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Background: Pancreatic ductal adenocarcinoma (PDAC) is associated with a high rate of early recurrence (ER) after radical
resection, which significantly affects long-term survival. Currently, no reliable system exists for predicting ER in these patients. This
study aimed to develop a machine learning (ML) model combining intratumoral and peritumoral radiomic features with body
composition to predict the ER risk in patients with PDAC following radical resection.
Materials and methods: This study included patients with PDAC who underwent upfront surgery at four hospitals between
June 2014 and December 2023. Preoperative clinical information, computed tomography (CT) images, and postoperative
pathological data were collected. CT-quantified body composition was measured; radiomic features were extracted from the
intratumoral and peritumoral regions. Six ML algorithms were used to develop predictive models, including radiomics, clinical,
clinical-radiomics, and clinicopathological-radiomics models. The SHapley Additive exPlanations (SHAP) method was applied for
model interpretability.
Results: A total of 589 patients were evaluated, including 320 patients (mean age: 60.4 ± 8.3 years; 191 men) in the training
cohort, 138 patients (mean age: 60.7 ± 8.9 years; 84 men) in the internal validation cohort, and 131 patients (mean age:
61.7 ± 10.9 years; 76 men) in the external validation cohort. The intra-peri-radiomics model, based on the random forest algorithm,
achieved the best performance, with AUCs of 0.865, 0.849, and 0.839 in the training, internal validation, and external validation
cohorts, respectively. Incorporating clinicopathological factors, the combined model showed superior performance, with AUCs of
0.936, 0.899, and 0.884 in the training, internal validation, and external validation cohorts, respectively. SHAP analysis revealed
that radiomic features, adjuvant therapy, CA199, lymphovascular invasion, platelet-lymphocyte ratio, visceral fat index, CA125,
visceral-subcutaneous fat tissue ratio, tumor size, and TNM stage significantly contributed to the prediction of ER.
Conclusion: The developed ML model, integrating radiomic features and clinicopathological factors, offered superior predictive
accuracy for ER in patients with PDAC post-surgery. SHAP visualization enhanced the model’s interpretability and facilitated
clinical applications.

Keywords: body composition, early recurrence, machine learning, pancreatic ductal adenocarcinoma, radiomics, SHapley
Additive exPlanations

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
devastating malignancies, with a 5-year survival rate of only
12%[1]. Radical resection is the most effective curative treat-
ment; however, only 20% of PDAC cases are resectable at the
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time of diagnosis[2]. Despite radical resection, the 5-year survival
rate remains suboptimal at approximately 20–30%[3,4]. The
primary reason for this unfavorable postoperative outcome is
the extremely high rate (50%) of early recurrence (ER), defined
as recurrence within 1 year of curative resection, with a median
recurrence-free survival of only 12 to 16 months[5-7]. Therefore,
a reliable prognostic system is crucial for quantifying the risk of
ER, as it can guide postoperative strategies and facilitate perso-
nalized management of high-risk patients with PDAC.

Computed tomography (CT) is the preferred imaging modal-
ity for diagnosing and evaluating PDAC[8]. However, traditional
visual assessments often limit clinicians’ ability to fully exploit
the imaging features of PDAC. Recently, radiomics – a technique
that analyzes imaging features extracted from regions of inter-
est – has demonstrated significant effectiveness in predicting the
biological complexity and intratumoral heterogeneity of
tumors[9,10]. Through high-throughput analysis of intratumoral
CT images, radiomics has been employed to predict the behavior
of PDAC tumors[11–13]. Although most studies have focused on
primary tumors, previous research has highlighted the signifi-
cant role of the peritumoral region in clinically assessing cancerous
heterogeneity and its importance in prognostic prediction[14–16]. In
addition to tumor characteristics, individual differences among
patients are critical factors that influence pancreatic cancer recur-
rence. Body composition is an important risk factor for recurrence
and poor survival in PDAC, serving as an indicator of the patient’s
nutritional status and metabolism[17,18]. However, this easily
accessible parameter is often overlooked during the development
of prognostic models. To date, no study has combined intratu-
moral and peritumoral imaging features with CT-quantified body
composition parameters to assess the prognosis and ER risk of
pancreatic cancer.

Recently, machine learning (ML) algorithms, including ran-
dom forests (RFs) and support vector machines (SVMs), have
garnered widespread attention in the development of clinical
predictive models. Compared with traditional linear models,
ML models are capable of handling complex nonlinear relations
and high-dimensional data, thereby improving predictive
performance[19,20]. However, ML technology has some limita-
tions. One notable limitation is the complexity and lack of
interpretability of these models, which often leads to them
being referred to as “black boxes”[21]. This study attempted to

address this issue by employing the SHapley Additive
exPlanations (SHAP) method to explain ML models and visua-
lize the predictive contributions of each variable[22].

Therefore, this study aimed to develop and validate an ML
model that integrated intratumoral and peritumoral CT radio-
mic features with body composition parameters to predict the
risk of ER in patients with PDAC after radical resection.
Furthermore, the inclusion of visualization tools enhanced the
transparency of the ML model’s decision-making process,
increasing clinicians’ trust in the predictions and aiding in the
development of personalized treatment strategies.

Methods

Patients

Patients who underwent pancreatic surgery and were pathologi-
cally confirmed to have PDAC between June 2014 and
December 2023 at four independent hospitals were enrolled
(Fig. 1). The inclusion criteria were as follows:[1] curative sur-
gery for resectable PDAC, as determined by a multidisciplinary
team discussion among surgeons, oncologists, and radiologists,
in line with the National Comprehensive Cancer Network
guidelines for pancreatic cancer version 2.2024 (the resectable
PDAC was defined as tumors based on preoperative CT with no
major arterial contact and no contact or s180° contact with the
portal vein or superior mesenteric vein without vein contour
irregularity)[8]; and[2] pathologically confirmed PDAC. The
exclusion criteria were as follows:[1] palliative or exploratory
surgery;[2] preoperative neoadjuvant chemotherapy;[3] incom-
plete clinicopathological information;[4] other coexisting malig-
nancies within the past 5 years;[5] poor quality or lack of
preoperative CT examination; and[6] death within 90 days
after surgery or loss to follow-up. The data from the derivation
cohort comprising three separate hospitals (centers 1–3,
June 2014–December 2023) were divided, with 70% utilized
for training and 30% for internal validation, in order to avoid
problems with overfitting. In addition, an external data set
(center 4, June 2021–December 2023) was used for external
validation. A flowchart of the patient recruitment process was
shown in Supplementary Digital content, Fig. S1, Available at:
http://links.lww.com/JS9/E783. This multicenter retrospective
study was approved by the institutional ethics review board of
each center; the requirement for written informed consent was
waived. All procedures involving human participants were per-
formed in accordance with the 1975 Declaration of Helsinki and
its amendments. The work has been reported in line with the
REMARK criteria[23]. Additionally, this study strictly adhered to
the transparency principles of the TITAN 2025 Statement,
ensuring the completeness and traceability of methodological
descriptions[24].

