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Abstract: Integrating polypyrrole-cellulose nanocrystal-based composites with glucose 

oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose 

nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique 

physicochemical properties was found to enhance biosensor performance. Field emission 

scanning electron microscopy (FESEM) images showed that fibers were nanosized and 

porous, which is appropriate for accommodating enzymes and increasing electron transfer 

kinetics. The voltammetric results showed that the native structure and biocatalytic activity 

of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high 

sensitivity (ca. 0.73 μA·mM−1), with a high dynamic response ranging from 1.0 to 20 mM 

glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM 
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and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, 

which makes this sensor suitable for glucose determination in real samples. This sensor 

displays an acceptable reproducibility and stability over time. The current response was 

maintained over 95% of the initial value after 17 days, and the current difference measurement 

obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%. 

Keywords: glucose biosensor; cellulose nanocrystals; GOx; PPy-CNC nanocomposite; 

chemical polymerization; direct electrochemistry 

 

1. Introduction 

Cellulose is a renewable and biocompatible resource that displays unique mechanical, optical and 

electrical properties that make it suitable for materials applications, actuators/sensors, drug delivery 

systems, and biomedical science [1]. The nanofibers in natural cellulose consist of crystalline and 

amorphous domains that can be separated by acid hydrolysis [2]. Due to the high tensile strength, good 

water dispersibility, and hydrophilic properties of nanocellulose, it has been used to improve the 

mechanical and dispersibility properties of materials [1]. 

The electrostatic interactions between negatively charged nanocellulose and cationic species make 

them good candidates for application in sensors and permselective membranes to selectively transport 

species based on their charge. The permselective properties of nanocellulose thin films were studied by 

Thielemans [3]. Thielemans prepared a glassy carbon (GC) electrode modified with cellulose 

nanocrystals and showed that it can be used as a sensor and can selectively transport species based on 

their charge using cyclic voltammetry. 

The nanostructure and high surface area of the supporting materials increase the surface loading of 

enzymes, enhancing the response time and performance of the sensor. In a sensor based on 

nanostructured materials, due to the porous structure and high surface area, penetration of the target 

molecules into the substrate is relatively faster, resulting in a higher sensitivity and faster response time [4]. 

Cellulose is the most abundant organic polymer found in nature that has been used as a biocompatible 

material for drug delivery [5] and has been shown to be suitable as a membrane for GOx stabilization [6]. 

Paper based materials show passive liquid transport, piezoelectricity, and biodegradability make them 

attractive low-cost functional materials for sensing devices [7]. 

Although cellulosic materials exhibit unique and advantageous properties, they also suffer from 

poor electrical conductivity. As such, cellulose does not exhibit an acceptable sensitivity for biosensor 

applications. In addition, cellulose is very hydrophilic [8], and this means that it is not compatible with 

some sensing molecules. Therefore, these biodegradable materials must be modified to use as 

supporting materials in biosensor applications. 

Conducting polymers have frequently been used to modify nanocellulose to combine the electronic 

characteristics of the conjugated polymers with the high aspect ratio and porous structure of 

nanocellulose synergistically, resulting in excellent sensing mediators [9] Polyaniline (PANI) [10] and 

polypyrrole (PPy) [11] have been extensively used as electron-transfer pathways in GOx electrodes. 

Conducting polymers are capable of immobilizing enzyme antibodies or DNA and transduce the 
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analytical signal generated by these biomolecules [12]. Conducting polymers are electroactive, and 

during the doping/dedoping process, ions are transferred inside the polymer structure. They have been 

used frequently in sensors, such as heavy metal sensors [13], hydrogen [14], acetic acid sensors [15] 

and microbial fuel cells [16]. 

These versatile materials have frequently been used in sensors and biosensors, but they suffer from 

low solubility and dispersibility in common organic solvents [17,18] as well as poor mechanical 

properties, which have led to their limited application in some electronic devices. Cellulosic materials 

with good water dispersibility and hydrophilic properties enhance the physical and structural properties 

of conducting polymers. 

The ion exchange and mass transport capacity of conductive papers could also be improved by 

using nanomaterials, such as cellulose with a large specific surface area [19]. Over the last few 

decades, various analytical methods for determining trace amounts of glucose have been reported. These 

include surface plasmon resonance (SPR) [20], colorimetric [21], fluorescence [22], electrochemical [23], 

and other methods. Among these methods, the electrochemical glucose biosensor offers a high 

sensitivity, selectivity, simplicity and low cost of operation [24]. 

