

the wild-type mice (65). Unfortunately, the underlying

mechanism is unknown and this study ignored the therapeutic

effect of rIL-25 on P.berghei. Given the previous evidence that

IL-25 is extensively downregulated in the infection of protozoans

and the supplement of IL-25 is beneficial for treating protozoan

infections, more studies are needed to better elucidate the

mechanism of IL-25 in protozoan infections.
Arthropod parasites

Arthropod parasites are usually ectoparasitic and commonly

include dust mites, ticks, and fleas (66). It is well known that

house dust mite (HDMs) is a major factor for allergic diseases,

such as atopic dermatitis, allergic rhinitis, and asthma (67).

HDM-specific immunoglobulins in serum are positively

correlated with IL-25 expression, and IL-25 involved in the
FIGURE 1

The roles of IL-25 in parasitic infection. The up-regulation of IL-25 was induced by the infection of parasites, including helminths and arthropod
parasites. In contrast, IL-25 was downregulated by protozoan infections. Whatever, parasites-induced IL-25 or rIL-25 promotes the proliferation
of tuft cells. Subsequently, the cytokines of IL-4, IL-5, and IL-13 are induced by IL-25/ILC2/Th2 axis to clean the parasite. Lastly, the expression
of IL-4, IL-5, and IL-13 are associated with the development of asthma, allergic rhinitis, and atopic dermatitis.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.986118
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.986118
development of atopic dermatitis, allergic rhinitis, and asthma

sensitized to HDM (68). For atopic dermatitis, intelectin (ITLN)

is a key factor for the expression of IL-25 in airway epithelial cells

and aggravates allergic airway inflammation (69). The

expression of IL-25 is up-regulated in nasal tissues from

patients with allergic rhinitis (AR) (70); stimulation of Th2

cells with IL-25 locally promotes IL-13 and IL-9 production,

which contributes to the pathology of allergic asthma (71). So

far, the roles of IL-25 contributing to the pathogenesis of

arthropod parasites infection are not fully understood, and

increased attention is requisite.
The roles of IL-25 in viral infections

Respiratory syncytial virus (RSV)

RSV, as a contagious virus, can bring about acute respiratory

tract infections, which is the primary cause of infant hospitalization

worldwide (72). Although RSV infection usually manifests as a

mild illness in healthy adults, it causes severe illness in the elderly

or immunocompromised patients (73). RSV may infect the lower

respiratory tract, resulting in an elevated risk of developing asthma

(74). A previous study reported that Il-17rb deficient mice were

protected from asthma aggravation deriving from RSV infection

(75), establishing that the IL-17 family plays an important role in

the pathogenesis of RSV-induced asthma. Meantime, after the RSV

challenge, administration of anti-IL-25 antibody in mice prevents

some pivotal features of asthma (76). It has been clarified that IL-

25 acts on the progression of asthma and has been considered as a

biomarker for the prognosis (77). Nevertheless, the way how IL-25

serves as RSV infection therapeutic remains unknown.
Hepatitis C virus (HCV)

The infection of hepatitis viruses causes viral hepatitis. Five

liver-specific viruses (A to E) exist, all of which have their own

unique epidemiology, risk of liver complications, and

responsiveness to antiviral therapies (78). HCV infection is

one of the major causes of severe liver diseases such as chronic

hepatitis, liver cirrhosis, and hepatocellular carcinoma (79).

According to the World Health Organization (WHO), about

71 million people are infected with HCV worldwide, with at least

400,000 death annually (80). IL-17RA is expressed nearly in all

types of liver cells (81). IL-25 was up-regulated in the serum of

patients with HCV infection, and the levels of IL-25 in the serum

were mainly associated with higher aspartate transaminase

(AST) and alanine transaminase (ALT) (82). However, Cabral

et al. reported that IL-25 could not be induced by the stimulation

of HCV antigens in peripheral blood mononuclear cells (83),

implying that IL-25 is not directly induced by HCV infection. IL-

25 is also reported to be involved in the oncogenic effects of HCV
Frontiers in Immunology 04
(84). Tumor-associated macrophages (TAM), especially type 2

macrophages (M2), and their related cytokines are closely linked

with the progression of hepatic cancer (85–87). Previous studies

reported that IL-25 could induce M2 macrophage polarization,

which was associated with the progression of hepatic cell

carcinoma (HCC) (88, 89). However, the expression level of

IL-25 in liver tissues with HCV infection is still not explored in

the present decades. In addition, the mechanism of IL-25 in

inflammation and chronic liver diseases has not been extensively

studied. Thus, more studies are needed to better elucidate the

effects of IL-25 in the development of viral hepatitis.
Herpes simplex virus-1 (HSV-1)