Clinicopathological data

Demographic characteristics and medical history, including age,
sex, BMI, smoking status, and history of diabetes, were
extracted from electronic medical records. Tumor markers,
including carbohydrate antigen (CA) 199, CA 125, carcinoem-
bryonic antigen (CEA), white blood cell count, and platelet
count, were measured preoperatively at least 2 weeks before
surgery. Inflammation-based prognostic indices, including the

HIGHLIGHTS

● The intra-peri-radiomics model, based on the random
forest algorithm, demonstrated the best performance,
with AUCs of 0.865, 0.849, and 0.839 in the training,
internal validation, and external validation cohorts,
respectively.

● The combined model, which incorporated clinicopatho-
logical factors and the intra-peri-radiomics model,
showed superior performance, with areas under the recei-
ver operating characteristic curves of 0.936, 0.899, and
0.884 in the training, internal validation, and external
validation cohorts, respectively.

● SHapley Additive exPlanations analysis highlighted key
predictors, including intra-peri-radiomics features, adju-
vant therapy, CA199, and lymphovascular invasion.
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platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio
(NLR), lymphocyte-monocyte ratio (LMR), and prognostic
nutrition index (PNI) [serum albumin (g/L) + 5 × total lympho-
cyte count (109/L)][25], were calculated. Tumor location and size
were measured using preoperative CT; the presence of concur-
rent pancreatitis at diagnosis was confirmed using CT as well as
clinical and laboratory examinations. Pathological findings
from the surgical specimens were extracted from electronic
medical records, including resection margin status (R0/R1),
tumor staging according to the eighth edition of the American
Joint Committee on Cancer staging system, and details of tumor
differentiation, perineural invasion, and lymphovascular inva-
sion (LVI).

Follow-up

Postoperative follow-up was initially conducted every 3 months
during the first 2 years, every 6 months during years 3 and 4, and
annually thereafter. The study was censored on 1 January 2025.
The surveillance protocol included physical examinations, serum
tumor marker assessments, and abdominal and pelvic contrast-

enhanced CT (CE-CT) scans. Postoperative treatments were stra-
tified into two groups:[1] with adjuvant therapy: patients who
received chemotherapy (e.g., gemcitabine, S-1) or chemora-
diotherapy (chemotherapy followed by radiotherapy with radio-
sensitizers when applicable);[2] without adjuvant therapy: patients
who did not receive systemic chemotherapy or chemoradiother-
apy due to poor performance status or patient preference. When
imaging features suggested potential cancer recurrence, additional
magnetic resonance imaging and/or fluorodeoxyglucose positron
emission tomography (FDG-PET) scans were performed to
further evaluate ambiguous CT findings. Recurrence was defined
as a relapse confirmed by either radiological or pathological
evidence. Radiological recurrence was characterized by the detec-
tion of new lesions in anatomical sites, including the surgical bed,
lungs, liver, and peritoneum[26]. When imaging findings were
consistent with recurrence, biopsy was rarely performed. The
primary outcome was recurrence-free survival, defined as the
time from surgery to recurrence or last follow-up, with ER
defined as recurrence within 1 year after curative resection[5].
The secondary outcome was overall survival, defined as the inter-
val from surgery to death or last follow-up.

Figure 1. Study workflow overview. (A) Data Preparation: Incorporation of four datasets, delineation of intra- and peritumoral regions to define regions of interest
(ROIs), extraction of intra- and peritumoral radiomic features, and collection of clinicopathological features. (B)Model Construction: Selection of radiomic features
for intra-, peri-, and intra-peri-radiomics models, with the integration of clinical factors into predictive modeling using six machine learning algorithms. (C) Model
Validation: Internal and external validation of intra-, peri-, and intra-peri-radiomics models. Model performance is evaluated through the area under the receiver
operating characteristic curves (AUROC), calibration curves, and decision curve analysis. (D) Exploring Explainability: Application of the SHAP method for model
interpretation, including analysis of feature importance, feature contributions to the model output, and interactions between radiomic and clinical features to
elucidate the model’s predictive dynamics.
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Body composition measurements

Body composition parameters were measured from transverse
non-contrast CT images obtained at the third lumbar vertebra
level using SliceOMatic V5.0 (TomoVision, Canada)
(Supplementary Digital content, Fig. S2, Available at: http://
links.lww.com/JS9/E783). The measurements were based on
tissue-specific Hounsfield unit (HU) thresholds (−29 to + 150
HU for skeletal muscle, −190 to −30 HU for subcutaneous and
intermuscular fat, −150 to −50 HU for visceral fat)[27], as illu-
strated in Supplementary Digital content, Fig. S2, Available at:
http://links.lww.com/JS9/E783. The cross-sectional areas of
body composition were generated and normalized to height
squared to derive indices, including the skeletal muscle index
(SMI, cm2/m2), subcutaneous fat index (SFI, cm2/m2), intermus-
cular fat index (IMFI, cm2/m2), and visceral fat index (VFI, cm2/
m2). The visceral-subcutaneous fat tissue ratio (VSR) was calcu-
lated by dividing the VFI by the SFI; the visceral fat-muscle tissue
ratio (VMR) was calculated by dividing the VFI by the SMI.
Skeletal muscle density (SMD), also known as muscle radio-
density, served as a proxy for muscle quality. The optimal cutoff
values were determined through receiver operating characteris-
tic (ROC) curve analysis using the maximum Youden index
method. Given the significant sex-related differences in body
composition, patients were categorized into high and low body
composition groups according to sex-specific thresholds
(Supplementary Digital content, Table S1, Available at: http://
links.lww.com/JS9/E783). The cutoff values for age, tumor size,
CA199, CA125, CEA, PLR, NLR, LMR, and PNI were also
calculated.

