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Stat3 promotes mitochondrial transcription and
oxidative respiration during maintenance and
induction of naive pluripotency
Elena Carbognin1,†, Riccardo M Betto1,†, Maria E Soriano2, Austin G Smith3,4,* & Graziano Martello1,**

Abstract

Transcription factor Stat3 directs self-renewal of pluripotent
mouse embryonic stem (ES) cells downstream of the cytokine
leukemia inhibitory factor (LIF). Stat3 upregulates pivotal tran-
scription factors in the ES cell gene regulatory network to sustain
naïve identity. Stat3 also contributes to the rapid proliferation of
ES cells. Here, we show that Stat3 increases the expression of
mitochondrial-encoded transcripts and enhances oxidative meta-
bolism. Chromatin immunoprecipitation reveals that Stat3 binds to
the mitochondrial genome, consistent with direct transcriptional
regulation. An engineered form of Stat3 that localizes predomi-
nantly to mitochondria is sufficient to support enhanced prolifera-
tion of ES cells, but not to maintain their undifferentiated
phenotype. Furthermore, during reprogramming from primed to
naïve states of pluripotency, Stat3 similarly upregulates mitochon-
drial transcripts and facilitates metabolic resetting. These findings
suggest that the potent stimulation of naïve pluripotency by LIF/
Stat3 is attributable to parallel and synergistic induction of both
mitochondrial respiration and nuclear transcription factors.
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Introduction

Mouse embryonic stem (ES) cells (Evans & Kaufman, 1981; Martin,

1981) have the capacity to give rise to all differentiated cells of the

body and the germ line (Bradley et al, 1984), a feature termed

pluripotency (Bradley et al, 1984; Martello & Smith, 2014). ES cells

are derived from the naı̈ve pluripotent epiblast of mouse blastocysts

(Brook & Gardner, 1997; Boroviak et al, 2014). The cytokine

leukemia inhibitory factor (LIF) is pivotal for establishing and

maintaining ES cells in culture (Smith et al, 1988; Williams et al,

1988; Nichols et al, 1994). LIF signals via the LIF-R/gp130 complex,

which activates Janus-associated kinases (JAKs) (Burdon et al,

2002). In turn, JAKs phosphorylate and activate the transcription

factor Stat3, which maintains naı̈ve pluripotency through its direct

targets Tfcp2l1, Klf4, and Gbx2 (Niwa et al, 1998, 2009; Bourillot

et al, 2009; Martello et al, 2013; Tai & Ying, 2013), key members of

the ES cell core gene regulatory network (Dunn et al, 2014).

Blockade of GSK3 and MEK kinases permits ES cell self-renewal

in the absence of LIF (Ying et al, 2008; Martello et al, 2013). Impor-

tantly, however, self-renewal efficiency is significantly increased

when LIF is added (Wray et al, 2010; Dunn et al, 2014). LIF/Stat3

signaling is also critical during cellular reprogramming to facilitate

the attainment of naı̈ve pluripotency (Takahashi & Yamanaka, 2006;

Yang et al, 2010; van Oosten et al, 2012; Martello et al, 2013; Stuart

et al, 2014).

Naı̈ve pluripotent cells are metabolically flexible as they utilize

both glycolysis and mitochondrial respiration (Zhou et al, 2012;

Teslaa & Teitell, 2015). However, this is not a feature of all pluri-

potent cells. EpiSCs derived from the primed epiblast of post-

implantation embryos (Brons et al, 2007; Tesar et al, 2007; Nichols

& Smith, 2009) are mainly glycolytic with inert mitochondria (Zhou

et al, 2012). The switch from aerobic to anaerobic metabolism

presumably reflects the altered environment of the embryo upon

implantation, but is evidently intrinsically programmed.

Here, we investigate the impact of LIF/Stat3 on mitochondrial

activity during mouse ES cell propagation and reprogramming from

primed to naı̈ve pluripotency.

Results

The LIF/Stat3 axis promotes ES cell proliferation and
mitochondrial transcription

Embryonic stem cells can be derived and expanded under feeder-

free conditions in the presence of two inhibitors (2i) with or without
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LIF (Ying et al, 2008; Wray et al, 2010). ES cells expanded in 2i

retain the ability to form chimeric animals and be transmitted

through the germline, indicating that LIF signaling can be dispens-

able for the maintenance of pluripotency in vitro, although LIF

dependency varies with genetic background. Consistent with this,

Stat3 null ES cells have been previously derived and characterized

in 2i and showed no overt defects in early lineage differentiation or

self-renewal capacity (Ying et al, 2008; Wray et al, 2011; Martello

et al, 2013). Nonetheless, addition of LIF to 2i (2i + LIF) is benefi-

cial to the culture of wild-type ES cells, resulting in increased clono-

genicity (Wray et al, 2010; Dunn et al, 2014) and more robust and

rapid expansion (Fig 1A).

We investigated whether the effect of LIF on population doubling

was due to an increase in cell survival or in proliferation rate. We

found that the percentage of viable cells was not affected

(Appendix Fig S1A), but that LIF caused a reduction in the fraction

of cells in G1 phase, with a concomitant increase in actively dividing

cells (Fig 1B).

LIF is known to activate three signaling pathways, Stat3, PI3K,

and Erk, each of which could mediate an effect on proliferation

(Burdon et al, 1999). Presence of the Mek inhibitor in 2i rules out a

contribution of the Erk cascade. We took advantage of Stat3 null

cells and found that their proliferation rate is not increased by LIF

and is comparable to that of wild-type cells cultured without LIF

(Fig 1A). We conclude that Stat3 is required for the proliferative

response to LIF.

We analyzed transcriptome data from mES cells cultured in 2i

and stimulated with LIF for 1 h (Martello et al, 2013) to identify

transcriptional targets that might be related to the effects on prolifer-

ation. We found that several mitochondrial transcripts were

elevated in response to LIF (Fig 1C). In particular, mRNAs coding

for subunits of the complexes of the mitochondrial respiratory chain

were upregulated around twofold by LIF treatment (Fig 1D). This

effect was not observed in Stat3 null cells. These results were vali-

dated by quantitative real-time PCR (RT–qPCR) on cells either

acutely stimulated with LIF or kept in 2i + LIF conditions for 2

passages, the latter result indicating that the response is stable over

time (Fig 1E, top).

LIF/Stat3 could enhance mitochondrial transcription indirectly,

via induction of known mitochondrial master transcriptional

regulators, such as PGC-1 or TFAM. Inspection of the RNA-seq data

from LIF stimulation showed no induction of either of these

regulators (Appendix Fig S1C).

To explore whether the effect of LIF/Stat3 on mitochondrial

transcription may be direct, we designed a reporter assay. A single

regulatory region, the D-loop, directs transcription of the mitochon-

drial genome. We generated a reporter construct containing the

mouse D-loop followed by a minimal promoter and the firefly luci-

ferase ORF (D-loop-Lux, Fig 2A) and introduced this into both ES

cells and EpiSCs. In either case, cotransfection with Stat3 increased

reporter activity (Fig 2B and C). EpiSCs showed more pronounced

reporter activation, probably due to lower levels of endogenous

Stat3 pathway.

To examine further whether Stat3 could directly regulate

mitochondrial transcription, we inspected available chromatin

immunoprecipitation followed by sequencing (ChIP-seq) data

(Sánchez Castillo et al, 2015). We observed a significant enrichment

of Stat3 over the D-loop region of the mitochondrial genome

(Fig 2D). We performed ChIP-qPCR and confirmed binding of Stat3

at the D-loop in mES cells (Fig 2E).

Mitochondrial genomes exist as clusters associated with specific

proteins, termed nucleoids, that lie within the mitochondrial matrix.