Enzymatic biosensors are the most studied type of biosensor in which a bio-recognition event is 

converted into a highly sensitive electrochemical signal [25]. Special attention is given to biosensors 

based on the combination of recognition reagent of glucose oxidize and electrochemical transducers [26]. 

Amperometric determination of H2O2 is the classical method of glucose detection in which a high anodic 

potential is needed to avoid possible interference from other biomolecules present in the system [27]. 

Nanomaterials can improve the electron transfer and eliminate or reduce the observed interference to 

detect H2O2 at a low potential [28,29]. 

Facile synthesis of tetragonal columnar-shaped TiO2 (TCS-TiO2) nanorods via electrochemical 

method was reported to be useful in rapid detection of glucose concentration in human serum [30]. The 

process of enzyme immobilization is a critical and important step to load the enzyme on the electrode 

while retaining the nature and biological activity of the enzyme without leaching during the analysis. 

Many approaches have been used for GOx immobilization, including covalent attachment [31], 

physical entrapment in a porous membrane [32], crosslinking [33] and so on. 

Ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite was used to 

facilitate GOx immobilization and a dynamic range of 0.2–1.2 mM (R2 = 0.986) with a sensitivity of  

123.8 µA·mM−1·cm−2 was reported for this sensor [34]. An amperometric glucose biosensor was 

developed based on the physical adsorption of GOx in the Prussian Blue (PB)-modified screen-printed 

carbon electrodes (SPCEs) fiber matrix. This biosensor showed a linear calibration range between  

0.25 mM and 2.00 mM (R2 = 0.987) and a detection limit of 0.01 mM glucose (S/N = 3) [35]. In 

another study, Rauf et al. used cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane for 

immobilization of GOx [36]. They showed that the GOx retaining was 46% of the original activity as 

compared to the free enzyme at 20 °C. 

One of the methods used to prevent the leaching of the GOx or the loss of the enzyme molecules 

from the electrode surface is to recover the electrode with triton X-100 as a surface active agent [37]. 

The analytical detection technique, immobilization method, as well as the activity and stability of the 

enzyme are important parameters that affect the biosensor performance [38]. 
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There are different type of glucose meter in market named home blood glucose monitoring (HBGM) 

in lancing device or test strip which as quick and least painful blood glucose testing, have been proved 

to be overall easiest to use. However, HBGM showed lower accuracy compared to the laboratory 

glucose measurement and managers of laboratories believe that these immediate available devices are 

unacceptable for inpatient diabetes management. Therefore, the research on the preparation and 

fabrication new materials as sensing reagent and new techniques is still continuing in order to improve 

biosensors performance to bring them to the confidence of potential users and achieve standardization 

as commercial devices. 

In this research paper, the advantages of the application of PPy/CNC nanocomposites in GOx 

adsorption and its electron transfer as a new sensing area for glucose detection is explored. Cellulose 

nanocrystal (CNC) was isolated from microcrystalline cellulose (MCC) using sulphuric acid 

hydrolysis, and pyrrole was chemically polymerized on the surface of individual cellulose nanocrystals 

to obtain nanocomposites with an electrically conducting continuous high surface area. The formed 

nanocomposite that retained the electronic characteristics of the conjugated polymers and the  

structural advantages of the cellulose nanocrystals was then used as a supporting material to prepare a  

modified electrode. 

2. Experimental Section 

2.1. Chemicals and Reagents 

Glucose oxidase (GOx) (EC 1.1.3.4, 35.3 U·mg−1, Type II from Aspergillus niger, cholesterol and 

ascorbic acid (AA) all were obtained from Sigma-Aldrich (Dorset, UK). A colloidal suspension of 

cellulose nanocrystals (CNC) was prepared from microcrystalline cellulose (MCC) using acid hydrolysis 

using a protocol reported elsewhere [39]. Pyrrole was purchased from Merck (Stockholm, Sweden). 

