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Abstract 
 

The coronavirus (CoV) severe acute respiratory syndrome (SARS)-CoV-2 (COVID-19) pandemic 

has received rapid response by the research community to offer suggestions for repurposing of 

approved drugs as well as to improve our understanding of the COVID-19 viral life cycle molecular 

mechanisms. In a short period, tens of thousands of research preprints and other publications 

have emerged including those that report lists of experimentally validated drugs and compounds 

as potential COVID-19 therapies. In addition, gene sets from interacting COVID-19 virus-host 

proteins and differentially expressed genes when comparing infected to uninfected cells are being 

published at a fast rate. To organize this rapidly accumulating knowledge, we developed the 

COVID-19 Gene and Drug Set Library (https://amp.pharm.mssm.edu/covid19/), a collection of 

gene and drug sets related to COVID-19 research from multiple sources. The COVID-19 Gene 

and Drug Set Library is delivered as a web-based interface that enables users to view, download, 

analyze, visualize, and contribute gene and drug sets related to COVID-19 research. To evaluate 

the content of the library, we performed several analyses including comparing the results from 6 

in-vitro drug screens for COVID-19 repurposing candidates. Surprisingly, we observe little overlap 

across these initial screens. The most common and unique hit across these screen is mefloquine, 

a malaria drug that should receive more attention as a potential therapeutic for COVID-19. 

Overall, the library of gene and drug sets can be used to identify community consensus, make 

researchers and clinicians aware of the development of new potential therapies, as well as allow 

the research community to work together towards a cure for COVID-19. 
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Introduction 
 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that was 

first detected in Wuhan, Hubei Province, China in November 2019. Infection with SARS-CoV-2 

causes the coronavirus disease (COVID-19). Globally, there are more than 2.9 million confirmed 

COVID-19 cases and 203,000 reported deaths (as of April 25, 2020). The World Health 

Organization declared COVID-19 a pandemic on March 11, 2020. Many biomedical researchers 

have been shifting their efforts to battle the coronavirus COVID-19 pandemic. One area of activity 

is computationally prioritizing and experimentally testing approved drugs for repurposing as 

candidate therapies for attenuating COVID-19 infection. Drug repurposing studies present a 

promising avenue for quickly offering a treatment for COVID-19 because these drugs have known 

safety profiles. So far, drug repurposing studies can be categorized into three groups: in-vitro 

screens (1-6), computational predictions based on structural biology methods (7-9), and 

computational predictions based on network models and transcriptomics (10-12). Few studies 

have validated top computational predictions in cell-based models for COVID-19 cell based 

models (7,10,11). The lists of drugs mentioned in these studies can be analyzed for consensus, 

and suggested drugs can be grouped by their type. At the same time, many researchers attempt 

to understand the molecular mechanisms of the COVID-19 virus life cycle. Much attention has 

been given to a study that profiled, with mass-spectrometry proteomics, host proteins that interact 

with each of the COVID-19 proteins (11). Another important dataset produced RNA-seq gene 

expression signatures from various relevant human cell lines, ferret model lungs, and human lung 

biopsies before and after COVID-19 infection (13). These are just two examples of the many 

studies that produce gene sets that can be organized and compared. In the past, we developed 

a crowdsourcing project where we asked the community to identify gene expression signatures 

from drug, gene, and disease perturbations (14). The collection of over 6,000 signatures that we 

collected with the help of >70 contributors from around the world enabled us to produce a useful 

database called CREEDS. Similarly, for this project, we developed a crowdsourcing project to 

integrate gene and drug sets related to COVID-19 research collected with the assistance of the 

research community.  