Volume of interest segmentation and feature extraction

The 3D tumor volumes of interest (VOIs) were manually seg-
mented and subsequently validated by two experienced radiol-
ogists using the open-source software ITK-SNAP (www.itksnap.
org) on axial portal venous phase CT images. Following
a previous study, the segmented masks were automatically
expanded by 3 mm outward to define the peritumoral
regions[15]. Prior to feature extraction, the CT images underwent
preprocessing in the following sequence:[1] resampling to
a standardized voxel size of 1.0 × 1.0 × 1.0 mm3;[2] discretization
of gray levels into 25 fixed bins;[3] intensity normalization by
scaling all CT images to a range of 1000 (additional preproces-
sing details were provided in the supplementary materials,
Available at: http://links.lww.com/JS9/E783). Radiomic features
were then extracted using PyRadiomics (version 3.8). A total of
1106 radiomic features were derived from both intratumoral
and peritumoral VOIs, comprising 216 first-order features,
264 gray-level co-occurrence matrix (GLCM) features, 168
gray-level dependence matrix (GLDM) features, 192 gray-level
run-length matrix (GLRLM) features, 192 gray-level size zone
matrix (GLSZM) features, 60 neighboring gray-tone difference
matrix (NGTDM) features, and 14 shape-based features.

Feature selection and radiomics signature construction

To ensure the reproducibility and reliability of radiomic fea-
tures, two radiologists repeated the segmentation on 30 ran-
domly selected cases after 2 weeks. Intra- and interobserver
reproducibility was evaluated using intraclass correlation coeffi-
cients (ICCs). Features with good reproducibility (both ICCs ≥

0.75) were retained for the subsequent analysis. To control the
false discovery rate (FDR), the Benjamini–Hochberg (BH) pro-
cedure was applied to adjust the P-values from the Mann–
Whitney U test. Only features with a statistically significant
q-value (adjusted P-value) < 0.05 were retained. Subsequently,
correlation analysis was performed, and features with
a correlation coefficient >0.9 were excluded to reduce redun-
dancy. To ensure the stability of features, maximum relevance
and minimum redundancy (mRMR) with 1000-fold bootstrap
resampling was conducted, and the top 20 features with the
highest recurrence frequencies were selected (Supplementary
Digital content, Table S2, Available at: http://links.lww.com/
JS9/E783). The least absolute shrinkage and selection operator
(LASSO) regression was then employed for dimensionality
reduction, using 5-fold cross-validation to determine the optimal
regularization parameter λ. The selected radiomic features were
used to construct radiomics signatures. Six ML algorithms,
including logistic regression (LR), SVM, RF, Extremely
Randomized Trees (ExtraTrees), Light Gradient Boosting
Machine (LightGBM), and multilayer perceptron (MLP), were
evaluated to identify the best-performing classifier. A grid search
with 5-fold cross-validation and manual fine-tuning was carried
out to optimize the final model hyperparameters.

Clinical model and combined model construction

In addition to the radiomics model, clinical, clinical-radiomics,
and combined clinicopathological-radiomics models were also
developed. Clinical variables that were statistically significant in
the univariate analysis were included in a multivariable logistic
regression analysis to identify independent predictors of ER. The
clinical model was constructed using these predictors via logistic
regression. The clinical-radiomics and combined clinicopatholo-
gical-radiomics models were constructed by integrating the inde-
pendent predictors with radiomics signatures through SVM
analysis. Model performance was evaluated by calculating the
area under the receiver operating characteristic curve (AUC) for
the training, internal validation, and external validation cohorts.
Calibration curves were used to evaluate model goodness-of-fit,
while decision curve analysis was employed to assess clinical
utility across datasets.

Statistical analysis

Statistical analyses were conducted using R software (version
4.3.3) and Python (version 3.8). Continuous variables were pre-
sented as medians and interquartile ranges and compared
between groups using the Mann–Whitney U test. The BH pro-
cedure was applied to adjust P-values and control the FDR.
Categorical variables were reported as frequencies and percen-
tages and compared using the chi-square test or Fisher’s exact
test, as appropriate. Logistic regression analysis was used to
identify potential risk factors and to construct predictive models.
All analyses were considered statistically significant with a two-
sided P-value < 0.05.

Results

Clinicopathological characteristics

The clinical characteristics, CT-quantified body composition
metrics, and postoperative data were summarized in Table 1.
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The training, internal validation, and external validation cohorts
comprised 320 patients (mean age: 60.4 ± 8.3 years; 191 men),
138 patients (mean age: 60.7 ± 8.9 years; 84 men), and 131
patients (mean age: 61.7 ± 10.9 years; 76 men), respectively. The
follow-up duration in the external validation cohort was signifi-
cantly shorter than that in the training and internal validation
cohorts (P < 0.001). There were no statistically significant dif-
ferences in other clinicopathological variables among the three
groups. During the follow-up, ER occurred in 48.12% (154/
320), 50.0% (69/138), and 45.04% (59/131) of patients in the
training, internal validation, and external validation cohorts,
respectively (P = 0.712). Univariate analysis showed that pre-
operative clinical variables – including tumor size, CA199,

Table 1
Patient characteristics of the training, internal validation, and
external validation cohorts

Characteristics

Training
cohort

Internal
validation

External
validation

P value(n = 320) (n = 138) (n = 131)

Age (years) 0.285
<60 149(46.56) 65(47.10) 51(38.93)
≥60 171(53.44) 73(52.90) 80(61.07)

Sex 0.891
Women 129(40.31) 54(39.13) 55(41.98)
Men 191(59.69) 84(60.87) 76(58.02)