Dipotassium hydrogen phosphate (K2HPO4), glucose, uric acid (UA) and Triton X-100 were purchased 

from Sigma-Aldrich (Dorset, UK); potassium dihydrogen phosphate (KH2PO4) was acquired from 

Merck (Darmstadt, Germany). All of the solutions were made with deionized water (D.I) throughout  

the study. 

2.2. Instrumentation 

All of the electrochemical experiments, including differential pulse voltammetry (DPV) and cyclic 

voltammetry (CV), were performed by an Auto Lab potentiostat with a three electrode electrochemical 

system consisting of a carbon pencil as the auxiliary electrode, Ag/AgCl as the reference electrode  

(3 M KCl), and a modified carbon screen printed electrode (SPE) as the working electrode. Field 

emission scanning electron microscopy images were recorded on a JEOL-JSM-7600F model  

(Hitachi, Tokyo, Japan), and the TEM images obtained by a LEO 912Ab (Hitachi, Tokyo, Japan) 

transmission electron microscope. 

2.3. Synthesis of the PPy/CNC Nanocomposite 

An aqueous stable colloidal suspension of cellulose nanocrystal (CNC) was used to prepare the 

PPy/CNC nanocomposite. The pyrrole monomer (pre-distilled), with a specific volume, was added into 
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different concentrations of CNC ranging from 0.3 to 0.9 wt% with stirring at a medium speed of 

rotation using a magnetic stirrer. To initiate the polymerization, a solution containing an oxidizing agent 

(FeCl3) was added drop wise into the pyrrole and CNC mixture. The molar ratio of monomer to 

oxidizing agent was kept constant at 1:2. The polymerization process was carried out for 1 h at room 

temperature with moderate stirring before the black nanocomposite precipitate was filtered off and 

washed with distilled water several times by centrifugation. The nanocomposites were dried in an oven 

at 60 °C. The composite was kept in a desiccator before being characterized. 

2.4. Preparation of Chemical Solutions 

Typically, the PPy/CNC suspension was prepared by dispersing 1 mg of the PPy/CNC 

nanocomposite in 2 mL of deionized water and sonicated for 3 min until a dark homogeneous 

suspension solution was obtained. A phosphate buffered saline (PBS) solution was prepared by diluting 

a mixture of K2HPO4 (1.0 M) and KH2PO4 (1.0 M) stock solutions with an adjustment buffer solution 

(0.05 M, pH = 7.0). A GOx enzyme solution was prepared by dissolving 5 mg of the enzyme in 1 mL 

of PBS (0.05 M, pH = 7.0) that was stored at 4 °C when not in use. The glucose solution was freshly 

prepared from 1.0 × 10−3 to 2.0 × 10−3 M in PBS from stock solution. 

2.5. Preparation of Modified Electrodes 

Modified SPE/PPy/CNC/GOx electrodes were prepared based on a Layer-by-Layer (LbL) method: 

10 µL of the PPy/CNC suspension was dropped on the SPE surface and allowed to dry at ambient 

temperature. It was found that when a small amount of the PPy/CNC suspension (e.g., 5 µL) was 

dropped onto the SPE surface, no significant signal was detected, and when a thick film of PPy/CNC 

was cast, it was not stable and leaked easily from the electrode surface after carrying out a few 

scanning cycles. Therefore, 10 µL of the suspension was used to obtain a good response and film 

stability. For immobilizing the enzyme, 20 µL of a fresh GOx solution was drop cast onto the PPy/CNC 

nanocomposite surface and then evaporated at room temperature. Because the sensor’s performance 

and sensitivity are affected by the enzyme concentration and activity, the SPE/PPy/CNC/GOx 

electrodes with varying concentrations of GOx ranging from 0.05 to 0.5 mg of the enzyme/electrode 

were prepared. 

 

Figure 1. Schematic illustration of electrochemical glucose biosensor based on PPy/CNC 

as a membrane. 
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Finally, 5 µL of triton-x 100 (0.5 wt% in water) was used to prevent enzyme leaching from the 

surface of the electrode and was allowed to dry at 25 °C. Subsequently, the electrodes were washed 

with a PBS solution before any measurements to remove the unbound enzyme from the PPy/CNC 

surface. The electrode of SPE/PPy/GOx was prepared using the same method for comparison. The 

schematic view of LbL method for deposition of GOx on the PPy/CNC substrate is shown in Figure 1. 