 

Methods 
 

Collecting COVID-19 Drug Sets from Drug Repurposing Publications 

 

Since the emergence of the COVID-19 epidemic, tens of thousands of new publications related 

to COVID-19 research have emerged in a very short period (2 months). We continually survey 

these publications to identify research that describes drug repurposing efforts, and manually 

extract drug sets from these studies to populate the drug set library. We also submit to the platform 

published drug sets from historical sources such as those from studies that listed drugs showing 

antiviral activity for other related viruses. So far, we have collected 20 drug repurposing 

publications (Table 1). An updated version of this table is maintained here: 



https://docs.google.com/spreadsheets/d/1x6aKaZGadfLqNrQoFQwLlRhCXfUGYiRbzwYipIon_

WM/edit?usp=sharing  

 

To assist us with developing and maintaining the collection, we have received help from the 

research community by allowing researchers to upload gene and drug sets to the database. 

These submissions are manually evaluated before making them publicly available.  

 

Collecting SARS Signatures from GEO with GEO2Enrichr and GEN3VA 

 

A set of 35 gene expression signatures resulting from infections by different coronaviruses for 

different cell types and tissues, with expression data originating from the gene expression 

omnibus (GEO) database, was processed using the GEO2Enrichr tool (15) and stored on the 

GEN3VA platform (16). The 70 entries were submitted to the COVID-19 crowdsourcing platform, 

with an upregulated and a downregulated gene set associated with each signature. The GEN3VA 

report for these signatures is available here: 

https://amp.pharm.mssm.edu/gen3va/report/646/SARS.  

 

Collecting COVID-19-Related Gene Sets with Geneshot 

 

Geneshot (17) is a platform that we developed to convert PubMed searches into gene sets. Using 

Geneshot, gene sets associated with the search terms SARS, SARS-CoV, MERS-CoV, ACE2, 

and TMPRSS2 were created using both the AutoRIF and GeneRIF (18) methods. Additionally, 

top COVID-19 drug repurposing candidates reported in recent literature (Table 1), including 

chloroquine and hydroxychloroquine, were included. Predictions of additional genes potentially 

associated with these terms were also added to the COVID-19 gene set library. These predictions 

were based on the literature-associated genes using each of five strategies: Co-occurrence via 

AutoRIF, GeneRIF, Enrichr (19), Tagger (20), and co-expression using data from ARCHS4 (21).  

 

Collecting COVID-19 Drug Sets from Twitter 

Twitter is an important source for timely discussions related to therapeutics for COVID-19, 

including drug repurposing efforts and clinical trials. Using the Twitter API, we query Twitter daily 

with a list of more than 14,000 drug terms and their synonyms to collect tweets that mentioned 

these drugs in context of COVID-19. The drug search list was curated from DrugBank (22), 

L1000FWD (23), and the list of drugs submitted to the COVID19 drug and gene set library website. 

We then filter the identified tweets for those that are co-mentioned with COVID-19, and SARS 

linguistic variations. For each drug, we counted the occurrences of tweets and recorded a tally of 

mentions for each day. Data collection continues with daily reports, tweet IDs of the tweets 

originating the discussions, and the longitudinal drug trends. These data are shared publicly on 

GitHub:https://github.com/MaayanLab/COVID19DrugsTrendTracker/tree/master/daily_reports  

Each day the set of discussed drugs on Twitter are automatically deposited into the COVID-19 

drug set library via an API. This approach enables real time trend detection of the the most 

discussed drugs as potential therapeutics for COVID-19 while enriching the content of the COVID-

19 drug and gene set library.  

https://docs.google.com/spreadsheets/d/1x6aKaZGadfLqNrQoFQwLlRhCXfUGYiRbzwYipIon_WM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1x6aKaZGadfLqNrQoFQwLlRhCXfUGYiRbzwYipIon_WM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1x6aKaZGadfLqNrQoFQwLlRhCXfUGYiRbzwYipIon_WM/edit?usp=sharing
https://amp.pharm.mssm.edu/gen3va/report/646/SARS
https://github.com/MaayanLab/COVID19DrugsTrendTracker/tree/master/daily_reports


 

Developing the COVID-19 Gene and Drug Set Library Website 

 