Atad3 is a protein required for correct nucleoid assembly which

interacts with the D-loop region (He et al, 2007). We first confirmed

that Atad3 and mtDNA colocalized in mES cells (Appendix Fig

S2A). We used the proximity ligation assay (PLA) to test for colocal-

ization of endogenous Stat3 and Atad3. The results in Fig 2F

indicate that the two proteins are closely associated within

mitochondria in ES cells.

Collectively, these findings suggest that Stat3 directly induces

transcription of the mitochondrial genome, but do not rule out other

potential effects of Stat3 on the stability or turnover of mitochon-

drial transcripts.

Mitochondrial respiration is increased in the presence of LIF

We investigated whether alterations in the level of mitochondrial

transcription are accompanied by altered respiratory activity. Stat3

was previously shown to be a positive regulator of mitochondrial

respiration in terminally differentiated cells (Wegrzyn et al, 2009;

Zouein et al, 2014). We measured the oxygen consumption rate

(OCR) in wild-type and Stat3 null cells cultured in 2i + LIF by extra-

cellular flux analysis (Seahorse assay). In the absence of Stat3, we

found a reduction both in the basal levels of OCR and after

treatment with the uncoupler FCCP, which provides a measure of

the maximal respiratory rate (Figs 3A and Appendix Fig S3A). These

Figure 1. LIF/STAT3 signaling promotes proliferation and mitochondrial transcription.

A Proliferation assay of Stat3+/+ and Stat3�/� cells cultured in N2B27-based 2i media either in the presence or in the absence of LIF. Cells were seeded and scored for
four consecutive days. Scores were normalized to day 1. Mean and s.d. of three technical replicates. See also Appendix Fig S1A.

B Cell cycle analysis of Stat3+/+ cells cultured in 2i media without LIF or with LIF for several passages and Stat3�/� cells in 2i with LIF. Forty-eight hours after plating,
cells were detached, treated with propidium iodide, and analyzed by flow cytometry. Top: Cells cultured in the presence of LIF showed an increment in S/G2 and a
decrease in G1. Mean and s.e.m. of three technical replicates. Unpaired t-test: *P < 0.05. Bottom: representative plots.

C Scatter plot showing RNA-seq data from Stat3+/+ cells cultured in 2i and stimulated with LIF for 1 h (Martello et al, 2013). Absolute expression is shown in RPKM.
Green dots indicate known LIF targets that serve as positive controls. Mitochondrial-encoded transcripts are represented as orange dots. Only genes with FC > 1.7 and
a P-value < 0.05 are shown.

D Heatmap showing mean normalized expression of 13 mitochondrial transcripts encoding 4 subunits of the mitochondrial respiratory chain. RNA-seq data are from
Stat3+/+ and Stat3�/� cells were expanded in 2i media without LIF and treated with LIF for 1 or 24 h.

E Gene expression analysis by RT–qPCR of Stat3+/+ (blue) and Stat3�/� (red) cells cultured in 2i and treated with LIF for 1 h, 4 h or 4 days. Data are normalized to
unstimulated 2i cultures. Beta-actin served as an internal control. Mean and s.e.m. of three independent experiments. Unpaired t-test: *P < 0.05, **P < 0.01,
***P < 0.001. See also Appendix Fig S1B.
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results prompted us to assess whether the positive effect of Stat3 on

mitochondrial respiration requires active LIF signaling or may be a

constitutive function of Stat3 independent of the signaling context.

We measured OCR in cells cultured for multiple passages in either

2i or 2i + LIF and observed an increase in both basal and maximal

respiration in the presence of LIF (Fig 3B and C). Under the same

conditions, we measured the extracellular acidification rate (ECAR),

which provides an indirect measure of the glycolytic flux, and

found that LIF has no consistent effect on ECAR (Appendix Fig S3B

and C).

Increased respiration could be due to enhanced mitochondrial

biogenesis. However, protein levels of two components of the

import machinery (TOM20 and TIMM23), whose expression corre-

lates with mitochondrial biomass, were not increased in the pres-

ence of LIF (Fig 3D), suggesting that LIF does not have a substantial

influence on mitochondrial biogenesis. We also measured the

number of copies of the mitochondrial genome relative to the

nuclear genome by PCR in 2i or 2i + LIF and could not detect any

significant difference (Fig 3E). A constant number of genomes are

consistent with the elevated mitochondrial transcript levels arising

from a specific increase in transcription. We focussed our attention

on Complex I, which is the main entry point to the respiratory

chain, because several of its subunits are transcriptionally regulated

by LIF/Stat3 (Fig 1C and E). We performed blue native gel elec-

trophoresis (BNGE) to isolate intact complexes and by Western blot

observed a reduction in the levels of Complex I in the absence of

LIF and still lower levels in Stat3 null cells (Fig 3F). BNGE also

allows the detection of high molecular weight clusters containing

several complexes, called supercomplexes (Schägger, 1995). We

observed that supercomplexes are present in ES cells and that their

levels are reduced in the absence of either LIF or Stat3 (RCS on

Fig 3F and G). These results suggest that LIF/Stat3 increases the

levels of complexes of the respiratory chain, which in turn results in

enhanced assembly of supercomplexes and elevated mitochondrial

respiration.

Mitochondrial respiration determines optimal proliferation

LIF/Stat3 promotes the proliferation of ES cells as well as mitochon-

drial respiration. We asked whether the two effects are causally

linked. To this end, we first applied rotenone, an inhibitor of

Complex I. We titrated rotenone and found that concentrations

ranging from 50 to 100 nM were able to reduce cell proliferation

(Appendix Fig S4A), also reducing OCR by ~70% without affecting

ES cell viability (Appendix Fig S4B and Fig 4A). We then tested the

effect of rotenone on proliferation upon perturbation of the LIF/

Stat3 axis (Fig 4B). LIF increased the number of wild-type cells

(Fig 4B, compare 1st and 2nd bar) and rotenone abrogated this effect

(compare the 2nd bar to the 3rd and 4th bars). As expected, Stat3 null

cells did not respond to LIF (5th vs. 6th bar), but they also appeared

more affected by rotenone (compare 6th to the 7th and 8th bars), a

result in line with their reduced basal respiratory capacity (Fig 3A).

Similar results were obtained with wild-type ES cells cultured in

LIF + serum (Appendix Fig S4C), suggesting that the effect

described is not related to the 2i culture conditions.

As an independent test, we depleted Ndufs3, a Complex I subunit

that has been shown to be required for Complex I assembly and

activity (Lapuente-Brun et al, 2013), using shRNA. Ndufs3 knock-

down resulted in reduced OCR levels and proliferation in response

to LIF (Fig 4C–E and Appendix Fig S4D), consistent with the rote-

none results.

To further confirm that the effects of rotenone are due to inhibi-

tion of the respiratory chain, we used antimycin A, an inhibitor of

Complex III. Titrated doses of antimycin A were sufficient to reduce

OCR with no effect on cell survival (Appendix Fig S4E–G) and also

potently reduced cell proliferation (Fig 4F). Similar results were

obtained with myxothiazol, a second Complex III inhibitor

(Appendix Fig S5A–C).

Inhibition of the respiratory chain could affect the production of

reactive oxygen species (ROS), which in turn could either be cyto-

toxic or act as signaling molecules. We assayed the production of

ROS after treatment with rotenone, antimycin A, and myxothiazol

and did not detect any increase (Appendix Fig S6A–D) at the

concentrations that affected ES cell proliferation. Therefore, ROS

does not seem to play a role in this context.

We then tested the effects of long-term treatment with rotenone.

We observed a dose-dependent reduction in the cumulative number

of cells over multiple passages (Fig 4G), but without overt effects on

cell survival (Appendix Fig S6E). Crucially, ES cells remained

morphologically undifferentiated and maintained full expression

of pluripotency factors (Fig 4H and I). Moreover, known direct

transcriptional targets of LIF/Stat3 were not affected, suggesting that

Figure 2. Stat3 regulates directly the mitochondrial DNA.