3. Results and Discussion 

3.1. The Morphology of PPy and PPy/CNC Nanocomposites 

The FESEM image of polypyrrole shown in Figure 2a shows a globular, dense and nonporous 

structure for PPy prepared from a 0.2 M pyrrole solution; the PPy/CNC formed an open and porous 

structure of intertwined fibers. From these images, no phase separation was detected, which indicates 

that the pyrrole polymerized homogenously on the CNC surface. The images of the PPy/CNC 

nanostructure showed a uniform size and fibrous and porous structure in the composite network via 

interconnection in a three-dimensional nanostructure. This is in agreement with previous observations [40]. 

The observed aggregates in the PPy/CNC membrane over the SPE surface appear to be regularly 

distributed (Figure 2b). The porous structure of the PPy/CNC nanocomposite provides a large surface 

area, with the GOx trapped inside the pores. The pores can accommodate a large quantity and allow 

the rapid diffusion of the active enzyme into the PPy/CNC membrane. As previously reported, the 

uniform and porous nanostructure of the substrate can considerably improve the effective surface of 

the electrode for loading biomolecules, resulting in an increase in the electron transfer kinetics [33]. 

 

Figure 2. Microstructure of (a) PPy and (b) the porous PPy/CNC nanocomposite modified 

on the SPE surface. 

3.2. Electrochemical Characterization 

Voltammetric measurements were carried out on SPE/PPy/CNC/GOx and SPE/PPy/GOx 

nanocomposites, and the effects of the immobilized GOx and nanocomposite concentration, pH and 

buffer capacity, interference, and storage time on the current response of the prepared electrodes were 

studied. The capability of the electrochemical biosensor was also characterized in terms of its dynamic 

range, detection limit, reproducibility, and shelf life. All experiments were carried out at room 
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temperature with a phosphate buffer (0.05 M, pH = 7) electrolyte solution under constant stirring 

conditions (100 rpm). 

3.2.1. Voltammetric Studies 

Cyclic voltammetry (CV) of the various SPE/PPy/CNC and SPE/PPy electrodes was carried out in 

the scan range of −1.0 to +1.0 V, with a potential scan rate of 0.5 V·s−1 versus a Ag/AgCl electrode, 

and the results are shown in Figure 3. In bulky polypyrrole, electron transfer is relatively slow, and no 

obvious redox peaks were observed at the SPE/PPy electrodes from the voltammogram (Figure 3b). 

However, the SPE/PPy/CNC electrodes (Figure 3c–e) gave a couple of stable and well-defined redox 

peaks. In the presence of cellulose nanocrystals, the hydrogen-bonding interaction between the 

hydroxyl groups of cellulose and the hydrogen bonded to nitrogen on the PPy chain play a role, 

offering active sites for the formation of a polypyrrole chain on the surface of the cellulose 

nanocrystals. Cellulose nanocrystals (CNC) improve the active surface area of the bio-nanocomposite 

that could also be suitable for the immobilization of enzymes, enhance electron transfer, and increase 

the anodic current (Ip) in the voltammogram of the modified electrode prepared from a 0.3 wt% 

suspension of CNC. The CV of the SPE/PPy/CNC electrode is characterized by a pair of well-defined 

and almost symmetrical redox peaks with a cathodic (Epc) and anodic (Epa) peak potential of  

−0.24 and 0.29 mV, respectively (curve c). The formal potential (E0) of the SPE/PPy/CNC electrode 

prepared from a 0.3 wt% CNC suspension was estimated from the midpoint between the reduction and 

oxidation potentials to be 0.265 V. 

 

Figure 3. Cyclic voltammetry graphs of the unmodified bare SPE (a); the modified PPy/GOx 

electrode (b); and the PPy/CNC/GOx electrodes prepared using different concentrations of 

CNC of 0.3 (c); 0.5 (d); and 0.9 wt% (e). 

The redox current decreased with an increase in the CNC concentration ranging from 0.3 to 0.9 wt%, 

which may be due to the agglomeration of the nanocrystals at higher concentrations, which is in 

agreement with the observed results by FESEM. The nanocomposite with a higher CNC content 
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showed a larger size and lower porosity structure that resulted in a lower electron transfer and current 

peak by CV. 