The COVID-19 gene and drug set library website has five sortable and searchable tables that list 

the drug and gene sets (Fig. 1). Sorting can be based on the date of submission, alphabetical 

ordering, or list size. The two tables are searchable via metadata terms such as title, authors, and 

descriptions, as well as via data search for specific gene or drug names. Users can download 

each gene set or drug set as well as the entire library. In addition, each gene set is provided with 

the option to perform gene set enrichment analysis with Enrichr (19), while genes are linked to 

Harmonizome (24) for further interrogation. The individual drugs that map to known compounds 

are linkable to their corresponding DrugBank landing pages (22). The website enables users to 

submit drug and gene sets related to COVID-19 research by completing a simple form. The form 

includes a dataset title, a URL source, and a description that explains how the set is relevant to 

COVID-19 research. The submitter is also provided with mechanisms to add additional metadata 

terms that can describe the cell type, tissue, organism, and other critical information about the 

submitted set. Users can specify the category of metadata provided, allowing for a broad set of 

additional metadata about each set. Users can also opt to submit their contact information; this 

information is kept private, but users can opt-in to make it public. Once a user submits a 

contribution to the site, their dataset is directed to a review queue in which we can examine the 

validity and relevance of the contribution. The reviewing process enables an administrator to 

approve or reject the submitted set. If approved, the set is added to the library. To make it easy 

for contributors to submit multiple sets, users can access the site via API. The code behind the 

site is open source and available at: https://github.com/MaayanLab/covid19_crowd_library 

 

Expression Analysis of In-Vitro Screens Hits 

 

Drug sets extracted from 3 in-vitro screens (1-3) were first identified. The drugs were matched to 

drugs profiled by the L1000 assay available from GSE92742. Average signatures for each drug 

were computed by taking the z-score mean for each gene. Clusters were identified based on the 

average signatures using hierarchical clustering. Differential z-scores of genes relative to the two 

clusters were identified using the t-test statistic. The top up and down differentially expressed 

genes in each cluster were submitted to Enrichr for gene set enrichment analysis. To quantify the 

z-scores of genes co-expressed with ACE2, we calculated the correlation over 2,000 randomly 

sampled drug signatures from the L1000 database. We then calculated the mean z-scores of the 

top 50 correlated genes to ACE2 and compared those values against a distribution calculated 

from sampling 50 random genes, repeatedly 10,000 times. The p-values were calculated against 

the sampled distribution and corrected for multiple hypothesis testing by applying the Bonferroni 

correction method. The code behind this analysis is open source and available at: 

https://github.com/maayanlab/covid19l1000  

 

Results 
 

Analysis and Visualization of Consensus Drug and Gene Sets 

 

https://github.com/MaayanLab/covid19_crowd_library
https://github.com/maayanlab/covid19l1000


So far, we have collected 87 drug sets composed of 1265 unique drugs, and 361 gene sets 

consisting of 13,347 unique genes. The drug sets are subdivided into four categories: 

experimental (20), computational (31), Twitter (31), and other (5). The top 20 most frequent drugs 

and genes across all sets are displayed in Fig. 2A-E. The list of experimental drugs with most 

supportive evidence are hydroxychloroquine, mefloquine, chloroquine, and remdesivir (Fig. 2A). 

While hydroxychloroquine, chloroquine, and remdesivir are the most discussed drugs on Twitter, 

mefloquine received so far less attention (Fig. 3). While mefloquine is consistently ranked within 

the top 100 drugs each day, the anti-malaria drug mefloquine (25) is much less discussed and as 

such may be a good candidate for further experimental investigation (Fig. 3). 

 

The top 20 most frequently submitted genes are all members of the innate immune response (Fig. 

2E).  These genes include the typical interferon and cytokine response genes observed to be 

involved in the response of human cells to most pathogens. These genes are also listed as the 

top differentially expressed upregulated genes from the GEN3VA report of 35 signatures (Fig. 4). 

