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Simple Summary: This study was designed to monitor changes in DCE-MRI-based parameters in
preclinical GBM models in response to choline kinase inhibition using a cluster analysis approach. In
terms of therapeutic response in F98 rat GBMs, a sustained decrease in permeability and perfusion
and increased necrosis was observed during treatment with JAS239 as compared to control animals.
No significant differences in these parameters were found for the GL261 mice GBMs. The study
demonstrates that region-based clustered pharmacokinetic parameters obtained using DCE-MRI can
be used for detecting and assessing tumour haemodynamic heterogeneity, which may be useful in
assessing therapeutic response.

Abstract: To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating
tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma,
imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of
the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment,
and the second generation shutter speed models) was performed using a hierarchical clustering
algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels
representing parameters Ktrans, ve, Kep, vp , τi and Fp. There was a significant increase in the number
of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour
volume suggesting increased extracellular volume in larger tumours. In terms of therapeutic response
in F98 rat GBMs, a sustained decrease in permeability and perfusion and a reduced cell density was
observed during treatment with JAS239 based on Ktrans, Fp and ve as compared to control animals.
No significant differences in these parameters were found for the GL261 tumour, indicating that this
model may be less sensitive to JAS239 treatment regarding changes in vascular parameters. This
study demonstrates that region-based clustered pharmacokinetic parameters derived from DCE-MRI
may be useful in assessing tumour haemodynamic heterogeneity with the potential for assessing
therapeutic response.

Keywords: animal model; dynamic contrast-enhanced MRI; pharmacokinetic models; intra-tumoral
heterogeneity; glioblastoma; clustering; choline kinase; JAS239
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1. Introduction

Glioblastoma multiforme (GBM) is the most prevalent and fast-growing primary
brain tumour with poor prognosis and a median survival rate of 14–16 months after
diagnosis [1]. It is more heterogeneous and hypoxic compared to other types of brain
tumours [2]. As survival with GBM is short, it is critical to determine the efficacy of
therapy early on during treatment. Early interventions can be made in case a therapeutic
strategy is ineffective. Technological developments in magnetic resonance imaging (MRI)
have helped to provide new insights into the diagnosis, classification, and understanding
of tumour biology [3,4]. Perfusion imaging provides multiple parameters related to the
blood volume and flow, as well as vascular endothelial leakiness. The most common
perfusion imaging techniques involving the administration of contrast agent are dynamic
susceptibility contrast imaging (DSC), and dynamic contrast-enhanced imaging (DCE).
Perfusion-weighted MRI techniques are used increasingly in assessing GBMs; most tumour
imaging protocols now include either DCE and/or DSC imaging [5]. DSC is a prevalent
method in clinical neuro-oncology, but is sensitive to susceptibilities and gives inaccurate
estimates when dealing with leaky and tortuous capillaries in tumours [6]. Leakage
correction plays an important role to compensate for this [7,8]. DCE-MRI can characterise
vascular permeability in tumours and has an advantage over DSC-MRI due to its greater
signal-to-noise ratio and spatial resolution, although imaging acquisition time is relatively
longer [6].

DCE-MRI has been used for clinical brain tumour imaging [9]. It can be processed
using several pharmacokinetic models to quantify the kinetics of contrast agents crossing
the blood–brain barrier. These models have been used to quantify physiologically rele-
vant parameters, including estimation of volume transfer constant (Ktrans, measured in
min−1) of gadolinium-based contrast agent from the intravascular compartment to tumour
interstitium [10]. Ktrans has also been used for predicting short-term response [11,12] and
overall survival in head and neck cancer patients [13]. The diagnostic ability of other
DCE-MRI parameters such as volume of extravascular extracellular space (ve), rate constant
between tumour interstitium and blood plasma (Kep, measured in min−1), plasma volume
(vp) have also been reported in glioma patients [14,15]. In addition, the mean intracellular
water lifetime (τi, measured in sec), has been suggested to be a reliable marker of cellular
energy turnover [16]. Plasma flow (Fp, measured in mL/100 g/min) correlates with tumour
oxygenation and, thus, provides more specific information on radiotherapy efficacy [17].