3.2.2. Effect of the Immobilized GOx, Triton X-100, and PPy-CNC Concentration 

During the stepwise modification of the electrode, the effect of the immobilized enzyme 

concentration on the glucose biosensor response was investigated. A varying concentration of GOx 

ranging from 0.05 to 0.5 mg/electrode was used to prepare the modified biosensor electrode. As can be 

observed from Figure 4a, an increased response was observed from 0.05 to 0.1 mg of GOx, and the 

electrode prepared using 0.1 mg of GOx for catalytic glucose oxidation showed a high and  

well-defined current response, indicating that the concentration was sufficient to cover the PPy-CNC 

composite surface to consume O2 and produce H2O2 [41]. In this region, glucose oxidation is 

kinetically limited, where the oxygen and glucose consumption is directly proportional to the GOx 

concentration. With a further increase in the amount of enzyme, no considerable change is observed in 

the current intensity because the reaction is diffusion limited, which means that the reaction kinetics 

are governed by the mass transport of the analyte from the bulk into the sensor. 

At higher enzyme concentrations, the buffering capacity of the sensor controls the performance, 

resulting in a local decrease in pH that reduces the activity of the enzyme. Another possible reason for 

the activity reduction may be that at a high concentration of GOx, glucose is consumed rapidly at the 

outer surface of the sensor, which is not proportional to the decreasing oxygen level, resulting in a loss 

of sensitivity [42]. The results are consistent with previous literature reports [23,43]. 

 

Figure 4. (a) Effect of the GOx concentration on the glucose biosensor response in PBS 

(0.05 M, pH = 7.0) at an applied potential of 0.36 V; (b) Effect of Triton X-100 on the 

glucose biosensor response. 

The effect of Triton on the SPE modified electrode performance was studied using 0.5% Triton  

X-100 solution. As it can be seen from Figure 4b, the modified electrode covered with triton showed 

higher current response compared to the modified electrode without triton at 0.36 V indicating Triton 

X-100 being able to prevent GOx leaching from the surface of electrode. 

The PPy-CNC nanocomposite is highly hydrophobic and strongly adsorbed onto the carbon SPE 

surface. It provided a high surface area and a porous structure that is suitable for the attachment of the 

GOx enzyme. This facilitates a direct electron transfer at a higher rate between the GOx biomolecule 

and the electrode surface during the enzymatic reaction [11]. Furthermore, the DPV response of the 
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biosensor increased with an increasing nanocomposite concentration until 0.005 mg/electrode was 

reached. This observation is in agreement with the maximum amount of nanocomposite for enzyme 

loading within the nanostructure [44] and allowed the measurement of DPV in the presence of various 

concentrations of glucose to be carried out. 

3.2.3. Effect of pH and Buffer Capacity 

To enhance the electrocatalytic activity of the sensor toward glucose, the modified electrodes were 

optimized with PBS solution with different capacities ranging from 1.0 to 70 mM and different pHs 

within the range from 6.0 to 8.0. The pH of the solution effects the GOx activity [45]. From Figure 5a, 

it can be observed that the maximum response is approached at a pH of 7.0. Because the isoelectric 

point of GOx is 4.2, it carries a net negative charge at pH = 7 [46]. The electrostatic interactions 

between the negatively charged enzyme and the positively charged polypyrrole matrix at a pH of 7, 

results in an increased adsorption and incorporation of the enzyme into the nanostructure, resulting in a 

higher sensitivity at this pH. 

 

Figure 5. Effect of the pH (a) and ionic strength (b) of PBS on the PPy/CNC/GOx based 

glucose biosensor response in a 10 mM glucose solution at an applied potential of 0.36 V. 

This enzyme is more active in neutral solutions and maintains its natural structure at this pH [47]. 

Under acidic and more basic conditions, the immobilization of GOx onto the electrode surface is 

minimized. On the other hand, under acidic conditions, decreased enzyme activity may arise because 



Sensors 2015, 15 24690 

 

 

the enzyme is denatured [30]. Furthermore, a pH of 7.0 provides a suitable environment where the 

interactions between the redox ions and the electrode surface are optimal and hence results in the 

superior response observed when the pH of the enzymatic reaction is selected to be 7.0. 