A Schematic representation of D-loop-Lux reporter construct used for luciferase assays.
B Luciferase assay on ES cells transfected with D-loop-Lux reporter plasmid and Stat3 in the presence or in the absence of LIF for 48 h; p53 was previously shown to

activate a similar reporter construct (Heyne et al, 2004) and therefore was used as a positive control. Increased expression of Stat3 enhances luciferase activity. Mean
and s.e.m. of four independent experiments. Unpaired t-test: *P < 0.05.

C Luciferase assay on EpiSCs transfected with D-loop-Lux reporter plasmid and Stat3 in the presence of LIF for 48 h. Mean and s.e.m. of three independent experiments.
Unpaired t-test: *P < 0.05.

D Diagram highlighting available ChIP-seq results (GSM288353) of Stat3 binding on the D-loop. A, B, and C indicate regions where primers for ChIP-PCR analysis were
designed.

E Chromatin immunoprecipitation (ChIP) was performed using anti-Stat3 or a rabbit control IgG antibody in Rex1-GFP cells (Wray et al, 2010) cultured in LIF and
serum conditions in the presence of blasticidin to reduce heterogeneity of the culture. ChIP-PCR was performed with primers located on three regions of the D-loop
(A, B, C), as indicated in (D). Mean and s.d. of two independent experiments are shown.

F Representative confocal images of Stat3+/+ cells subjected to proximity ligation assay (PLA) by using anti-Stat3 and anti-Atad3 antibodies (see Appendix Fig S2 for
Atad3 localization in nucleoids). Only when the two proteins are close to each other, an enzymatic reaction takes place, producing discrete fluorescent red dots in the
nanometer range (bottom). Anti-Stat3 or anti-Atad3 alone was used to assess the assay specificity (top and center, respectively). DAPI serves as a nuclear counterstain.
Scale bar, 10 lm. The histogram shows the quantification of PLA performed on Stat3+/+ cells. The number of red dots/cell is plotted. Note that when cells are stained
with both antibodies, the number of dots increases significantly, suggesting close proximity between Stat3 and the nucleoids marker Atad3 (light orange bar). Mean
and s.e.m. of > 15 cells for each sample are shown. Unpaired t-test: *P < 0.05.
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rotenone does not affect LIF signaling to the nucleus in ES cells

(Fig 4H, right bars).

These results indicate that mitochondrial respiration is instru-

mental for maximal proliferation of ES cells and furthermore suggest

that LIF effects on proliferation and pluripotent cell identity may be

uncoupled.

Mitochondrial localization of Stat3 is crucial for LIF effects
on proliferation

The effects of LIF signaling on ES cell proliferation and mitochon-

drial activity are strictly dependent on the presence of Stat3 (Figs 1A

and B, and 3A). Thus, Stat3 null cells represent a valuable tool. We
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first transfected Stat3 null cells with a full-length mStat3 ORF,

randomly picked several clones, and selected two clones expressing

Stat3 protein at ~twofold over endogenous wild-type levels (Fig 5A

and B). Both clones reacquired the ability to respond to LIF

measured by activation of the direct target Socs3 (Fig 5C) and in

terms of cell proliferation (Fig 5D). When challenged with rotenone,

the rescue clones proliferated more than null cells (Appendix Fig

S7A). We conclude that the proliferative defects observed in Stat3

null cells are reversible and specifically due to the lack of Stat3.

We tested whether in ES cells the effects of LIF on proliferation

and respiration are due to Stat3 localization to the mitochondria,

or are mediated by nuclear targets of Stat3. To do so, we trans-

fected Stat3 null cells with a construct expressing the Stat3 cDNA

fused to a mitochondrial localization signal (MLS-Stat3) as previ-

ously described (Wegrzyn et al, 2009). We generated clones

expressing MLS-Stat3 at similar levels to endogenous Stat3 in wild-

type cells (Fig 5E, total fractions). We prepared the mitochondrial

fraction from ES cells. Representation of the nuclear protein

TRIM33 was reduced by > 90% (Fig 5E) compared to total cell

extracts, while the mitochondrial protein TOM20 was readily

detectable, indicating successful isolation of mitochondria. Endo-

genous Stat3 protein was detected in the mitochondrial fraction of

wild-type cells and MLS-Stat3 was clearly enriched in the

mitochondria of transfected cells.

Immunofluorescence staining also indicated that MLS-Stat3 was

present in mitochondria (Fig 5F). Conversely, double immunostain-

ing with TOM20, a protein present on the outer mitochondrial

membrane, shows adjacent but non-overlapping localization

(Appendix Fig S7C), suggesting that MLS-Stat3 is located within the

mitochondrial matrix.

We characterized the transcriptional response in cells expressing

MLS-Stat3 and found that they did not activate the nuclear target

Socs3 in response to LIF (Fig 5G, blue bars). In contrast, mitochon-

drial targets were activated at levels comparable to, or higher than,

control cells (Fig 5G, yellow bars). By ChIP-PCR, we found a

significant enrichment of MLS-Stat3 on the D-loop region of the

mitochondrial genome (Fig 5H). A direct interaction between MLS-

Stat3 and nucleoid structures was also evidenced by PLA (Fig 5I

and Appendix Fig S7D).

Finally, we again measured the expression of master regulators

of mitochondria transcription, such as TFAM, and found no signifi-

cant changes (Appendix Fig S7E). Collectively, these data are consis-

tent with direct regulation of expression of mitochondrial genes.

We examined the functional impact of MLS-Stat3 on proliferation

of Stat3 null cells. All three MLS-Stat3 clones expanded more rapidly

than the null cells, and two of the clones showed a similar increase

in cell numbers to wild-type cells (Fig 5J). MLS-Stat3 clones also

proliferated more in the presence of rotenone (Fig 5K). They

showed typical compact morphology of undifferentiated ES cells

and colony sizes appeared on average larger than null cells (Fig 5L).

These experiments were performed in the presence of LIF. In 2i

without LIF, MLS-Stat3 clones exhibited a similar expansion rate to

Stat3 null cells (Appendix Fig S8A), indicating that the effect of

MLS-Stat3 on ES cell proliferation requires LIF stimulation.

A minor fraction of MLS-Stat3 becomes phosphorylated on

Tyr705, the JAK target site (Appendix Fig S7B), but whether this is

in the mitochondria is uncertain and the mechanism for such an

effect is unknown. We also noted that LIF increased total Stat3

protein levels (Appendix Fig S8B). While Stat3 is known to autoreg-

ulate its own transcription, this will not apply to the MLS-Stat3

transgene. This observation therefore suggests that another mode of

LIF signaling, potentially through PI3K, may increase translation of

MLS-Stat3 or stabilize the protein.

We examined whether MLS-Stat3 is able to mediate the effects of

LIF on inhibition of ES cell differentiation, which is considered to be

dependent on nuclear transcriptional targets (Niwa et al, 2009;

Martello et al, 2013). Stat3 null cells and MLS-Stat3 clones were

transferred to culture in LIF and Mek inhibitor (LIF + PD), condi-

tions that are sufficient for wild-type ES cell self-renewal (Wray

et al, 2010; Dunn et al, 2014) (Appendix Fig S9A). Both null and

MLS-Stat3 cultures underwent differentiation and cell death and

collapsed completely within three passages. In contrast, a Stat3 null

clone transfected with wild-type Stat3 (clone B, see Fig 5B)

displayed robust self-renewal in LIF + PD and expression of nuclear

Stat3 targets (Appendix Fig S9A and B).