BMI (kg/m2) 0.218
<18.5 21(6.56) 7(5.07) 13(9.92)
18.5-23.9 220(68.75) 86(62.32) 87(66.41)
24-27.9 70(21.88) 37(26.81) 29(22.14)
≥28 9(2.81) 8(5.80) 2(1.53)

Smoking status 0.470
Smoker 229(71.56) 93(67.39) 97(74.05)
Never smoker 91(28.44) 45(32.61) 34(25.95)

Diabetes 0.405
Without 244(76.25) 97(70.29) 97(74.05)
With 76(23.75) 41(29.71) 34(25.95)

Pancreatitis at
diagnosis

0.976

Without 288(90.00) 124(89.86) 117(89.31)
With 32(10.00) 14(10.14) 14(10.69)

Tumor location 0.552
Head and neck 240(75.00) 110(79.71) 100(76.34)
Body and tail 80(25.00) 28(20.29) 31(23.66)

Tumor size (cm) 0.673
<3 162(50.62) 76(55.07) 67(51.15)
≥3 158(49.38) 62(44.93) 64(48.85)

Adjuvant therapy 0.147
No 109(34.06) 60(43.48) 51(38.93)
Yes 211(65.94) 78(56.52) 80(61.07)

Resection margin 0.937
R0 276(86.25) 118(85.51) 114(87.02)
R1 44(13.75) 20(14.49) 17(12.98)

Lymphovascular
invasion

0.348

Absent 173(54.06) 74(53.62) 80(61.07)
Present 147(45.94) 64(46.38) 51(38.93)

Perineural invasion 0.391
Absent 22(6.88) 12(8.70) 14(10.69)
Present 298(93.12) 126(91.30) 117(89.31)

Tumor grade 0.848
Well or moderate 222(69.38) 92(66.67) 90(68.70)
Poor 98(30.63) 46(33.33) 41(31.30)

Tumor TNM stage 0.308
Stage ≤ IIA 147(45.94) 63(45.65) 70(53.44)
IIA < stage < IV 173(54.06) 75(54.35) 61(46.56)

CA199 (U/ml) 201(62.81) 84(60.87) 83(63.36) 0.899
<472.2 119(37.19) 54(39.13) 48(36.64)
≥472.2

CA125 (U/ml)
<18.9 181(56.56) 78(56.52) 75(57.25) 0.958
≥18.9 139(43.44) 60(43.48) 56(42.75)

CEA (μg/L) 0.848
<3.2 167(52.19) 70(50.72) 71(54.20)
≥3.2 153(47.81) 68(49.28) 60(45.80)

PLR 0.879
<160.58 201(62.81) 90(65.22) 84(64.12)

(Continues)

Table 1
(Continued).

Characteristics

Training
cohort

Internal
validation

External
validation

P value(n = 320) (n = 138) (n = 131)

≥160.58 119(37.19) 48(34.78) 47(35.88)
NLR 0.221

<2.33 135(42.19) 65(47.10) 48(36.64)
≥2.33 185(57.81) 73(52.90) 83(63.36)

LMR 0.153
<4.78 233(72.81) 111(80.43) 103(78.63)
≥4.78 87(27.19) 27(19.57) 28(21.37)

PNI index 0.532
<48.55 244(76.25) 108(78.26) 95(72.52)
≥48.55 76(23.75) 30(21.74) 36(27.48)

VFI (cm2/m2) 0.956
Low 176(55.00) 77(55.80) 74(56.49)
High 144(45.00) 61(44.20) 57(43.51)

SFI (cm2/m2) 0.521
Low 129(40.31) 62(44.93) 59(45.04)
High 191(59.69) 76(55.07) 72(54.96)

SMI (cm2/m2) 0.927
Low 182(56.88) 80(57.97) 77(58.78)
High 138(43.12) 58(42.03) 54(41.22)

IMFI (cm2/m2) 0.423
Low 82(25.62) 35(25.36) 41(31.30)
High 238(74.38) 103(74.64) 90(68.70)

SMD (HU) 0.714
Low 168(52.50) 78(56.52) 69(52.67)
High 152(47.50) 60(43.48) 62(47.33)

VSR 0.582
Low 137(42.81) 60(43.48) 63(48.09)
High 183(57.19) 78(56.52) 68(51.91)

VMR 0.886
Low 137(42.81) 57(41.30) 53(40.46)
High 183(57.19) 81(58.70) 78(59.54)

Early recurrence 0.712
No 166(51.88) 69(50.00) 72(54.96)
Yes 154(48.12) 69(50.00) 59(45.04)

Follow-up (months) 50.7 (44.7,
54.8)

51.5 (44.7,
55.3)

29 (19.8,35.5) <0.001

Unless otherwise indicated, data are the number of patients, with percentages in parentheses. BMI,
body mass index; CA19-9, carbohydrate antigen 19-9; CA12-5, carbohydrate antigen 12-5; CEA,
carcinoembryonic antigen; LMR, lymphocyte to monocyte ratio; NLR, neutrophil to lymphocyte ratio;
PLR, platelet to lymphocyte ratio; PNI, Prognostic Nutritional Index; IMFI, intermuscular fat index; SFI,
subcutaneous fat index; SMD, skeletal muscle density; SMI, skeletal muscle index; VFI, visceral fat
index; VSR: VFA-to-SFA ratio; VMR: VFA-to-SMA ratio.
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CA125, CEA, PLR, LMR, VFI, VSR, and VMR – as well as
pathological factors such as adjuvant therapy, resection margin,
LVI, tumor grade, and TNM stage were significantly associated
with ER in PDAC (all P < 0.05; Table 2). Multivariate analysis
identified tumor size, adjuvant therapy, LVI, TNM stage,
CA199, CA125, PLR, VFI, and VSR as independent risk factors
for ER (all P < 0.05; Table 2).

Feature selection and radiomics signature building

A total of 978 out of 1106 intratumoral and 934 out of
1106 peritumoral radiomic features demonstrated good repro-
ducibility, with both inter- and intra-observer ICCs > 0.75.
Following feature selection using mRMR and LASSO, 9 intra-
tumoral, 11 peritumoral, and 13 intra-peritumoral features were
retained to construct intra-, peri-, and intra-peri-radiomics sig-
natures, respectively, using six ML algorithms (LR, SVM, RF,
ExtraTrees, LightGBM, and MLP). The LASSO feature selection
process and the corresponding feature weight coefficients were
presented in the Supplementary Digital content, Figs. S3 and S4,
Available at: http://links.lww.com/JS9/E783.