However, the list here also includes the immediate early gene (IEG) module composed of the 

transcription factors EGR1 and FOS and the phosphatase DUSP1. Based on enrichment analysis 

with Enrichr (19), the top 10 downregulated genes from the GEN3VA report include five genes 

(SH3BGRL, LGALS1, COX7A2, CRIP1 and LYZ) that are highly expressed in dendritic cells (p-

value < 0.003, Fisher exact test), suggesting that there may be a depletion of dendritic cells due 

to SARS infections. Our ability to collect tweets about drugs using the Twitter API enables us to 

track trends about new drugs that are increasingly discussed on this social media platform. During 

the period between April, 2nd to April 24th, 2020, we noticed the rise and fall of discussions about 

the drug galidesivir (Fig. 5). Galidesivir (BCX4430) is an adenosine analog that was previously 

suggested as a potential antiviral drug for several related viral diseases (26-28). 

While most of the drug sets in the library are from studies that utilized computational methods to 

predict drugs, few are from large-scale approved drug screens (1-6). Using the Venn diagram tool 

developed for ad-hoc analysis of the sets in the library, we compared the results from six in-vitro 

COVID-19 drug screen studies (Fig. 6). Although, there is very little overlap across these drug 

screens, where only one or two drugs are shared across these experimental studies, some 

interesting less discussed hits emerge. Namely, these are amuvatinib, proscillaridin, mefloquine, 

hexachlorophene, clofazimine, and almitrine. Amuvatinib is a multi-targeted tyrosine kinase 

inhibitor (29) and proscillaridin is an organic compound that is used an old cardiotonic steroid but 

more recently suggested as a cancer agent (30). Hexachlorophene is a disinfectant that is used 

in dermatological products (31). Clofazimine is a drug used to treat leprosy and its mechanisms 

of action suggest that it interferes with DNA synthesis (32). Almitrine is a drug that stimulates 

respiratory respiration by activating receptors of carotid bodies (33). It is used in the treatment of 

chronic obstructive pulmonary disease (34), and as such it is most relevant to the COVID-19 

symptoms. 

 

ACE2 Up- or Down-Regulation Effects of Drug Hits? 

 

To further explore the molecular effects of positive hits from the in-vitro drug screens, and to 

demonstrate the utility of the collected library, we developed a case study that asks whether drugs 



that have been shown to inhibit COVID-19 infection of human cells in-vitro, up- or down-regulate 

the ACE2 gene. ACE2 is the suspected cell surface receptor for COVID-19 (35), and cells that do 

not express this gene have been shown to be less prone to COVID-19 infection. Since it is still 

undetermined whether it is desired to up- or down-regulate ACE2 expression, we queried each 

drug hit from two published in-vitro drugs screens against the LINCS L1000 data (36). We 

identified 23 drug hits from the screens that have been profiled by L1000 comprising a total of 

1251 differential gene expression profiles. 17 of these drugs display, on average, an increase in 

ACE2 expression, while 6 drugs display a decrease in expression of ACE2. Overall, the gene 

expression signatures for these 23 drugs can be categorized into two distinct clusters (Fig. 7). 

The observed difference in gene expression signatures suggest different modes of action for 

these drugs. The drugs that are most similar to chloroquine exhibit consistent up-regulation of 

genes highly correlated to ACE2. Chloroquine gene expression signatures on average up-

regulate the top 50 most correlated genes to ACE2 (p=2.55e-03). In addition, cepharanthine, 

fluspirilene, bazedoxifene, and amuvatinib also up-regulate the same set of ACE2 most correlated 

genes (p=3.17e-17, p=7.01e-13, p=2.74e-03, and p=4.94e-03, respectively). These 50 genes are 

available in Table 2. The strong dysregulation of ACE2 associated genes could point to a similar 

mode of action regarding antiviral activity. Enrichment analysis of the consensus genes up-

regulated by the drugs that co-cluster with chloroquine dislpay up regulation of immune response 

genes and down-regulation of cell cycle genes. This suggests that the drugs in the chloroquine 

cluster are pro-inflammatory while the other cluster of drugs contains anti-inflammatory drugs. 