Thus, Stat3 specifically localized to the mitochondria is able to

enhance transcription of mitochondrial genes and proliferation, but

is unable to sustain ES cell identity.

Figure 3. LIF/Stat3 activates mitochondrial respiration.

A Oxygen consumption rate (OCR) measured by Seahorse extracellular flux assay of Stat3+/+ and Stat3�/� cells maintained in 2i condition in the presence of LIF;
200 nM FCCP (a mitochondria uncoupler) treatment resulted in higher OCR increase in Stat3+/+ compared to Stat3�/� cells, showing a higher level of maximal
mitochondrial electron transport chain (ETC) activity in Stat3+/+ cells. Injection of 200 nM antimycin shows similar non-mitochondrial respiration rates for both
Stat3+/+ and Stat3�/� cells. Mean and s.e.m. of 5 technical replicates are shown.

B Oxygen consumption rate (OCR) of Stat3+/+ cells cultured in 2i conditions without LIF or with LIF for several passages; 200 nM FCCP and 200 nM antimycin were injected
and resulted in a higher mitochondrial respiration activity in cells cultured in the presence of LIF. Mean and s.e.m. of 4 replicates are shown. See also Appendix Fig S3D.

C Relative changes in oxygen consumption after 200 nM FCCP treatment of Stat3+/+ cells cultured in 2i media in the presence (dark blue bars) and absence of LIF (light
blue bars). Mean and s.e.m. of > 4 technical replicates of three independent experiments are shown. Unpaired t-test: *P < 0.05.

D Western blot of Stat3+/+ cells cultured in the presence or absence of LIF. Note that protein levels of two mitochondrial markers (TOM20 and TIMM23) do not change
in the absence of LIF. GAPDH was used as a loading control. Relative mean intensity is shown below each band.

E Mitochondrial DNA expression analysis of Stat3+/+ cells maintained in 2i in the presence (dark blue bars) or absence (light blue bars) of LIF. The abundance of 3
mitochondrial genomic loci was measured and normalized to a nuclear genomic locus on chromosome 3. Mean and s.e.m. of three independent biological replicates
are shown.

F BNGE analysis followed by Western blot for a Complex I protein (NDUFB8). ATPase serves as a loading control. RCS, respiratory chain supercomplexes. See also
Appendix Fig S3E and F.

G Quantification of the chemiluminescent RCS/ATPase signal ratio (left) and Complex I/ATPase signal ratio (right). Mean and s.d. of three independent experiments.
Unpaired t-test: *P < 0.05, **P < 0.01, ***P < 0.001.

Source data are available online for this figure.
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LIF-dependent regulation of mitochondrial activity is critical for
induction of naïve pluripotency

Signaling from LIF via Stat3 is important for the induction of naı̈ve

pluripotency. Over-activation of LIF/Stat3 is sufficient to reprogram

EpiSCs to naı̈ve pluripotent iPS cells (Han et al, 2010; Yang et al,

2010; Onishi et al, 2014). Expression of several transcription factors

can also convert EpiSCs into naı̈ve iPS cells (Guo et al, 2009; Hall

et al, 2009; Hanna et al, 2009; Silva et al, 2009; Han et al, 2010;

Festuccia et al, 2012; Gillich et al, 2012; Martello et al, 2013), but

the presence of LIF invariably enhances the efficiency of conversion.

The preceding results provoked the suggestion that LIF may exert

functions during reprogramming beyond rewiring of the transcrip-

tion factor network controlling pluripotency. During reprogramming

of EpiSCs, mitochondrial respiration must be actively boosted to the

level of naı̈ve pluripotent cells (Zhou et al, 2012). We hypothesized

that LIF could contribute directly by promoting mitochondrial

transcription and activity.

We confirmed that EpiSCs have a greatly reduced OCR compared

with ES cells (Appendix Fig S10A). We also found a general reduc-

tion in expression of known nuclear and mitochondrial Stat3 targets

in EpiSCs (Fig 6A). To examine the involvement of mitochondrial

respiration in the reprogramming process, we took advantage of the

GOF-18 EpiSC line (Han et al, 2010). A fraction of GOF18 EpiSCs

exhibit spontaneous conversion in 2i after 48 h exposure to LIF

(Han et al, 2010; Yang et al, 2010). When the Complex I inhibitor

rotenone was added together with LIF, we observed a severe reduc-

tion in the yield of iPS cell colonies (Fig 6B and C). Similar results

were obtained in a second EpiSC line (Appendix Fig S10B) in which

resetting to naı̈ve pluripotency is driven by transient hyperactivation

of Stat3 (Yang et al, 2010). We also exposed cells to rotenone 4 days

after LIF induction and observed no difference in the number of iPS

colonies obtained (Fig 6D and Appendix Fig S10C). Importantly, the

low doses of rotenone used are tolerated well by both EpiSCs and

ES cells (Appendix Fig S10D–G and Fig 4A and G), suggesting that

the reduction in colony number is not due to toxicity. iPS cells

obtained either in the presence or in the absence of rotenone treat-

ment could self-renew in 2i + LIF without feeders over multiple

passages and showed reactivation of naı̈ve markers and shutdown

of EpiSC markers (Fig 6E), suggesting that they are bona fide naı̈ve

pluripotent cells. These results suggest that upregulation of mito-

chondrial respiration is specifically required during the first 4 days

of reprogramming.

To elucidate further the molecular mechanism underlying the

effect of LIF and rotenone on reprogramming, we inspected the mito-

chondrial and nuclear transcriptional targets of Stat3 and observed

that 48 h of LIF treatment in 2i is sufficient to induce both classes of

gene in GOF18 EpiSCs (Fig 6F and G, compare blue and gray bars).

The upregulation of mitochondrial targets indicates that Stat3 is

active in the mitochondria in EpiSCs. All Stat3 targets are induced at

the same levels, either in the presence or in the absence of rotenone

(compare gray and purple bars), in agreement with previous results

(Fig 4G) that treatment with rotenone does not affect the intensity of

LIF signaling. Therefore, we conclude that rotenone acts down-

stream of LIF signaling without affecting signal transduction.

Our findings suggest that LIF activates two programs, a nuclear

program promoting rewiring of the transcription factor network and

a mitochondrial program important for resetting the metabolic

profile of the cell. To deconvolute the relative contributions of

each program, we expressed two critical nuclear targets, Klf4 and

Tfcp2l1 (Niwa et al, 2009; Martello et al, 2013; Ye et al, 2013), in

EpiSCs. Either factor, or the combination of the two together, was

sufficient to reprogram EpiSCs without LIF consistent with previous

reports (Yang et al, 2010; Martello et al, 2013), but in all cases the

Figure 4. LIF promotes proliferation via respiration.

A Flow cytometry analysis after double staining with annexin V and propidium iodide in ES cells. The combination of annexin V-FITC and propidium iodide allows the
distinction between viable cells (unstained) bottom left quadrants, early apoptotic cells (annexin V-FITC positive) bottom right quadrants, late apoptotic and/or
necrotic cells (annexin V-FITC and propidium iodide positive) top right quadrants. ES cells were treated with increasing concentrations of rotenone from 50 nM to
200 nM for 48 h. A slight increase in cell death could be observed only at a concentration of 200 nM of rotenone. In each quadrant, the mean and s.e.m. of three
independent experiments are indicated.

B Proliferation assay of Stat3+/+ and Stat3�/� cells cultured in 2i. Cells were seeded and treated for 48 h with LIF and rotenone (orange bars), a Complex I inhibitor, as
indicated. Scores were normalized to Stat3+/+ cells treated with LIF and DMSO. Proliferation was enhanced by LIF treatment in Stat3+/+ cells and reduced by rotenone
treatment. Stat3�/� cells are more sensitive to rotenone treatment. Mean and s.e.m. of at least 2 independent experiments are shown. Unpaired t-test: *P < 0.05,
***P < 0.001. n.s.: non-significant. See also Appendix Fig S4A.