Model performance comparison

The performance of the intra-, peri-, and intra-peri-radiomics
models was evaluated using six ML algorithms. As illustrated in
Fig. 2 and 3 and Supplementary Digital content, Tables S3 and
S4, Available at: http://links.lww.com/JS9/E783, the intra-peri-
radiomics model consistently outperformed the intra- and peri-
radiomics models across all cohorts. Among the six algorithms,
the RF algorithm demonstrated the best performance when
applied to the intra-peri-radiomics model, achieving AUCs of
0.865 (95% CI: 0.825–0.904), 0.849 (95% CI: 0.783–0.915),
and 0.839 (95% CI: 0.770–0.907) in the training, internal vali-
dation, and external validation cohorts, respectively. To further
validate the robustness of this model, 5-fold cross-validation
was conducted. As shown in Supplementary Digital content,
Fig. S5, Available at: http://links.lww.com/JS9/E783, the final
RF model achieved a mean AUC of 0.870 ± 0.030. At a threshold
of 0.450, it yielded high accuracy (ACC) values of 0.791, 0.812,
and 0.771; sensitivities of 0.922, 0.841, and 0.847; specificities
of 0.669, 0.783, and 0.708; positive predictive values (PPVs)
of 0.721, 0.795, and 0.704, and negative predictive values
(NPVs) of 0.902, 0.831, and 0.850, respectively (Table 3;

Table 2
Univariate and multivariable analysis in the training cohort

Characteristics

Univariate analysis Multivariable analysis

OR (95%CI) P value OR (95%CI) P value

Age ≥ 60 years 0.766 (0.493-1.19) 0.235
Sex (Male) 1.526 (0.973-2.395) 0.066
BMI (vs. < 18.5 kg/m2)
18.5-23.9 kg/m2 1.333 (0.54-3.292) 0.533
24-27.9 kg/m2 0.943 (0.352-2.529) 0.907
≥ 28 kg/m2 2.667 (0.521-9.656) 0.239
Smoking 0.952 (0.586-1.549) 0.844
Diabetes 1.103 (0.659-1.847) 0.708
Pancreatitis at diagnosis 1.437 (0.689-2.999) 0.334
Tumor location 0.905 (0.545-1.502) 0.698
Tumor size ≥3 cm 2.497 (1.592-3.916) <0.001 2.013(0.76-2.335) 0.015
Adjuvant therapy 0.289 (0.177-0.471) <0.001 0.265(0.745-2.48) <0.001
Resection margin (R1) 2.083 (1.079-4.024) 0.029 1.763(0.664-3.535) 0.184
Lymphovascular invasion 3.34 (2.109-5.29) <0.001 2.46(0.755-2.381) 0.002
Perineural invasion 0.837 (0.499-1.403) 0.499
Tumor grade (Poor) 2.434 (1.491-3.972) <0.001 1.669(0.737-2.563) 0.107
Tumor TNM stage ≥ IIA 2.359 (1.503-3.704) <0.001 2.28(0.754-2.388) 0.005
CA199 ≥ 472.2 U/ml 3.738 (2.311-6.045) <0.001 2.668(0.748-2.446) 0.001
CA125 ≥ 18.9 U/ml 2.696 (1.71-4.253) <0.001 1.962(0.755-2.378) 0.021
CEA ≥ 3.2 μg/L 1.687 (1.084-2.626) 0.021 1.041(0.752-2.408) 0.891
PLR ≥ 160.58 1.599 (1.013-2.524) 0.044 2.218(0.747-2.456) 0.009
NLR ≥ 2.33 1.432 (0.916-2.238) 0.115
LMR ≥ 4.78 0.604 (0.366-0.997) 0.049 0.713(0.732-2.617) 0.297
PNI index ≥ 48.55 0.837 (0.499-1.403) 0.499
VFI (High group) 2.234 (1.425-3.501) <0.001 2.25(0.703-2.963) 0.027
SFI (High group) 0.735 (0.469-1.15) 0.177
SMI (High group) 0.84 (0.539-1.309) 0.441
IMFI (High group) 0.904 (0.547-1.494) 0.694
SMD (High group) 0.992 (0.64-1.54) 0.973
VSR (High group) 2.168(0.723-2.715) 0.022 2.168(0.723-2.715) 0.022
VMR (High group) 1.757 (1.122-2.752) 0.014 0.645(0.674-3.368) 0.285

BMI, body mass index; CA19-9, carbohydrate antigen 19-9; CA12-5, carbohydrate antigen 12-5; CEA, carcinoembryonic antigen; LMR, lymphocyte to monocyte ratio; NLR, neutrophil to lymphocyte ratio;
PLR, platelet to lymphocyte ratio; PNI, Prognostic Nutritional Index; IMFI, intermuscular fat index; SFI, subcutaneous fat index; SMD, skeletal muscle density; SMI, skeletal muscle index; VFI, visceral fat index;
VSR: VFA-to-SFA ratio; VMR: VFA-to-SMA ratio.
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Supplementary Digital content, Fig. S6, Available at: http://links.
lww.com/JS9/E783). Given its superior performance, the RF-
based intra-peri-radiomics model was selected for constructing
subsequent combined models. A clinical model incorporating
independent clinical risk factors (including tumor size, CA199,
CA125, PLR, VFI, VSR) achieved AUCs of 0.760 (95% CI:
0.707–0.812), 0.719 (95% CI: 0.634–0.804) and 0.721 (95%
CI: 0.635–0.807) in the training, internal validation, and exter-
nal validation cohorts, respectively (Table 4). A clinical-radio-
mics model integrating the intra-peri-radiomics model with
clinical variables demonstrated improved performance, with
AUCs of 0.915 (95% CI: 0.886–0.945), 0.886 (95% CI:
0.831–0.940), and 0.859 (95% CI: 0.796–0.921) across the
three cohorts. Furthermore, a comprehensive model integrating
the intra-peri-radiomics with clinicopathological data achieved
the highest performance, yielding AUCs of 0.936 (95% CI:
0.912–0.961), 0.899 (95% CI: 0.847–0.951), 0.884 (95% CI:
0.828–0.939), respectively. DeLong tests and integrated discri-
mination improvement (IDI) analyses confirmed that the com-
bined model outperformed the other three models in terms of
discrimination (Supplementary Digital content, P < 0.05; Fig.
S7, Available at: http://links.lww.com/JS9/E783). Calibration
curves demonstrated excellent agreement between predicted
and observed ER probabilities in the training (P = 0.674),