 

Up genes in the chloroquine cluster:  

https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=d9201bbba4dff47598bcf66f3db3e93e  

Down genes in the chloroquine cluster:  

https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=698f9a31fbc85e13da57bce68a543083  

 

Discussion 
 

Here we describe a platform created to collect drug and gene sets related to COVID-19 research 

using various methods of data accrual. All of the top 10 genes associated with COVID-19 are 

interferon-related (ISG15, IRF7, OAS1, IFITM3, MX1, IFIH1, STAT1, IFIT3, and EIF2AK2). This 

is consistent with our knowledge that type I (IFN-α, IFN-β) and type III interferon (IFN-λ) systems 

are the primary defense against viral infections. It has been hypothesized that hyper-inflammation 

in COVID-19 could drive disease severity and would be amenable to treatment with drugs that 

reduce inflammation (37). However, this remains controversial as the high level of antiviral 

response could be reflective of increased viral burden rather than an inappropriate host response 

(38). The most striking result from the meta-analysis applied to the content of the library is the 

little overlap across drug screen studies. It is expected that experimental validation of drugs to 

inhibit COVID-19 in-vitro will be more consistent. The inconsistency across these studies could 

be due to a need to produce results quickly due to the urgency for discovering potential 

treatments. Regardless, there is some overlap, and there is expectation that more screens will be 

published and top leads will advance to animal models and human trials for further testing. To 

prioritize compounds that may treat COVID-19, some researchers have used the strategy of 

finding drugs that modulate genes related to ACE2 gene expression (39). We found a highly 

https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=d9201bbba4dff47598bcf66f3db3e93e
https://amp.pharm.mssm.edu/Enrichr/enrich?dataset=698f9a31fbc85e13da57bce68a543083


significant up-regulation of the genes most correlated with ACE2 by chloroquine and related 

compounds in the L1000 database. This finding suggests that identifying compounds that up-

regulate genes correlated with ACE2 expression could be a useful approach for identifying more 

compounds that inhibit COVID-19 in mammalian cells. However, it should be noted that other 

considerations must be taken into account, including the known side effects for the compounds 

and whether dosing would allow for high enough drug concentration to achieve therapeutic 

effects. 

 

It should be clear that the consensus analysis results should be viewed with caution. The most 

common drugs are not necessarily the most efficacious or promising treatments. At the same 

time, the most common genes may not be the most relevant to understand COVID-19 research. 

It should be noted that not all drug sets and gene sets have equal weight in quality and relevancy. 

A list of computationally predicted drugs is not as useful towards identifying a therapy for COVID-

19 when compared with a list of experimentally validated drugs. A list of upregulated genes after 

COVID-19 infection of cells may provide more useful information about the virus life cycle when 

compared with a list of genes returned from a Geneshot search using the term SARS. Hence, the 

users of the data collected into the library should be aware of such limitations. With these 

limitations in mind, we hope that researchers will be able to develop or refine hypotheses from 

the snapshot overview our platform provides, and then delve deeper into the studies most relevant 

to their questions. For example, the GEN3VA report revealed a down-regulation of genes known 

to be enriched in dendritic cells (DCs) after infection with SARS. SARS-CoV-1 is known to infect 

DCs and impair DC function (40).  

 

In a period of rapid development of methods and data related to COVID-19 research, it is critical 

to provide means to organize the accumulated information in a way that it can be summarized 

and reused. The COVID-19 gene set and drug set library provides such utility. The library of drug 

and gene sets can be used to identify community consensus and make researchers and clinicians 

aware of the development of new potential therapies as they become available, as well as allow 

the research community to work together towards a cure for COVID-19. Social media has played 

a critical role in enabling scientists to communicate results rapidly and exchange ideas. By mining 

the trends about discussions on Twitter about drugs in context of COVID-19, we are able to keep 

track with global trends before these are reported in scientific journals.     
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Figures and Figure Legends 
 

 

 
 

Fig. 1 Screenshot from the landing page of the COVID-19 Drug and Gene Set Library 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 2A Counts of most common drugs from the collection of experimental studied that 

reported lists of drugs that inhibit COVID-19.  

 

  



 
Fig. 2B Counts of most common drugs from the collection of computational studied that 

reported lists of drugs that may inhibit COVID-19.  