C Gene expression analysis of Stat3+/+ cells transfected with control shRNA (SCR, dark green), and two independent shRNAs for a Complex I subunit (Ndufs3) (SH1 and
SH2). Note that shRNAs for Ndufs3 downregulate gene expression of about 70%. Mean and s.d. of two independent experiments are shown. Unpaired t-test:
*P < 0.05, **P < 0.01.

D Relative changes in oxygen consumption after 200 nM FCCP treatment of Stat3+/+ cells transfected with control shRNA (dark green) and two different shRNAs for
Ndufs3. Note that downregulation of the Complex I subunit results in decreased respiration. Mean and s.e.m. of > 4 technical replicates are shown. Unpaired t-test:
*P < 0.05, ***P < 0.001. See also Appendix Fig S4D for full Seahorse profiles.

E Proliferation assay of control shRNA cells (dark green) and cells with downregulation of Ndufs3. Note that downregulation of the Complex I subunit results in
decreased proliferation. Mean and s.e.m. of three independent experiments are shown.

F Proliferation assay of Stat3+/+ and Stat3�/� cells cultured in the presence of LIF showing the reduction in proliferation after 48-h treatment with increasing
concentrations of antimycin A (50, 100, or 200 nM). See also Appendix Fig S4F. Scores were normalized to WT cells treated with a vehicle (EtOH). Mean and s.e.m. of
two independent experiments are shown. Unpaired t-test: **P < 0.01. See also Appendix Fig S4E.

G Proliferation assay showing the effect of long-term treatment of rotenone on cell proliferation. Stat3+/+ cells cultured in 2i and 2i + LIF with or without rotenone
were scored for 4 subsequent passages. The cumulative number of cells has been calculated and shown on log scale. Rotenone at 50 or 100 nM reduced the number
of cells after 4 passages by 4.8 and 16.7 times, respectively. Mean and s.d. of two technical replicates of a representative experiment are shown. See also Appendix Fig
S6E.

H Gene expression analysis of Stat3+/+ cells cultured in 2i + LIF (blue bars) and with 50 nM rotenone for 48 h (orange bars) showing that rotenone does not affect the
transcription of the main LIF targets in ES cells. Data were normalized to the highest value for each condition. Mean and s.d. of 2 biological replicates are shown.

I Bright field images showing that long-term treatment with rotenone causes a reduction in proliferation, shown by the reduced size of individual colonies, but does
not cause differentiation in mES cells. Scale bar, 50 lm.
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colony yield was enhanced by LIF (Fig 6H and I, and Appendix Fig

S10H). Addition of rotenone abrogated the positive effect of LIF on

reprogramming, independently of cell line or the reprogramming

factor used.

These data suggest that during the first 48 h of the reprogram-

ming process, a significant contribution of LIF to the resetting of

pluripotent states is via activation of mitochondrial respiration.

Discussion

In this study, we show that in ES cells LIF via Stat3 induces expres-

sion of mitochondrial genes encoding components of the respiratory

chain (Figs 1C–E and 2). In so doing, LIF enhances oxidative phos-

phorylation (Fig 3A–C) and enables rapid proliferation of ES cells

(Fig 4B and G). Moreover, our data indicate that LIF stimulation of

mitochondrial respiration facilitates efficient resetting of EpiSCs to

naı̈ve pluripotency (Fig 6). Strikingly, the effects of the LIF/Stat3

axis on mitochondria are separable from the previously well-

characterized role in naı̈ve pluripotent identity (Figs 4H and 6J, and

Appendix Fig S9).

Earlier studies showed that Stat3 may localize to the mitochon-

dria and modulate the respiratory activity of somatic cells (Wegrzyn

et al, 2009; Meier & Larner, 2014). Several mechanisms have been

described, such as interaction of Stat3 with Complex I to enhance its

activity, or regulation of the permeability transition pore. Further-

more, direct binding of Stat3 protein on mtDNA has recently been

reported in keratinocytes (Macias et al, 2014). Our results comple-

ment and extend these reports, by showing that in ES cells Stat3

increases expression levels of mitochondrial genes. This in turn

leads to increased assembly of respiratory chain complexes,

ultimately resulting in enhanced respiratory activity.

Our results do not exclude involvement of other mechanisms,

such as direct interaction between Stat3 and Complex I, or regula-

tion of mitochondrial transcript stability by Stat3, which could

synergize with the transcriptional effects we observe. Indeed, the

relative contribution of different mechanisms may vary according to

cell type and signaling environment. For instance, Stat1 acts as a

repressor of mitochondrial genome transcription and biogenesis

(Meier & Larner, 2014). In cancer cells, Stat3 has been shown to act

as either a positive or a negative regulator of mitochondrial activity

(Demaria et al, 2014) depending on specific post-translational modi-

fications. Thus, various parameters may modulate the net effect of

JAK/Stat pathway activation on mitochondrial respiration.

The LIF/Stat3 axis appears to control mES cell proliferation by

activating mitochondrial respiration. Other nuclear Stat3 targets

have been implicated in the regulation of mES cell proliferation,

such as Pim1 (Aksoy et al, 2007; Bourillot et al, 2009). When mito-

chondrial respiration was blocked by specific inhibitors, we still

observed that Stat3�/� cells proliferate less than Stat3+/+ (Fig 4B

and F, and Appendix Fig S5B). Such decrease in proliferation could

be due to reduced expression of Pim1 or other targets in Stat3�/�

cells.

Naı̈ve pluripotent cells have a bivalent metabolism, characterized

by high levels of both mitochondrial respiration and glycolysis

(Zhou et al, 2012; Teslaa & Teitell, 2015). Our results show that the

LIF/Stat3 axis potentiates mitochondrial respiration. We should

stress, however, that in the absence of LIF or Stat3, respiratory

Figure 5. Mitochondrial Stat3 enhances the transcription of mitochondrial genes and proliferation of ES cells.

A Experimental approach used to characterize the functional role of Stat3 on cell proliferation and mitochondrial activity.
B Western blot of Stat3+/+ cells cultured in the presence or absence of LIF, Stat3�/� cells cultured in 2i + LIF, and two clones of Stat3�/� cells transfected with a full-

length form of Stat3 cultured in 2i + LIF. Relative mean intensity is shown below each band. Note that Stat3 protein levels in clone A and B are comparable to the
endogenous levels of the control. GAPDH was used as a loading control.

C Gene expression analysis of Stat3+/+ cells, Stat3�/� cells, and two Stat3 rescue clones (Stat3.A/B) cultured in the absence or presence of LIF. Note that both clones
respond to LIF and activate Stat3 direct target Socs3.

D Proliferation assay of Stat3+/+ cells, Stat3�/� cells, and Stat3.A/B rescue clones cultured in the presence of LIF. Cells were seeded and scored for 4 days. Scores were
normalized to day 1. Mean and s.e.m. of two independent biological replicates of a representative experiment are shown. See also Appendix Fig S7A.

E Western blot of total and mitochondrial fractions of Stat3+/+, Stat3�/� cells, and two MLS-Stat3 clones cultured in 2i + LIF. The nuclear protein TRIM33 and
mitochondrial marker TOM20 confirmed successful mitochondrial isolation. Note that MLS-Stat3 is enriched in the mitochondrial fraction, suggesting correct
localization of the fusion protein. See also Appendix Fig S7B.

F Representative confocal images of Stat3�/� and MLS-Stat3 cells stained with anti-Stat3 and anti-Atad3 antibodies. Merge image shows colocalization between Stat3
and the nucleoids marker Atad3 (R = 0.72 for MLS-Stat3 cells, R = 0.22 in Stat3�/�). DAPI serves as a nuclear counterstain. Scale bar, 10 lm.