GBMs are formed by tumour cells, which differ in their morphology, genetics and
biological behaviour [18,19]. They are typically heterogeneous both on genetic and histo-
pathological levels, with intratumoural spatial variation in the cellularity, angiogenesis,
extravascular extracellular matrix, and areas of necrosis [20,21]. The heterogeneity can be
with regards to cellular morphology, gene expression, metabolism, and angiogenic and
proliferative potential, some of which can be investigated using DCE-MRI, for example,
in investigating angiogenic processes [22,23]. Substantial intra-tumour heterogeneity cor-
relates with increased morbidity, mortality, and recurrence rates in patients [24]. This
heterogeneity results in non-uniform distribution of tumour-cell subpopulations within
disease sites [25]. Thus, an accurate assessment of tumour haemodynamic heterogeneity is
essential for developing effective therapies. The validity of different DCE-MRI models to
assess tumour haemodynamic heterogeneity has not been studied in detail. A recent study
identified physiological tumour habitats from DCE-MRI data using parameters derived
from Tofts model and evaluated their alterations in response to therapy in preclinical breast
cancer models [26]. Although Ktrans, ve, vp, Kep can be estimated using the commonly
used general kinetic or Tofts (GKM) or its extended version (ETM). Other models, such
as the shutter speed (SSM) and two-compartment exchange model (2CXM), can provide
additional physiologically sensitive parameters such as τi and Fp, respectively. This study
aims to assess tumour haemodynamic heterogeneity using the parameters derived from
these models.
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There is an urgent need to evaluate new drugs for the treatment of GBMs. Recent
studies have explored the possibility of altering the expression or activity of enzymes
involved in choline metabolism as a novel therapeutic target for cancer treatment. A recent
study demonstrated that 1H MR spectroscopy (MRS) can be used to detect a decrease in
total choline (tCho) that is associated with the inhibition of choline kinase (ChoK) activity by
MN58b in gliomas [27]. The inhibition of ChoK may help sensitise GBMs to chemotherapy
and radiotherapy [27]. Another ChoK inhibitor, JAS239, also inhibits ChoK intracellularly,
preventing choline phosphorylation, and has been shown to induce tumour growth arrest
and cell death in a breast cancer model [28,29]. Assessment of tumour haemodynamic
heterogeneity could identify the sub population of cells that are not perfused adequately
and, therefore, are more likely to be resistant to treatment. It is important for therapeutics
to be directed to specific tumour subvolumes. Thus, another goal of this study was to
monitor changes in tumour haemodynamic heterogeneity by quantifying the changes in
the pharmacokinetic parameters, in response to treatment with the ChoK inhibitor, JAS239.

2. Materials and Methods

To assess the generalizability of our methods, we performed the imaging studies on
two syngeneic rodent models of GBM, the F98 GBM in rats and a GL261 models in mice, as
both have been shown to recapitulate several features of human GBM and have been used
previously in the DCE-MRI literature [2,3,30,31].

F344 Fischer rats (n = 34) were implanted with 50,000 F98 GBM cells and C57BL6
mice (n = 10) were implanted with 500,000 GL261 GBM cells. Intracranial tumours were
developed by transcranial injection of the GBM cells in the right cortex. The rodents were
secured on a stereotaxic frame, a burr hole was drilled through the skull 3 mm right for
rats (1.5 mm right for mice) and 3 mm posterior for rats (2 mm posterior for mice) from the
bregma, and GBM cells suspended in 5 µL serum-free medium were injected 2.5 mm into
the brain for rats (2 mm for mice).

The MR images were obtained using a 9.4 T Bruker Biospec scanner (Bruker BioSpin,
Ettlingen, Germany). FAIR (flow sensitive alternating inversion recovery) pulse sequence
using non-selective 180◦ pulse and 40 inversion times varying from 100 to 7900 ms in steps
of 200 ms with matrix size = 128 × 128, FOV of 30 × 30 mm2 and slice thickness = 1.16 mm,
was used to acquire the pre-contrast T1 maps from a set of six F98 tumour bearing rats. A
3D FLASH sequence was used to obtain T1-weighted images with five flip angles of 2◦, 5◦,
7◦, 12◦ and 15◦ and MRI scan parameters: FOV = 20 × 20 × 4.8 mm3; matrix size = 128 × 64
× 8; TR/TE of 15/1.5 ms, from all GL261 GBM bearing mouse brains to obtain pre-contrast
T1 maps.