HSV-1 is one of the most well-known members of the

herpesviruses family, and about 70% of the population are

infected with HSV-1 all over the world (90). About 3% of the

patients with atopic dermatitis (AD), the most common chronic

inflammatory skin disease in the world, are infected with HSV-1

and got eczema herpeticum (EH) (91). In addition to symptoms

such as itching and soreness, HSV-1 infection poses a potentially

life-threatening risk for AD patients (92). Previous study reported

that the concentration of IL-25 in serum of AD patients was

higher than control group (93), and IL-25 was involved in the

pathogenesis of AD (94). IL-25 promoted the infection of HSV-1

among AD patients by suppressing the expression of interferon-

gamma (IFN-g), a key factor for the host to defend against viral

infection (92, 95, 96). Subsequently, IL-25 treatment in the cell

culture medium enhanced the replication of HSV-1 in

keratinocytes (95). Ultimately, Salimi et al. confirm that IL-25-

induced-ILC2s were present in mouse skin and exacerbated AD-

like inflammation (97). The above evidences suggest that IL-25 is a

key factor driving the process of AD following HSV-1 infection.

Herpes simplex keratitis (HSK) is a disease of the cornea

caused by HSV-1 infection, and mice lacking Il-17ra showed a

decreased severity of the lesion during HSV-1 infection (98), as

well as a negligible damage to the epithelial layer, little fibrosis,

and decreased infiltration of CD4+ T cells (99). Notably, Il-17ra

deficiency makes a mouse unable to respond to any IL-17 family

members. Until now, there are still lacking studies on the

relationship between the IL-17 family and HSK, and the effect

of IL-25/IL-17RA on HSK is still unclear, more studies are

needed to elucidate it.
Other viruses

IL-25 is also involved in the pathogenic process of multiple

viruses. Beale et al. demonstrated that IL-25 was significantly

induced in epithelial cells with rhinovirus (RHV) infection (100),

and a higher level of IL-25 expression is associated with mucous

metaplasia in RHV-infected infants and immature mice (101,
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102). Haiyu et al. found that influenza virus (IAV) more

powerfully induced the expression of IL-25 in vitro, and IL-25

positively correlated with the load of IAV (103). A respiratory

allergic reaction caused by cytomegalovirus (CMV) is also

associated with IL-25 secretion (104). IL-25 treatment

exacerbates mouse intestinal West Nile virus (WNV) infection

(105). A recent study showed that IL-25 blockade improved

antiviral immunity during respiratory viral infection, and

exogenous IL-25 treatment increased viral loads including

rhinovirus and coronavirus (106). The evidence implies that

IL-25 participates in the progression of many viral infectious

diseases, as shown in Figure 2. However, the mechanisms of IL-

25 associated with infectious diseases call for an urgent need

to investigate.
The roles of IL-25 in
bacterial infections

Bacterial-derived metabolites or structural components are a

strong activator of immune signaling pathways (107). IL-25 is

one of the typical examples. The expression of IL-25 is regulated

by pathogenic or commensal bacteria. Francisella tularensis (Ft)
Frontiers in Immunology 05
is a Gram-negative bacterium that causes tularemia (108). IL-25