G Gene expression analysis of Stat3+/+, Stat3�/� cells, and three MLS-Stat3 clones cultured in the presence of LIF. MLS-Stat3 specifically induces expression of
mitochondrial markers with negligible effects on the nuclear target Socs3. Mean and s.d. of two technical replicates. See also Appendix Fig S7E.

H Chromatin immunoprecipitation (ChIP) performed using anti-Stat3 or a rabbit control IgG antibody in Stat3�/� and MLS-Stat3 cells cultured in 2i + LIF conditions.
ChIP-PCR was performed with primers located on three regions of the D-loop (A, B, C). Note that 2 D-loop regions are significantly enriched in MLS-Stat3 compared to
Stat3�/� cells. Mean and s.e.m. of three independent experiments are shown. Unpaired t-test: *P < 0.05, **P < 0.01.

I Left: representative confocal images of Stat3�/� and MLS-Stat3 cells subjected to proximity ligation assay (PLA) by using anti-Stat3 and anti-Atad3 antibodies. DAPI
serves as a nuclear counterstain. Red dots indicate spacial proximity between Stat3 and the nucleoids marker Atad3. Right: histogram showing quantification of PLA
performed on Stat3+/+, Stat3�/�, and MLS-Stat3 cells. A number of red dots/cell are plotted. Note that double staining in MLS-Stat3 cells results in increased number
or red dots compared to Stat3�/� cells. Mean and s.e.m. of > 15 cells for each sample are shown. Unpaired t-test: **P < 0.01, ***P < 0.001. Scale bar, 10 lm. See also
Appendix Fig S7D.

J Proliferation assay of Stat3+/+, Stat3�/� cells, and three MLS-Stat3 clones cultured in the presence of LIF. Cells were seeded and scored for 4 days. Mean and s.e.m. of
two technical replicates of a representative experiment are shown. See also Appendix Fig S8A.

K Proliferation assay of Stat3�/� cells and three MLS-Stat3 clones cultured in the presence of LIF. Cells were seeded and treated with DMSO or with 50 or 100 nM of
rotenone for 48 h. MLS-Stat3 clones also proliferated more than Stat3�/� both basally and in the presence of rotenone. Mean and s.e.m. of two technical replicates of
a representative experiment are shown.

L Representative bright field images of Stat3+/+, Stat3�/�, and one MLS-Stat3 clone cultured in 2i + LIF showing similar morphology, but note smaller colony size for
Stat3�/� cells. Scale bar, 100 lm.

Source data are available online for this figure.

◀

The EMBO Journal Vol 35 | No 6 | 2016 ª 2016 The Authors

The EMBO Journal Stat3 activates mitochondria in pluripotent cells Elena Carbognin et al

628



A

D

F

I

G H

J

E

B C

Figure 6.

ª 2016 The Authors The EMBO Journal Vol 35 | No 6 | 2016

Elena Carbognin et al Stat3 activates mitochondria in pluripotent cells The EMBO Journal

629



activity is reduced, but not ablated in ES cells. Interestingly, glycoly-

sis does not appear to be affected by LIF/Stat3 activation. In particu-

lar, we did not observe a compensatory increase in glycolysis when

mitochondrial respiration was reduced, even though cells are

cultured in high concentrations of glucose (Appendix Fig S3B and C).

This may suggest that glycolysis serves as the basal energy source

and mitochondrial respiration is used as “spare capacity” that can

be enhanced by LIF/Stat3.

Activating mitochondrial respiration represents a potential road-

block in the induction of naı̈ve pluripotency. In this context, the

transcription factor network controlling pluripotency operates in

tandem with metabolic regulation. Thus, when pluripotency factors

are expressed in EpiSCs, LIF further enhances reprogramming in a

manner dependent on mitochondrial respiration. Conversely, chemi-

cal blockade of mitochondrial respiration does not affect the expres-

sion of pluripotency markers. This result is consistent with several

reports showing that inhibition of LIF signaling, via Jak inhibitor or

genetic inactivation of Stat3, potently reduces or abolishes repro-

gramming to naı̈ve pluripotency, even if critical factors such as

Oct4, Sox2, and Klf4 are over-expressed (Yang et al, 2010; van

Oosten et al, 2012; Tang et al, 2012).

Our study links the LIF/Stat3 axis directly to mitochondrial

activity, but we still do not know how the levels of mitochondrial

respiration affect ES cell proliferation or EpiSC resetting. Prelimi-

nary evidence would suggest that this is not simply due to altered

ATP production. It will be interesting to investigate how LIF/Stat3

affects the global metabolic profile of ES cells in order to identify

specific pathways involved in increased proliferation. Several

recent studies have highlighted the potential crosstalk between

metabolism and epigenetic modifications in pluripotent cells (Lu &

Thompson, 2012; Carey et al, 2015). The action of LIF/Stat3 on

mitochondria may therefore be important not to fulfill a bioener-

getic requirement, but to increase the production of cofactors for

epigenetic processes, such as demethylation of DNA and histone

modification.

Materials and Methods

Embryonic stem cell culture

ESCs were cultured without feeders on plastic coated with 0.2%

gelatine (Sigma, cat. G1890) and replated every 3–4 days at a split

ratio of 1:10 following dissociation with Accutase (GE Healthcare,

cat. L11-007). Cells were cultured either in serum-free N2B27-

based medium (DMEM/F12 and Neurobasal [both Life Technolo-

gies] in 1:1 ratio, 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine,

1:200 N2 [Life Technologies], and 1:100 B27 [Life Technologies])

supplemented with small-molecule inhibitors PD (1 lM,

PD0325901), CH (3 mM, CHIR99021) from Axon (cat. 1386 and

1408) and LIF (100 units/ml produced in house), or in GMEM

(Sigma, cat. G5154) supplemented with 10% FBS (Sigma, cat.

F7524), 100mM 2-mercaptoethanol (Sigma, cat. M7522), 1× MEM

non-essential amino acids (Invitrogen, cat. 1140-036), 2mM

L-glutamine, 1 mM sodium pyruvate (both from Invitrogen), and

100 units/ml LIF.

EpiSCs were cultured without feeders on plastic coated with

fibronectin (Millipore, cat. FC010) and replated every 2 days at a

Figure 6. LIF-dependent mitochondrial activation increases reprogramming efficiency in EpiSC.

A Gene expression analysis of EpiSCs (GOF18) cultured in FGF + activin (gray bars) and ES cells cultured in 2i + LIF (orange bars) shows a general reduction in both
nuclear LIF targets (Socs3, Stat3) and mitochondrial markers (Nd1, Nd4, Nd4 l) in EpiSCs. Data were normalized to EpiSCs in F/A, and mean and s.e.m. of two
technical replicates of two independent experiments (light and dark bars) are shown.

B Experimental scheme for testing the effect of rotenone on EpiSCs reprogramming. EpiSCs were plated in FGF + activin (day 0) and cultured for 24 h. Cells were
then treated with or without LIF and rotenone at different concentrations as indicated (day 1). Cells were either harvested after 48 h (day 3) for gene expression
analysis or left in 2i media, and Oct4-GFP-positive colonies were scored at day 6 or 8.

C Quantification of Oct4-GFP-positive iPS colonies at day 7 of reprogramming generated from GOF18 EpiSCs subjected to 48-h treatment (at D1–D3) with LIF and
two doses of rotenone. Note that rotenone treatment reduces the number of iPS colonies generated. Mean and s.e.m. of two technical replicates of three
independent experiments are shown. See also Appendix Fig S10B.

