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Abstract: Density functional theory (DFT) is a widely used computational method for predicting
the physical and chemical properties of metals and organometals. As the number of electrons and
orbitals in an atom increases, DFT calculations for actinide complexes become more demanding
due to increased complexity. Moreover, reasonable levels of theory for calculating the structures
of actinide complexes are not extensively studied. In this study, 38 calculations, based on various
combinations, were performed on molecules containing two representative actinides to determine the
optimal combination for predicting the geometries of actinide complexes. Among the 38 calculations,
four optimal combinations were identified and compared with experimental data. The optimal
combinations were applied to a more complicated and practical actinide compound, the uranyl
complex (UO2(2,2′-(1E,1′E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene)(CH3OH)), for further
confirmation. The corresponding optimal calculation combination provides a reasonable level of
theory for accurately optimizing the structure of actinide complexes using DFT.

Keywords: DFT; actinides; americium (III) hexachloride; uranium hexafluoride; uranyl complex

1. Introduction

Density functional theory (DFT) is the most widely used method for predicting the
properties of molecules. The reliability of DFT results has led to increased applications
in the fields of chemistry and materials science [1–3]. DFT studies have been essential for
understanding rapid reaction processes [4] and have been used to calculate the electronic
structure of molecules primarily composed of organic materials or molecules containing
transition metals [5,6]. For the latter, it is not possible to include a multi-reference character
in a method based on a single-configuration approach to represent an almost degenerate
electron state. However, recent DFT studies have overcome this problem and afforded
precise results on organometallic or metal clusters [6–9]. Nevertheless, DFT-derived infor-
mation on molecules consisting of 92 or more electrons, such as actinides, is lacking [10–12]
due to the high radioactivity of such molecules that must be handled in safe and appropri-
ately designed control facilities [13,14]. Furthermore, the actinide orbital interaction model
is challenging to calculate owing to the emergence of spin-orbit coupling, many-electron
counts, and 5f and 6d bonding orbitals [15]. DFT studies have been used as an effective
way to analyze the spectrum and geometry of this interaction model [16].

DFT has been successfully employed using various functional and basis set options
for the molecular modeling and analysis of actinides. In many studies on actinides,
methods like B3LYP, BP86, and PBE have been used. However, combinations of these
methods have not been studied [9,17–19]. Studies on organic materials and compar-
isons of the methodologies used for transition metals, such as Ni, Fe, La, and Gd, have
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been reported. However, similar comparisons for heavy metals like actinium are insuf-
ficient [8,20,21]. Moreover, actinide materials have been studied using DFT. However,
these studies do not include combinations of methods [22]. Therefore, in this study, we
compared each method using relatively simple structures, americium(III) hexachloride
(AmCl63−) and uranium hexafluoride (UF6), and verified that the selected methods could
be used to analyze more complicated structures like the uranyl complex (UO2(L)(MeOH),
where L = (2,2′-(1E,1′E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene) [9,16,23,24], as
shown in Figure 1. Our theory was used to describe actinide chemistry to demonstrate the
reliability of the results.

1 
 

 
Figure 1. Molecular structure of (a) UF6, (b) AmCl63−, and (c) UO2(L)(MeOH) [9,17,23,24].

2. Results and Discussion

The bond distances of UF6 and AmCl63− were calculated using 38 different theoretical
combinations and are shown in Figures 2 and 3, respectively. The complex molecular
structure of UO2(L)(MeOH) was calculated based on the three most accurate calculation
methods used to calculate the structures of AmCl63− and UF6. The calculation methods
used in this study optimized the geometries of atoms in the molecule and predicted the
structure closest to that obtained from the experimental results. We represent the mean
absolute deviation (MAD) between the experimental and calculated values instead of
plotting the length of all calculated bonds.

2.1. Uranium Hexafluoride

UF6 is a widely known molecular compound used as a key ingredient in the enrich-
ment of natural uranium [23]. Studies have been conducted based on the mean distance
determined from automatic neutron diffractometry, infrared and Raman spectra, electron
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diffraction, and quantum calculations [18,21,24,25]. The mean bond lengths of the molec-
ular structures optimized using 38 DFT calculation combinations are shown in Figure 2.
The MAD calculations showed deviations ranging between 0.0001 Å and 0.04 Å. (see
Supplementary Materials Table S1).
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(b) 6-31+G(d) [23].

2.2. Americium (III) Hexachloride

The structure of hexahedral AmCl63− was studied using DFT calculations and single-
crystal X-ray diffraction (SCXD) [9]. The optimal distances were calculated using the
combinations of DFT calculations used for UF6. A comparative analysis with reported
experimental values is shown in Figure 3. PBE0/6-31G(d) and PBE0/6-31+G(d) were
omitted because they did not converge despite extended time with an additional grid and a
maximum cycle for the XQC algorithm. The MAD of the average bond length was between
0.06 Å and 0.15 Å.



Molecules 2022, 27, 1500 4 of 8Molecules 2022, 27, x FOR PEER REVIEW 4 of 8 
 

 

(a) 

(b) 

 
Figure 3. Average bond length of Am-Cl bonds in the optimized structure with (a) 6-31G(d) and (b) 
6-31+G(d) [9]. 