The sensor response strongly depends on the concentration of PBS in the solution, as shown in  

Figure 5b. The current intensity was found to increase 20-fold when the PBS concentration changed 

from 1.0 to 50 mM. This may be because the role of the PBS solution is to transport protons between 

the GOx and the PPy-CNC membrane, which is called the “carrier-mediated” process [48]. The effect 

of the buffer concentration on the glucose biosensor intensity is restricted owing to the O2 limitation [49]. 

3.2.4. Electrochemical Response Studies of the Glucose Biosensor 

Figure 6A shows the DPV plot and analytical curves for the PPy/CNC/GOx modified electrode on 

successive additions of glucose at a scan rate of 0.5 V/s versus the Ag/AgCl electrode in 50 mM PBS 

with a pH of 7.0. The dynamic response range of the glucose biosensor was determined by using 

difference glucose concentrations, ranging from 0.3 to 30 mM. It should be noted that the enzymatic 

biosensor showed good linearity in the detection of glucose within the concentration range of  

1–20 mM (Figure 6B, inset) with a sensitivity of 0.73 μA·mM−1 and regression coefficient (R2) of 0.989. 

 

Figure 6. DPV graph (A) obtained using various glucose concentrations of (a) 1, (b) 5,  

(c) 10, (d) 15, and (e) 20 mM; and the analytical curve (B) of the PPy/CNC/GOx based  

glucose biosensor in a buffer solution (50 mM, pH = 7) at a scan rate of 0.5 V/s versus a  

Ag/AgCl electrode. 

According to Michaelis-Menten’s model, by increasing analyte concentration, the rate of catalytic 

reaction increases linearly to reach a maximum at higher substrate concentrations in which all of the 

available enzyme has been converted to enzyme substrate complex. 
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In our research, the increasing of glucose concentration from 1.0 to 20 mM caused enzymatic 

reaction to proceed faster resulting higher concentration of hydrogen peroxide and higher current 

response. The maximum rate achieved at 20 mM and then began to level off at higher concentrations. 

This possibly is due to this fact that as the reaction proceeds (Equation (1)) the concentration of 

gluconic acid increases lead to decreasing the pH of immediate environment on the surface of 

electrode. The decreasing of pH would alter or totally inhibit the enzyme from catalyzing reaction. 

Another reason is that the sensitivity of the biosensor is affected by the dissolved oxygen 

concentration. The increasing glucose concentration after 20 mM will lead to increase consumption of 

oxygen and decreases sensitivity of electrode. 

The limit of detection (LOD) was defined as the cross-section of both extrapolated linear portions of 

the calibration curve statistical analytical method and was calculated to be (50 ± 10) µM. Due to the 

electrocatalytic activity of the GOx enzyme (Equation (1)). Glucose + Oଶ ୋ୭୶ሱۛሮ Gluconic acid + HଶOଶ (1)

The O2 consumption and the H2O2 production increased during the reaction upon successive 

additions of glucose. No significant signals were observed for the sample tested in the absence of 

glucose [50]. Increasing the glucose concentration by more than 20 mM showed no effect on the 

biosensor response. 

3.2.5. Reproducibility, Stability and Interference Studies 

The reproducibility of the glucose biosensor was estimated by measuring the current response of 

five different modified electrodes with the same glucose solution (10 mM glucose) and under the same 

conditions within one day. The current difference measurement obtained using the different electrodes 

provided a RSD of 4.47%. 

The shelf life and storage stability of the glucose biosensor was tested during a period of one month 

in the presence of a 10 mM glucose solution with PBS (0.05 M, pH 7.0) and is shown in Figure 7. 

The electrode was stored at 4 °C under dry conditions after each measurement. After three days, no 

significant current differences were observed, but the biosensor sensitivity decreased slowly, reaching 

95% of the initial sensitivity at day 17. Then, the sensitivity decreased rapidly and an activity loss of 

80.57% was observed after four weeks, reaching 19.4% of the initial sensitivity at day 30. 

The good stability of the sensor may be attributed to the biocompatibility of the PPy/CNC 

nanostructure, which provides a promising microenvironment for GOx to retain its bioactivity. 