D Left: number of Oct4-GFP-positive colonies at day 8 of reprogramming upon 48-h treatment with rotenone at days 1–2 or at days 5–6. Note that rotenone
treatment given at days 5–6 does not reduce the number of iPS colonies. Mean and s.e.m. of two technical replicates are shown. See also Appendix Fig S10C. Right:
representative alkaline phosphatase (AP) staining of iPSc colonies generated from GOF18 EpiSCs at day 7 of reprogramming treated with DMSO (top) or with
rotenone for 48 h at days 1–2 (middle) or 5–6 (bottom).

E Gene expression analysis of iPS cells generated from GOF18 EpiSCs and cultured in 2i + LIF for at least 2 passages. Note that iPS cells show high expression of
naïve pluripotency markers (gray bars on left panel) and low expression of EpiSC markers (green bars on right panel). Data were normalized to the highest value for
each gene, and mean and s.e.m. of three technical replicates are shown. Right panel shows representative bright field and Pou5f1-GFP+ images of iPS colonies at
day 8 of reprogramming. Scale bar, 50 lm.

F, G Gene expression analysis of GOF18 EpiSCs cultured in FGF + activin or treated for 48 h with 2i + LIF in the absence or presence of decreasing concentrations of
rotenone. Note that both nuclear (F) and mitochondrial (G) genes expression is induced upon LIF treatment and rotenone did not impair LIF effect. Data were
normalized to F/A, and mean and s.e.m. of three independent experiments are shown.

H The number of iPS colonies generated from GOF18 EpiSCs transfected transiently with a piggyBac vector containing GFP or Klf4 and treated with LIF for 48 h and
rotenone as indicated. Mean and s.e.m. of two technical replicates of a representative experiment are shown. Unpaired t-test: **P < 0.01, ***P < 0.001. See also
Appendix Fig S10H.

I Left panel shows the number of GFP-positive iPS colonies generated from OEC2 EpiSCs transiently transfected with a piggyBac vector containing Klf4 (1st and 2nd

bar), Tfcp2l1 (3rd and 4th bar), or a combination of both (5th and 6th bar) and treated with LIF for 48 h or rotenone as indicated. Note that rotenone abolished the
effect of LIF on iPS formation. Each bar shows the cumulative number of colonies from four independent experiments, and mean and s.e.m. of two technical
replicates for each experiment are shown. Unpaired t-test: *P < 0.05. Right panel shows representative alkaline phosphatase (AP) staining of iPSc colonies
generated from OEC2 EpiSCs at day 7 of reprogramming transfected with a piggyBac vector containing Klf4 and Tfcp2l1 and treated with 2i (top), 2i + LIF (middle)
or with 2i + LIF and rotenone for 48 h at days 1–2 (bottom).

J Model depicting the dual role of Stat3 as an inducer of nuclear transcription factors critical for maintenance and induction of naïve pluripotency and, at the same
time, as an activator of mitochondrial transcription and activity responsible for the high levels of respiration observed in naïve pluripotent cells.
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split ratio of 1:10 following dissociation with Dispase (Stem Cell

Technologies, cat. 07923). Cells were cultured in serum-free media

N2B27 (see above) supplemented with FGF2 (12 ng/ml) and activin

(20 ng/ml) produced in house. Oct4-GFP (OEC2 Y118 line) was

described in Yang et al (2010). GOF18 EpiSCs were described in

Han et al (2010) and generously provided by Hans Schöler.

For DNA transfection, we used Lipofectamine 2000 (Life Tech-

nologies, cat. 11668-019) and performed reverse transfection. For

one well of a 6-well plate, we used 6 ll of transfection reagent, 2 lg
of plasmid DNA, and 300,000 cells in 2 ml of N2B27 medium. The

medium was changed after overnight incubation.

Stable transgenic ESCs lines expressing Stat3 or MLS-Stat3 were

generated by transfecting cells with PiggyBac transposon plasmids

CAG-Stat3 or CAG-MLS-Stat3 with piggyBac transposase expression

vector pBase. Selection for transgenes was applied, and stable

clones were selected in 2i conditions.

For LIF induction experiments, ES cells were cultured in 2i with-

out LIF for > 2 passages, plated (8,000 cells/cm2) in 2i. Twenty-four

hours after plating, cells were treated with LIF for the indicated

amount of time.

For AP staining, cells were fixed with a citrate–acetone–

formaldehyde solution and stained using the Alkaline Phosphatase

kit (Sigma, cat. 86R-1KT). Plates were scanned using a Nikon

Scanner and scored manually.

RNA-seq data analysis

RNA sequencing data used in this study are described in Martello

et al (2013) and are available in the ArrayExpress repository under

accession E-MTAB-1796.

Proliferation assay

Cell proliferation was assessed by plating 15,000 ES cells in 12-well

plate. Cells were counted every 24 h for 4 days. For rotenone

(Sigma, cat. R8875), antimycin A (Sigma, cat. A8674), and myxo-

thiazol (Sigma, cat. T5580) treatments, cells were plated in the

presence of the inhibitors and scored after 48 h.

Cell cycle analysis

Cell cycle analysis was performed by staining single live cells with

propidium iodide (Sigma, cat. P4170), according to the manufac-

turer’s instructions. Samples were analyzed by flow cytometry using

a BD FACSCantoTM cytometer.

ROS measurement assay

Reactive oxygen species production was detected by staining single

live cells with 20,70-dichlorodihydrofluorescein diacetate (H2DCFDA)

(Life Technologies, cat. D399), according to the manufacturer’s

instructions. Samples were analyzed by flow cytometry using a BD

FACSCantoTM cytometer.

Reprogramming assay

EpiSCs lines bearing an Oct4-GFP reporter were plated in Fgf2/

activin medium and switched to 2i + LIF (with or without rotenone)

conditions the next day. Human LIF was used at a concentration of

20 ng/ml. Cells were kept in 2i + LIF medium for 5 days, if not

indicated otherwise, before switching to 2i. Reprogramming experi-

ments were ended 6/8 days after medium switch to 2i/LIF, and

Oct4-reporter-positive iPSc colonies were scored manually.

Propidium iodide/annexin V staining

PI/AnnV staining was performed on live single ESCs or EpiSCs

according to the manufacturer’s instructions (Ebioscience, ref. 88-

8007-72). Samples were analyzed by flow cytometry using a

cytometer BD FACSCantoTM with BD FACSDivaTM software.

Flow cytometry

After treatment with Accutase (GE Healthcare, cat. L11-007), disso-

ciated ESCs were resuspended in PBS. Flow cytometry analyses

were performed using a cytometer BD FACSCantoTM with BD

FACSDivaTM software.

Mitochondria isolation

Mitochondria isolation was performed from 4 × 107 cells pellet as

previously described in Frezza et al (2007). For BNGE analysis,

mitochondria were isolated as described in Cogliati et al (2013).

Oxygen consumption assay

Oxygen consumption was measured using the Seahorse XF24 (Sea-

horse Bioscience). For this, ~20 h before the analysis Stat3+/+ and

Stat3�/� cells were seeded in a 24-well cell culture plate (Seahorse

Bioscience) coated with laminin (Sigma, cat. L2020) at a density of

140,000 cells per well in N2B27 media supplemented with 2i or

2i + LIF (as indicated). It is crucial to have an evenly plated mono-

layer of cells to obtain reliable measurements. Cells were main-

tained in a 5% CO2 incubator at 37°C, and 1 h before the

experiment, the cells were washed and incubated in 600 ll of

DMEM containing 10 mM glucose (DMEM-high glucose) pH 7.4 at

37°C in a non-CO2 incubator.