2.3. Uranyl Complex (UO2(L)(MeOH)) 
Despite the structural deviation between UF6 and AmCl63− due to the charge differ-

ence and different configurations of valence electrons, which results in different bonding 
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M06/6-31G(d), and B3PW91/6-31G(d). The additional diffuse function did not provide a 
more accurate optimized structure for AmCl63− or UF6. Despite the contentious relation-
ship between covalency in f-element systems and structures, both octahedral structures 
play the same role in the bonding model [26]. Therefore, the increased covalent bonding 
characteristics play a major role in the interaction. For future applications, the analysis 
was conducted on a uranyl complex (UO2(L)(MeOH)) to verify the accuracy of three of 
the four optimized calculations (B3P86/6-31G(d), M06/6-31G(d), and B3PW91/6-31G(d)) 
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(b) 6-31+G(d) [9].

2.3. Uranyl Complex (UO2(L)(MeOH))

Despite the structural deviation between UF6 and AmCl63− due to the charge differ-
ence and different configurations of valence electrons, which results in different bonding
properties, the most accurate structures were the same: N12/6-31G(d), B3P86/6-31G(d),
M06/6-31G(d), and B3PW91/6-31G(d). The additional diffuse function did not provide a
more accurate optimized structure for AmCl63− or UF6. Despite the contentious relation-
ship between covalency in f-element systems and structures, both octahedral structures
play the same role in the bonding model [26]. Therefore, the increased covalent bonding
characteristics play a major role in the interaction. For future applications, the analysis
was conducted on a uranyl complex (UO2(L)(MeOH)) to verify the accuracy of three of
the four optimized calculations (B3P86/6-31G(d), M06/6-31G(d), and B3PW91/6-31G(d))
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when applied to larger, more complicated molecular structures [17]. N12/6-31G(d) was
omitted because it could not be optimized despite our best efforts. The MAD of the lengths
and angles between molecules was measured, and the results were compared, as shown in
Figure 4 and Table 1. The results obtained by all these methods agreed with experimental
data within 0.05 Å in length and 1.5◦ in bonding angle, with small deviations between
methods, confirming that our systemic method for finding the optimal level of theory for
calculating the structure of actinide complexes works well. B3PW91/6-31G(d) exhibited
the smallest MAD among the three calculation combinations and accurately predicted the
structure, in line with the experimental data, with length and angle deviations of less than
0.04 Å and 1.4◦, respectively. Individual bond length and bond angle comparisons between
each calculated result and the experimental result were carried out, showing that B3PW91
was the most accurate method for the experimental structure.
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Table 1. Average bond length and average angle of UO2(L)(MeOH) in the optimized structure.

DFT Method Combination Average Length (Å) Deviation (Å) Average Angle (◦) Deviation (◦)

Experiment [17] 1.34601 - 110.7458 -

6-31G(d)
B3P86 1.386322 0.040312 112.1528 1.407

B3PW91 1.382651 0.036641 112.1132 1.3674
M06 1.388692 0.042682 112.1715 1.4257

3. Computational Methods

All calculations were performed using the Gaussian09 software package [27]. AmCl63−

and UF6 were optimized with frequency calculations using 19 functionals with two basis
sets, resulting in 38 possible combinations of the levels of theory. After examining each
frequency without an imaginary number, the average length of each bond was compared
to the experimental molecular length reported in the literature [9,23]. We selected DFT
calculations based on recent theoretical studies on actinide chemistry: B3LYP, BLYP, BP86,
BPW91, PBE, N12, M06L, M11L, MN12L, TPSS, B3P86, B3PW91, PBE0, M06, TPSSh, wB97X,
M11, N12SX, MN12SX, and the basis set for H, O, C, N, F, and Cl with 6-31G(d) to obtain
relatively light complexity and accurate theoretical results [28–31]. Ligands with anions
bind loosely on the actinides, and diffuse function addition may be better for precise
descriptions of the actinide ligands’ complex structures. Therefore, 6-31+G(d) was used
for theoretical calculations [8,21,32,33]. The ECP60MWB relativistic effective core potential
and the associated basis set developed by the Stuttgart–Cologne group were selected to
describe americium and uranium [29]. Several combinations of calculations were applied to
UO2(L)(MeOH), and the results were compared to prove its accuracy [17]. The developed
DFT method is one of the most accurate ones for computing the electronic structure of
solids [34–37] and will help study actinide materials.

4. Conclusions

The properties of actinide complexes are difficult to optimize using DFT due to unreli-
able theoretical methods for compounds containing more than 92 electrons. Therefore, a
systematic study of methods for obtaining the theoretical structures of actinide complexes
is significant for future research on actinide chemistry. This study does not contain the full
relativistic effect in actinides. However, a scalar-relativistic effect is considered that can
be applied to future studies. Here, two representative structures of actinide complexes,
UF6 and AmCl63−, were used to determine the best DFT functions. From 38 computational
combinations, the optimal combinations were evaluated by optimizing the geometries of
the molecules and comparing the calculated results with the experimental values. The
four most promising levels of theory for the two actinides were obtained and applied to
UO2(L)(MeOH) to confirm the accuracy of the optimal computational methods when ap-
plied to large and complex molecular structures. Finally, the B3PW91/6-31G(d) calculation
yielded structures closest to the predicted actinide structures, providing a standard for
establishing the level of theory of actinide complexes in the future.

Supplementary Materials: Supplementary materials are available online. Table S1: Average bond
length of U-F bonds in the optimized structure with 6-31G(d) and with 6-31+G(d) [23]; Table S2: Average
bond length of Am-Cl bonds in the optimized structure with 6-31G(d) and with 6-31+G(d) [9].
Table S3: (a) Bond length and (b) Angle of UO2(L)Alc. in the optimized structure [17].
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