strongly activates ILC2, which rapidly secretes IL-25 and results

in a positive feed-back loop upon Ft infection, and the

administration of IL-25 notably increases IgM production in

mice; antibody-mediated depletion of ILC2 mainly supports the

source of IL-5, which is required for IgM production; therefore,

discovering the IL-25-ILC2-IL-5 axis is a novel strategy to

improve vaccination depending on the IL-17RB signal

pathway (109). Clostridium difficile (C. difficile) is a Gram-

positive, spore-forming, anaerobic bacillus (110). C. difficile is

widely distributed in the intestinal tract of humans and animals,

and in the environment (111). Antibiotic-induced dysbiosis is

the primary cause of the frequency and severity of C. difficile

infection (CDI), which has become one of the most common

hospital-acquired infections (112). Antibiotic-induced dysbiosis

reduced colonic expression of IL-25, and fecal microbiota

transplantation (FMT) could recover IL -25 expression by

suppressing the expression of inflammatory genes (113). In

addition, rIL-25 could also reduce the host mortality and the

tissue pathology during the activating state of CDI infection

(114). Staphylococcus aureus (S. aureus) strains infecting human

brains may develop brain abscesses with the characteristics of

inflammatory and septic lesions surrounded by fibrotic
FIGURE 2

The roles of IL-25 in viral infection. IL-25 is up-regulated following the infection of RSV ①, HCV ②, and HSV-1 ③. Subsequently, IL-25 goes
through the downstream signaling cascades by mediating the complex of receptors, consisting of IL-17RA and IL-17RB. IL-25 also induces the
expression of IL-4/IL-5/IL-13, which are associated with the development of asthma. Furthermore, IL-25 overexpression was related to elevated
AST and ALT involving chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. In addition, the up-regulation of IL-25 suppresses the
cytokines of IFN-g, IL-1b, IL-6, and TNF-a. However, direct evidence that IL-25 causes pathological damage is lacking.
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cysts (115). S. aureus can induce the release of IL-25 by epithelial

cells (33). Compared with WT mice, Il-17ra deficient mice

displayed a higher burdens of S. aureus in the brain; the influx

of g and d T cells was increased in Il-17ra deficient mice

following S. aureus infection; subsequently, the high

infiltration of natural killer (NK) cells were absent in the brain

abscesses in Il-17ra deficient mice, implying that IL-25 signaling

played an important role in the regulation of adaptive immunity

with the infection of S. aureus (116). However, IL-17A and IL-

17F, which share IL-17RA with IL-25, play major roles in the

host against bacterial infections (117). Il-17ra deficiency also

makes a mouse unable to respond to IL-17A and IL-17F.

Therefore, we should not ignore the effects of other members

of the IL-17 family in the host to defend against

bacterial infections.

Alterations in the composition of intestinal commensal

bacteria are associated with enhanced susceptibility to multiple

inflammatory diseases (118). The infection of intestinal

commensal bacteria up-regulates the expression of IL-25 by

intestinal epithelial cells and limits the expansion of Th17 cells

in the intestine via inhibiting the expression of macrophage-

derived IL-23, indicating that commensal bacteria influence

intestinal immune homeostasis via direct regulation of the IL-
Frontiers in Immunology 06
25-IL-23-IL-17 axis (119). In summary, for bacterial infectious

diseases, IL-25 is involved in the regulation of adaptive immunity

and anti-inflammatory effect and influences the homeostasis of

the intestinal immune through Th2 cells. In addition, IL-25 may

have a potential therapeutic effect on treating bacterial infectious

diseases, as shown in Figure 3, whereas the current studies are

insufficient to give a definitive answer.
Conclusions

IL-25 is a cytokine with a dual function in infectious diseases.

In certain circumstances, IL-25 involves in the development of

allergic diseases caused by the pathogenic infection. Most of

pathogenic infection induces the up-regulation of IL-25. And

then, IL-25 recruits ILC2 cells to promote the activation of Th2

cells. Th2 response up-regulates the expression of IL-4, IL-5, and

IL-13, which are essential for allergic diseases caused by the

pathogenic infection. Meanwhile, IL-25 plays an important role

in the clearance of pathogens. Mechanically, IL-4, IL-5, and IL-13-

induced by the expression of IL-25 to enhance the differentiation of

Th2 cell and stimulate the production of IgE and IgM by B cells, as

well as recruit and activate eosinophils, mast cells and basophils to
FIGURE 3

The roles of IL-25 in bacterial infection. LPS is the bacteria’s component, an inducer of IL-25 expression in epithelial cells. Furthermore, the axis
of IL-25/ILC2/IL-5 mediates the production of IgM, and IgM exhibits a protective effect against bacterial infection. In contrast, Ft infection
suppresses the expression of IL-25, which further results in pseudomembranous colitis (PMC). The administration of rIL-25 reduces the
inflammatory storm caused by the infection of Ft.
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perform the function of the clearance of pathogens. Therefore, it’s

feasible to use IL-25 as a novel therapeutic target for infectious

diseases. However, IL-25 treatment inhibits the expression of IFN-

g, which is beneficial for the infection of HSV-1. Thus, further

investigations are necessary to explore the different mechanisms

induced by IL-25 expression in different infectious diseases.

Remarkably, given the circumstance Il-17ra deficiency also

makes a mouse unable to respond to many IL-17 family

members, any interpretation of IL-25 based on Il-17ra deficiency

in this review should be made with caution in the future.
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