Another possible reason may be the high surface area and porosity of the modified electrode that 

enhances the immobilization of the GOx enzyme molecules. After four weeks, the stability decreased 

because of the reduced enzyme catalytic activity and conductivity of the PPy/CNC nanocomposite. The 

PPy/CNC-based glucose biosensor compared with other glucose biosensors reported in the literature 

showed better stability. For example, the stability of the GOx immobilized on the PPy/carbon nanotube 

composite matrix decreased over 10 h [51], and modified Au electrodes based on silver nanotubes lose 

their enzyme catalytic activity after two weeks [52]. 
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Figure 7. The life time of the PPy/CNC/GOx modified electrode based on the DPV 

response for a 10 mM glucose solution in PBS (0.05 M, pH = 7). 

The separate solution method (SSM) has been used to investigate the effect of interference on the 

glucose biosensor response. The measurement of interference based on the SSM method was 

performed in a glucose solution and interfering species, including cholesterol, uric acid (UA) and 

ascorbic acid (AA), separately in PBS (50 mM, pH = 7.0). The concentration of the interfering species 

utilized the boundaries of the linear response range from 1.0 × 10−3 to 2.0 × 10−2 M [53]. As shown in 

Figure 8, after the addition of interfering species, there was no obvious increase in the current response 

of the glucose biosensor. 

 

Figure 8. The effect of interfering species on the glucose biosensor in the presence of PBS 

(0.05 M, pH = 7.0). 

These results show that the glucose biosensor based on PPy/CNC as a conducting membrane has the 

ability to perform as a glucose sensor with no interference. The glucose biosensor utilizing PPy/CNC 

as the immobilization membrane developed in this study appeared to improve the linear range 

compared to other types of sensors using a different matrix. In Table 1, the glucose biosensor using the 

PPy/CNC/GOx modified electrode is compared favorably with other glucose biosensors in terms of the 

dynamic range response, stability, and limit of detection (LOD). 
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Table 1. Comparison of PPy/CNC/GOx-based electrochemical glucose biosensors with 

previously reported literature biosensors. 

Electrode 
Detection 

Methods 

Linear Range 

(mM) 

LOD 

(mM) 

Long-Term Stability 

(Days) 
References 

Py/CNC DPV 1–20 0.05 21 Present work 

Graphene/CdS 

nanocrystals 

CV and impedance 

spectroscopy 
2–16 0.7 - [54] 

Hydrophilic cellulose 

paper 
Amperometric 1–5 0.18 110 [55] 

Graphene/AuNPs/Chitosan 

nanocomposites 
CV 2–14 0.18 15 [41] 

silica sol–gel Fluorescence 0.1–5 0.06 30 [56] 

ZnO nanorods Amperometric 0.01–3.45 0.01 7 [57] 

Colloidal gold modified 

carbon paste electrode 
CV 0.04–0.28 0.01 - [58] 

PPy/CNT Amperometric 0–50 0.2 75 min [59] 

4. Conclusions 

Here, a novel PPy-CNC bionanocomposite was synthesized by a chemical polymerization method. 

Due to the synergistic effect between CNC and PPy, a good electrochemical behavior and the electron 

transfer between the GOx and the modified electrode was observed. In summary, nanocomposites can 

provide unique properties to design glucose biosensors using a simple method based on the entrapment 

of the GOx on the membrane surface. Polymerization of pyrrole on the nanocellulose could enhance 

surface area and porosity structure of nanocomposite resulting good electrocatalytic activity toward 

biomolecules. The porous structure formed in the presence of nanocellulose provided strong adsorption 

ability for the immobilization of GOx, In addition crystalline structure of nanocellulose could facilitate 

electron transfer between electrode and GOx with strong catalytic properties.The electrochemical and 

DPV responses of the GOx for glucose biosensor detection were examined in detail. The large surface 

to volume ratio of the PPy/CNC nanocomposite modified SPE is sufficient to impact the current 

response without the addition of any crosslinking agents or modifiers. Therefore, this membrane 

established a novel sensing area for the detection of glucose and provided a general route to fabricate a 

glucose biosensor based on the immobilization of GOx onto a PPy/CNC membrane. This sensor, with 

a wide dynamic range, good stability, reproducibility, high sensitivity and fast electron transfer, can be 

applied in a broad range of fields potentially including biomedical engineering, chemical engineering, 

medical analysis and biochemistry and may also be a good candidate for the immobilization of 

biomolecules and the fabrication of third-generation biosensors. 
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