internal validation (P = 0.372), and external validation
(P = 0.217, Fig. 4A-C) cohorts. In contrast, the clinical model
exhibited poor calibration in the external validation cohort
(P = 0.013), highlighting the robustness of the combined
model. Decision curve analysis further indicated that the com-
bined model offered the greatest net benefits across a wide range
of threshold probabilities (0.0–1.0 in the training cohort, 0.0–
0.85 in the internal validation cohort, and 0.0–0.8 in the exter-
nal validation cohort), consistently outperforming other models.

Model interpretability

The SHAP method was employed to interpret model outputs by
quantifying the contribution of each variable to the prediction.
This explainable approach provided two levels of insights: global
interpretation at the feature level and local interpretation at the
individual level. For global interpretation, SHAP summary plots
(Figs. S8–S10) illustrated the importance of each radiomic feature
in the radiomics model. In the RF-based intra-peri-radiomics
model (Supplementary Digital content, Fig. S10C, Available at:
http://links.lww.com/JS9/E783), features such as peri-wavelet-
HHH-ngtdm-Strength and intra-log-sigma-2-0-mm-3D-firstor-
der-90-Percentile contributed most significantly to the model. In
the combined model, the SHAP bar plot (Fig. 5A) showed that

Figure 2. Radar charts demonstrating the performance comparison of intra-, peri-, and intra-peri-radiomics models across six machine learning algorithms in the internal validation cohort. (A)
LR algorithm, (B) SVM algorithm, (C) RF algorithm, (D) ExtraTrees algorithm, (E) LightGBM algorithm, and (F)MLP algorithm. AUC, area under the receiver operating
characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression;
SVM, support vector machine; RF, random forest; ExtraTrees, extremely randomized trees; LightGBM, light gradient boosting machine; MLP, multilayer
perceptron.

8204

Wu et al. International Journal of Surgery (2025) International Journal of Surgery

http://links.lww.com/JS9/E783
http://links.lww.com/JS9/E783
http://links.lww.com/JS9/E783
http://links.lww.com/JS9/E783


radiomic features had the greatest contribution to the model out-
put, with an average SHAP value of 0.25. The violin plot (Fig. 5B)
and dependence plot (Supplementary Digital content, Fig. S11A,
Available at: http://links.lww.com/JS9/E783) revealed a clear
upward trend in SHAP values with increasing radiomic feature
values, indicating a strong association between higher radiomic
values and an increased ER risk. Similarly, the absence of adju-
vant therapy, high-level CA199, positive LVI, high-level PLR,
high-level VFI, high-level CA125, high-level VSR, larger tumor
size, and TNM stage ≥ IIA were all associated with an increased
ER risk (Supplementary Digital content, Fig. S10B–J, Available
at: http://links.lww.com/JS9/E783). Moreover, the interaction
between radiomics, adjuvant therapy, and VFI, as indicated by
the color gradient in Fig. 5C and D, suggested that patients with
higher radiomic feature values, who received adjuvant therapy
and had elevated VFI, were at higher risk of recurrence.

For local interpretation, Fig 6A and B presents a case of
a patient who did not experience ER of PDAC during the fol-
low-up period. According to the prediction model, this patient
was classified into the “ER” category with a predicted probability
of 18.0%, which was significantly lower than the baseline prob-
ability of 50.1%. The individual contributions of each feature
were illustrated in the corresponding waterfall plots (Fig. 6A and
B). As shown, radiomic features, adjuvant therapy, low-level

CA199, TNM ≤ IIA, smaller tumor size, and low-level CA125
contributed to the prediction of “non-ER,” whereas the presence
of LVI, high-level PLR, high VFI, and high VSR did not. Fig. 6C
and D presents another case of a patient who experienced ER.
According to the model, this patient was classified into the “ER”
category with a predicted probability of 99.9%, markedly higher
than the baseline probability. Fig. 6E displays a force plot for ER
prediction. The x-axis represented individual patients, and the
y-axis denoted feature contributions. A larger red segment for
a patient indicated a higher predicted probability of ER.

Discussion

In this study, we developed and validated an ML prediction
model that integrated both intra- and peritumoral radiomic
features to predict the risk of ER after radical resection of
PDAC. The model incorporating both intra- and peritumoral
radiomic features outperformed the models using only intra- or
peritumoral radiomic features. Furthermore, integrating radio-
mics signatures with clinicopathological factors–including
tumor size, CA199, CA125, PLR, VFI, VSR, TNM stage, LVI,
and adjuvant therapy–further enhanced predictive accuracy.
Notably, model interpretability was facilitated through SHAP,

Figure 3. Radar charts demonstrating the performance comparison of intra-, peri-, and intra-peri-radiomics models across six machine learning algorithms in the external validation cohort. (A)
LR algorithm, (B) SVM algorithm, (C) RF algorithm, (D) ExtraTrees algorithm, (E) LightGBM algorithm, and (F)MLP algorithm. AUC, area under the receiver operating
characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression;
SVM, support vector machine; RF, random forest; ExtraTrees, extremely randomized trees; LightGBM, light gradient boosting machine; MLP, multilayer
perceptron.
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which visually elucidated the contribution of each variable to the
predicted outcome.