During the experiment, oxygen concentration was measured

over time periods of 2 min at 5-min intervals, consisting of a

3-min mixing period and 2-min waiting period. Measurements of

OCR in basal conditions were used to calculate the basal mitochon-

drial respiration. After this, the mitochondrial uncoupler FCCP

(carbonyl cyanide-p-trifluoromethoxyphenylhydrazone) was added

into the media at a final concentration of 200 nM. Oxygen

consumption during this phase reflects the maximal mitochondrial

respiratory capacity. Finally, ETC activity was blocked by the addi-

tion of rotenone or antimycin A, both at a final concentration of

200 nM. As a result, OCR drops dramatically, and the oxygen

consumed in this situation by the cells comes from a non-

mitochondrial origin.

Gene expression analysis by quantitative PCR with
reverse transcription

Total RNA was isolated using RNeasy kit (QIAGEN), and comple-

mentary DNA (cDNA) was made from 1 lg using M-MLV Reverse
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Transcriptase (Invitrogen) and dN6 primers. For real-time PCR, we

used SYBR Green Master mix (Bioline. Cat. BIO-94020). Primers are

detailed in Table 1. Technical replicates were carried out for all

quantitative PCR. An endogenous control (beta-actin) was used to

normalize expression.

Luciferase assay

Luciferase reporter plasmid was derived by subcloning of the

D-loop promoter region into pGL3-basic luciferase plasmid

(Addgene). CMV-lacZ has been previously described in Lukas

et al (1997).

Embryonic stem cells and EpiSCs were plated in a 12-well plate

and transiently transfected with luciferase reporter plasmid with

CMV-lacZ to normalize for transfection efficiency (based on CPRG

(Merck) colorimetric assay), together with plasmids encoding for

the indicated proteins. We transfected 1.5 lg of DNA in each sample

by adding the pKS Bluescript plasmid when needed. Forty-eight

hours after transfection, the cells were harvested in Luc lysis buffer

(25 mM Tris pH 7.8, 2.5 mM EDTA, 10% glycerol, 1% NP-40). Luci-

ferase activity was determined in a Tecan plate luminometer with

freshly reconstituted assay reagent (0.5 mM D-luciferin, 20 mM

tricine, 1 mM (MgCO3)4�Mg(OH)2, 2.7 mM MgSO4, 0.1 mM EDTA,

33 mM DTT, 0.27 mM CoA, 0.53 mM ATP).

Immunoblotting

Immunoblotting was performed as previously described in Yang

et al (2010). For BNGE, immunoblotting was performed as in

Cogliati et al (2013). For antibodies details, see Table 2. Images

were digitally acquired using a ImageQuant LAS4000 (GE Health-

care).

Immunofluorescence

For immunofluorescence, cells were fixed for 10 min in cold methanol

at�20°C, washed in TBS, permeabilized for 10 min with TBST + 0.3%

Triton X-100 at RT, and blocked for 45 min in TBS + 3% goat serum

at RT. The cells were incubated overnight at 4°C with primary anti-

bodies. After washing with TBS, the cells were incubated with

secondary antibodies (Alexa, Life Technologies) for 30 min at RT.

Cells were mounted with ProLong� Gold Antifade Mountant with

DAPI (Life Technologies, cat. P36941). Images were acquired with a

Leica SP2 confocal microscope equipped with a CCD camera. For

antibodies used, see Table 2. We quantified the degree of colocaliza-

tion between different proteins by calculating the Pearson’s coeffi-

cient R by using the “coloc2” function of the freely available

software Fiji (http://fiji.sc/Fiji).

Proximity ligation assay (PLA)

Proximity ligation assay was performed after an overnight incuba-

tion with primary antibodies following the manufacturer’s instruc-

tions (OLink Bioscience). Images were acquired with a Leica SP5

confocal microscope equipped with a CCD camera. Images acquired

were analyzed using a custom macro for ImageJ, allowing auto-

mated and unbiased analysis.

Table 1. PCR primers.

Gene Forward primer sequence Reverse primer sequence

mNd1 ccattctaatcgccatagcc atgccgtatggaccaacaat

mNd4 cgcctactcctcagttagcc gtgaggccatgtgcgattat

mNd4l ctccaactccataagctcca ggctgcgaaaactaagatgg

mCo3 taacccttggcctactcacc ataggagtgtggtggccttg

mPouf5 gttggagaaggtggaaccaa ctccttctgcagggctttc

mSox2 cacaactcggagatcagcaa tctcggtctcggacaaaagt

mNanog ttcttgcttacaagggtctgc agaggaagggcgaggaga

mEsrrb ggcgttcttcaagagaacca cccactttgaggcatttcat

mKlf4 cgggaagggagaagacact gagttcctcacgccaacg

mTfcp2l1 ggggactactcggagcatct ttccgatcagctcccttg

mSocs3 atttcgcttcgggactagc aacttgctgtgggtgaccat

mStat3 tgttggagcagcatcttcag gaggttctccaccaccttca

mRex1 tcttctctcaatagagtgagtgtgc gctttcttctgtgtgcagga

mFgf5 aactccatgcaagtgccaaat cggacgcataggtattatagctg

mLefty1 ccaaccgcactgcccttat cgcgaaacgaaccaacttgt

mbactin ctaaggccaaccgtgaaaag accagagggcatacagggaca

mNdufS3 ttatggcttcgagggacatc attcttgtgccagctccact

ChIP A cattaaactattttccccaagca caaatggggaaggggatagt

ChIP B aaatgcgttatcgcccatac tcttcaccgtaggtgcgtct

ChIP C tagtccgcaaaacccaatca ttgatcaggacatagggtttga

Table 2. Antibodies.

Antibody Species Source Dilution

anti-Stat3 Mouse
monoclonal

Cell Signalling
cat. 9139

WB: 1:1,000
IF: 1:100

anti-PStat3
(Y705)

Rabbit
monoclonal

Cell Signalling
cat. 91455

WB: 1:2,000

anti-TOM20 Rabbit
polyclonal

Santa Cruz
Biotechnologies
cat. 11415

WB: 1:2,000
IF: 1:100

anti-TIMM23 Mouse
monoclonal

BD Biosciences
cat. 611223

WB: 1:1,000

anti-TRIM33 Mouse
monoclonal

Santa Cruz
Biotechnologies
cat. 101179

WB: 1:1,000

anti-laminB Goat
polyclonal

Santa Cruz
Biotechnologies
cat. 6216

WB: 1:1,000

anti-NDUFB8 Mouse
monoclonal

Abcam cat.
AB110242

WB: 1:1,000

anti-ATP
synthase

Mouse
monoclonal

Abcam cat.
AB14748

WB: 1:1,000

anti-GAPDH Mouse
monoclonal

Millipore cat.
MAB374

WB: 1:1,000

anti-SDHA Mouse
monoclonal

Abcam cat.
Ab14715

WB: 1:2,000

anti-Atad3A Rabbit
monoclonal

AB-Biotechnologies
cat. 224485

IF 1:100

anti-DNA Mouse
monoclonal

Progen cat. 61014 IF: 1:1,000
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Chromatin immunoprecipitation (ChIP)

For ChIP experiments, cells were crosslinked, lyzed, and sonicated

as described in Enzo et al (2015). For immunoprecipitation, sheared

chromatin from 5 × 106 cells was incubated overnight at 4°C with

3 lg of rabbit monoclonal anti-Stat3 (Santa Cruz Biotechnologies,

cat. sc-482) or with control rabbit IgG. Protein A Dynabeads (Life

Technologies) were added for 3 h after extensive blocking in 0.5%

BSA. Washing, de-crosslinking, and DNA purification were performed

as in Enzo et al (2015). Results were analyzed by qPCR. Since the

D-loop region is partially duplicated in the nuclear genome, we

designed primers specific for the mitochondrial genome (see Table 2).

Data availability

Stat3 RNA sequencing data: Martello et al (2013). Stat3 ChIP

sequencing data: Chen et al (2008).

Expanded View for this article is available online.
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