  



 
Fig. 2C Counts of most common drugs discussed each day on Twitter during the period 

from April 4, 2020 to May 6, 2020.   

 

  



 
Fig. 2D Counts of most common drugs from the collection of all drug sets in the library.  

 

  



 
Fig. 2E Counts of most common genes from the collection of all gene sets in the library. 

 

  



 
Fig. 3 Ranks of drugs based on their mentions on Twitter in context of COVID-19 over 

time. 

 

  



 
Fig. 4 The SARS GEN3VA report gene view. The heatmap displays the most consistent 

up and down-regulated genes from 35 signature created from microarray studies where 

mammalian cells and tissues were challenged with SARS. The GEN3VA report is 

available from here: http://amp.pharm.mssm.edu/gen3va/report/646/SARS 

 

 

http://amp.pharm.mssm.edu/gen3va/report/646/SARS


 
Fig. 5 Ranks of drugs based on their mentions on Twitter in context of COVID-19 over 

time. 

 

 



 
Fig. 6 Overlap analysis across six in-vitro drug repurposing screens for COVID-19 

inhibitors 



 
Fig. 7 Hierarchical clustering of gene expression signatures for 23 drug hits from 3 

published in-vitro screens that also have L1000 profiling gene expression data. The rows 

represent genes where red represents high expression and yellow low expression.  

 

 

 

 

 

 



Tables and Table Legends 
 

Table 1 

First author Journal Drugs Exper. Comp. Method Target Cells 

Jeon biorxiv 24 Yes No Inhibition assay  Vero cells 

Gordon biorxiv 63 No Yes 

Mass-spec 

Docking Multiple HEK293T 

Farag chemrxiv 71 No Yes Docking Mpro  

Wang chemrxiv 21 No Yes Docking Mpro  

Contini chemrxiv 19 No Yes Docking 

Mpro & 

C3Lpro  

Kumar chemrxiv 10 No Yes Docking Mpro  

Zhou 

Cell 

Discovery 16 No Yes Network Analysis   

Aly chemrxiv 7 No Yes Docking Mpro  

Jin Nature 7 Yes Yes Docking Mpro  

Rensi chemrxiv 21 No Yes Docking TMPRSS2  

Xing biorxiv 11 Yes Yes 

L1000 

Inhibition assay  Vero cells 

Touret biorxiv 90 Yes No Inhibition assay  Vero cells 

Ko biorxiv 35 Yes No Inhibition assay  Vero cells 

Nguyen biorxiv 84 No Yes Docking Mpro  

Ge biorxiv 1 Yes Yes 

L1000 

Network Analysis PARP1 PBMCs 

Alakwaa mSystems 4 No Yes 

L1000 

scRNA-seq   

Beck 

Comput 

Struct 

Biotech J. 8 No Yes Docking Multiple  

Chen F1000Res. 15 No Yes Docking C3Lpro  

Cava MDPI 36 No Yes Network Analysis   

Ellinger 

Research 

Square 64 Yes No Inhibition assay  Caco-2 

Heiser biorxiv 100 Yes No 

Image-based 

assay  HRCE cells 

Riva biorxiv 30 Yes No Inhibition assay  Vero cells 

 



 

Table 2  

 

SLC13A1, LRRC19, HAVCR1, HHLA2, CT62, LDHAL6B, SLC22A11, DDX4, CLCN5, 

SLC25A31, GIPC2, GUCY2C, ABCB1, TMPRSS15, RBMXL2, TM4SF20, KDM4D, SLCO4C1, 

PRM2, RNF32, CNTN6, ACSL6, UBQLN3, HNF4G, ANKRD7, MXD1, SLC17A3, IL12RB2, 

ANKRD40CL, SLC6A20, SLC5A12, SLC10A2, ACRV1, ALPI, EPPIN, IL17A, AKAP4, HKDC1, 

BRDT, TSBP1, SLC22A2, P2RY1, FOXD2, NAT8B, ASCL2, IL12A, CREB5, DMRT1, PHF14 
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