Models combining both intra- and peritumoral features out-
performed those relying on any single group of features in pre-
dicting PDAC[15,16,28]. This advantage stemmed from the fact that
tumor heterogeneity exists not only within the tumor but is also
closely associated with the surrounding microenvironment[29,30].
While conventional imaging techniques may fail to directly cap-
ture the tumor microenvironment, radiomics, through quantita-
tive analysis, can detect subtle changes and provide important
complementary information regarding tumor heterogeneity[31].
Additionally, this study compared the predictive performance of
multiple ML algorithms, including LR, SVM, RF, ExtraTrees,
LightGBM, and MLP. Among them, the RF-based intra-peri-
radiomics model exhibited the best predictive capability, achiev-
ing AUCs of 0.865 in the training cohort, 0.849 in the internal
validation cohort, and 0.839 in the external validation cohort. As
an ensemble learning technique, the RF algorithm can effectively
handle high-dimensional data and has demonstrated superior
performance across many predictive modeling studies[32–34].

Several studies have focused on predicting ER after surgery in
patients with PDAC. For instance, Lee et al[35] developed
a nomogram incorporating radiomic features, preoperative
CA199 levels, and CT-derived tumor characteristics from 190
patients, achieving AUCs of 0.77 and 0.83 in the training and
validation cohorts, respectively, showing good predictive per-
formance. Similarly, Li et al[28] constructed a nomogram using
radiomic features from both intra- and peritumoral regions,
along with preoperative CA199, in 220 patients to predict recur-
rence risk within 1 year after surgery, with AUCs of 0.916 and
0.764. However, these studies primarily focused on preoperative
clinical and imaging variables and did not incorporate post-
operative pathological information, which was crucial for pre-
dicting ER in PDAC. By integrating preoperative tumor
radiomic features, body composition metrics, and postoperative
pathological variables, our study further improved predictive

performance, outperforming previous models across training,
internal validation, and external validation cohorts. The innova-
tions of our study compared with previous research are as
follows:[1] it considered not only imaging features of the tumor
itself but also individual-level differences, particularly the
impact of body composition and postoperative pathology on
ER in PDAC;[2] multiple ML algorithms were employed to com-
prehensively explore the complex relationships between predic-
tors and outcomes, thereby improving model accuracy and
flexibility;[3] the SHAP methodology was used to enhance
model interpretability, providing more intuitive insights into
the contribution of each feature to prediction and supporting
individualized clinical decision-making.

In addition to radiomics, body composition reflected a patient’s
nutritional and metabolic status and had been identified as an
important factor influencing cancer recurrence and survival
outcomes[17,18]. High visceral fat was associated with ER and
poor prognosis in several cancers, including PDAC[17,36–39]. Our
findings supported this observation, demonstrating that patients
with high visceral fat were more likely to experience recurrence
within 1 year after surgery. This association may be attributed to
the accumulation of visceral fat promoting pancreatic fat infiltra-
tion, which altered the tumor microenvironment and facilitated
tumor spread[40–42]. High VSR was another independent risk factor
for poor prognosis, consistent with a previous report[17]. This may
relate to the differing physiological functions and tumor-regulating
roles of visceral and subcutaneous fat. Visceral fat secreted pro-
inflammatory cytokines, such as interleukin-6 and tumor necrosis
factor-α, which modulated the tumor microenvironment and pro-
moted immune evasion[43,44], whereas subcutaneous fat primarily
served as an energy reserve, supporting metabolic function and
facilitating postoperative recovery[45]. Therefore, an elevated VSR
indicated increased visceral fat and decreased subcutaneous fat,
predisposing patients to ER. Additionally, LVI, TNM stage, and
adjuvant therapy were key determinants of PDAC recurrence[5,46],
justifying their inclusion in the predictive model. Although

Table 3
Comparison of the performance of intra-peri-radiomics ML models

Models AUC ACC SEN SPE PPV NPV

Training set LR 0.737 (0.683-0.790) 0.688 0.740 0.639 0.655 0.726
SVM 0.834 (0.790-0.879) 0.784 0.825 0.747 0.751 0.821
RF 0.865 (0.825-0.904) 0.791 0.922 0.669 0.721 0.902
ExtraTrees 0.756 (0.703-0.808) 0.716 0.779 0.657 0.678 0.762
LightGBM 0.853 (0.811-0.894) 0.787 0.883 0.699 0.731 0.866
MLP 0.766 (0.715-0.817) 0.691 0.805 0.584 0.642 0.764

Internal validation LR 0.730 (0.644-0.816) 0.687 0.780 0.611 0.622 0.772
SVM 0.791 (0.714-0.867) 0.754 0.652 0.855 0.818 0.711
RF 0.849 (0.783-0.915) 0.812 0.841 0.783 0.795 0.831
ExtraTrees 0.738 (0.657-0.820) 0.688 0.569 0.812 0.750 0.653
LightGBM 0.834 (0.764-0.904) 0.775 0.696 0.855 0.828 0.737
MLP 0.740 (0.655-0.824) 0.725 0.703 0.734 0.703 0.743

External validation LR 0.723 (0.637-0.810) 0.710 0.656 0.757 0.700 0.718
SVM 0.811 (0.737-0.886) 0.771 0.797 0.750 0.723 0.818
RF 0.839 (0.770-0.907) 0.771 0.847 0.708 0.704 0.850
ExtraTrees 0.723 (0.635-0.810) 0.678 0.864 0.528 0.600 0.826
LightGBM 0.810 (0.735-0.884) 0.756 0.729 0.778 0.729 0.778
MLP 0.746 (0.662-0.830) 0.679 0.881 0.514 0.598 0.841

AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM,
support vector machine; RF, random forest; ExtraTrees, extremely randomized trees; LightGBM, Light Gradient Boosting Machine; MLP, Multilayer Perceptron
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postoperative adjuvant chemotherapy was the standard treatment
for PDAC[8], approximately 30-40% of patients in this study did
not receive it, resulting in a significantly higher rate of ER. Multiple
studies have confirmed that adjuvant chemotherapy effectively
delays recurrence and improves overall survival[47,48], further high-
lighting its importance in the predictive model. Including adjuvant
therapy in the model helped identify high-risk patients requiring
intensified postoperative care and facilitated the formulation of
individualized treatment strategies. CA199 was a well-established
biomarker for PDAC recurrence and poor prognosis, and our study
has reaffirmed its predictive value. Notably, we also found that
CA125 was significantly associated with ER in PDAC and was

included in the ML model. Unlike CA199, which reflected total
tumor burden, CA125 may indicate “metastasis-associated
burden”[49,50]. Elevated preoperative CA125 levels may signal the
presence of subclinical metastases undetectable on conventional
imaging, thereby increasing recurrence risk after surgery[51]. This
could explain why some patients relapse within 1 year despite
curative resection. Among inflammation-based prognostic mar-
kers, including LMR, NLR, and PLR, only PLR was significantly
correlated with ER in our cohorts. Shirai similarly reported that
elevated preoperative PLR was associated with both poor overall
survival and ER in PDAC[52]. Finally, the integrated model combin-
ing radiomic features with clinicopathological indicators showed

Table 4
Comparison of the performance of different models in training, internal validation, and external validation cohorts

Models AUC ACC SEN SPE PPV NPV

Training Clinical 0.760 (0.707-0.812) 0.688 0.760 0.620 0.650 0.736
Intra-Peri-radiomics 0.865 (0.825-0.904) 0.791 0.922 0.669 0.721 0.902
Clinical-radiomics 0.915 (0.886-0.945) 0.834 0.825 0.843 0.830 0.838
Combined 0.936 (0.912-0.961) 0.863 0.883 0.843 0.840 0.886

Internal validation Clinical 0.719 (0.634-0.804) 0.667 0.710 0.623 0.653 0.683
Intra-Peri-radiomics 0.849 (0.783-0.915) 0.812 0.841 0.783 0.795 0.831
Clinical-radiomics 0.886 (0.831-0.940) 0.814 0.884 0.739 0.772 0.864
Combined 0.899 (0.847-0.951) 0.848 0.855 0.841 0.843 0.853

External validation Clinical 0.721 (0.635-0.807) 0.672 0.898 0.486 0.589 0.854
Intra-Peri-radiomics 0.839 (0.770-0.907) 0.771 0.847 0.708 0.704 0.850
Clinical-radiomics 0.859 (0.796-0.921) 0.794 0.712 0.861 0.808 0.785
Combined 0.884 (0.828-0.939) 0.809 0.746 0.861 0.815 0.805

AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.

Figure 4. Performance comparison of clinical, radiomics, clinical-radiomics, and combined models for predicting recurrence in PDAC patients. (A-C) Calibration curves for different
models in the training, internal validation, and external validation sets, respectively. (D-F) Decision curves for different models in the training, internal validation, and
external validation sets, respectively.
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excellent performance, with AUCs of 0.936, 0.899, and 0.884 in
the training, internal validation, and external validation cohorts,
respectively. This highlighted the prognostic value of integrating
multimodal data. The model demonstrated favorable clinical uti-
lity, identifying high-risk patients while avoiding overtreatment at
low thresholds (nd external validation cohorts, ciated wit inter-
mediate-to-high thresholds (0.4–0.8). Similarly, the clinical-radio-
mics model exhibited robust discriminative ability and positive net
benefits. Overall, the clinical-radiomics and the combined models
served complementary roles across the treatment timeline: the for-
mer supported preoperative planning, while the latter enabled post-
operative risk stratification and adjuvant therapy optimization,
together forming a comprehensive decision-support system
throughout the patient’s treatment cycle.

The interpretability of ML models was crucial for their clinical
application. In this study, we utilized the SHAP values to quantify
the contribution of each feature to the model’s predictions. The
SHAP analysis revealed that intra-peritumoral radiomics signa-
ture was the most influential predictor of ER, followed by

adjuvant therapy, CA199, LVI, PLR, VFI, CA125, VSR, tumor
size, and TNM staging. Moreover, the model’s local interpret-
ability emphasized its potential to inform personalized treatment
strategies. By understanding the specific impact of each variable,
clinicians can better assess recurrence risk and make informed
decisions about postoperative surveillance and adjuvant therapy.
The clinical utility of the model is further demonstrated through
two representative case studies. In Case 1 (Fig. 6A and B), the
predicted probability of ER was 18.0%, substantially lower than
the baseline probability of 50.1%, supporting the continuation of
standard treatment and routine follow-up. This approach not
only facilitated effective monitoring but also minimized unneces-
sary interventions. In contrast, Case 2 (Fig. 6C and D) had
a predicted ER probability of 99.9%, far exceeding the baseline,
suggesting the need for more postoperative management.
Strategies such as intensifying chemotherapy and strengthening
the monitoring of tumor markers should be implemented, under-
scoring the significance of such individualized measures in opti-
mizing the clinical care of patients with PDAC.

Figure 5. Global model explanation by the SHAP method. (A) Bar plot showing the mean absolute SHAP values for each feature, indicating the overall importance of
features in predicting tumor recurrence in PDAC patients. (B) Violin plot illustrating the distribution of SHAP values for each feature. The color gradient represents
the feature values (red for high values and blue for low values). (C) Dependence plot showing the relationship between the radiomic feature and its SHAP value,
with adjuvant as a color-coded interaction feature. The x-axis represents the radiomics feature value, and the y-axis represents its SHAP value. (D) Dependence
plot showing the relationship between the VFI feature and its SHAP value, with radiomics as a color-coded interaction feature. The x-axis represents the VFI
feature value, and the y-axis represents its SHAP value.
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This study had several limitations. First, its retrospective
design may introduce selection bias. Second, radiomic features
extracted from CT images reflected tumor characteristics and
body composition at a single time point, without accounting for
temporal changes during treatment. Third, although the SHAP
method improved model interpretability, the biological rele-
vance of radiomic features in PDAC recurrence remained
unclear. Future research should refine the model by incorporat-
ing additional data modalities, such as genomic and proteomic
information, to provide deeper insights into the mechanisms
underlying recurrence.

Conclusion

This study demonstrated the feasibility and clinical utility of
integrating intratumoral and peritumoral radiomic features
with CT-derived body composition parameters to predict ER
in patients with PDAC. The RF-based intra-peritumoral radio-
mics model outperformed traditional clinical predictors and
provided a promising tool for personalized management. The
interpretability of the model, enabled by SHAP analysis,
enhanced its clinical applicability and supported its potential

integration into routine clinical practice. Further prospective
validation and model refinement are warranted to confirm its
efficacy and generalizability across diverse patient populations.
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