Dynamic 3D multi-gradient-echo (MGE) sequence was used to record the kinetics of
the contrast agent. For the dynamic imaging, a matrix size of 128 × 64 × 8, FOV of 30 × 30
× 9.28 mm3 (for rats) and 20 × 20 × 4.8 mm3 (for mice), TR/TE1/TE2 = 14/2.25/4.76 ms,
and a 12◦ flip angle was used. A bolus of gadopentetate in saline at the standard dose of
0.1 mmol/kg for rats and 0.2 mmol/kg for mice (for better SNR) was injected through a
tail vein catheter, starting at 1 min after collection of baseline images. 180 volumes were
collected with a temporal resolution of 5.37 s per volume. Higher resolution anatomical
T2- weighted images were also acquired using a RARE sequence (TR/Effective TE of
4167/33 ms, 0.3 mm slice thickness, FOV = 30 × 30 mm2, 256 × 256 matrix, Rare Factor = 8)
for co-registration of the DCE images and tumour volume calculation.

The tumour haemodynamic heterogeneity was evaluated on the basis of change in
tumour volumes using the different pharmacokinetic models (rats; n = 30, mice; n = 5).

For therapeutic response monitoring, a separate cohort (rats; n = 4, mice; n = 5)
received JAS239 treatment (4 mg/kg/day injected intraperitoneally for 5 consecutive days),
or saline (rats; n = 4, mice; n = 5). Animals were imaged on day 0 (T0, baseline), day 3 (T3,
during), 6 (T6, end) of treatment and post-treatment day 8 (T8) for rats and day 10 (T10) for
mice.
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2.1. Data and Image Processing

T∗
2 correction was performed on the DCE datasets, utilising the data collected at two

echo times (TE1 and TE2) to correct for signal loss due to field inhomogeneities arising
from magnetic or tissue component susceptibility distortions [32]. T1 maps were generated
by fitting the pixel-wise image intensities at different inversion times (rats; n = 6) and at
different flip angles (mice; n = 10) using a non-linear least-square fitting ‘lsqcurvefit’ routine
in MATLAB R2021a. DCE images were co-registered to the T2- weighted images using
rigid body registration to correct for bulk motion. The region of interest (ROI) from brain
slices containing tumour and the arterial input function (AIF) from the superior sagittal
sinus were drawn manually on the co-registered DCE images. The mean T1 value in the
tumour ROI from the six F98 rat GBMs was chosen as an initial T1 value for conversion
of signal intensity to concentration curves. The ROI was also drawn in the tumour region
across every slice manually on the T2- weighted images; the number of pixels in the ROI
was multiplied with the pixel dimensions to get the tumour volume. The tumour volumes
ranged from 0.006–0.04 cc with a mean value of 0.015 ± 0.008 cc.

Ktrans, ve and Kep were derived from Tofts model (TM) [33], extended Tofts model
(ETM) [33], shutter speed model (SSM) [16,34], two-compartment exchange model (2CXM)
[35,36] and the second generation shutter speed model (SSM2) [37], respectively. The
vp was derived using ETM, 2CXM and SSM2 models, respectively [33,35–37]. τi was
estimated using SSM and SSM2 models, respectively [16,34,37]. Fp was estimated using the
2CXM model [35,36]. More details about these models can be found in the supplementary
section A1. A non-linear least-square fitting ‘lsqcurvefit’ routine in MATLAB was used
in all models. For model fitting, the initial parameter values were based on the literature
values [38,39]. A hybrid bi-exponential and gamma variate model fitting of the AIF was
performed prior to kinetic model analysis [40,41]. A population AIF was used whereby
the AIF obtained from all the datasets were averaged after a selection-criteria based on
area under each concentration curve (AUC), curve smoothness as described in [42,43]. The
pharmacokinetic models used are typically not valid for necrotic tissue [44,45] and may
result in poor fit in those regions. For all models, the goodness of fit (R2) values in the
tumour ROI were within a range of 0.7–1.00. The values less than 0.7 resulted from noisy
signals that did not show a pattern for contrast agent uptake in the tissues. Hence, all the
parameters were set to zero in case of a poor fit (R2 < 0.7) resulting in a poor fit region or
cluster reflecting necrosis.

A clustering analysis was used to assess regional changes in the tumour using a
hierarchical clustering algorithm, a kind of agglomerative clustering. The algorithm was
implemented in MATLAB. It uses a similarity measure to compare two vectors. Initially,
each vector is considered as a single cluster. The clustering method uses a strategy to
merge pairs of clusters. In each step of clustering, two clusters are merged until a threshold
is achieved. A Ward’s linkage method and Euclidean distance measure was used [46].
Ward’s linkage method analyzes the variance of clusters and is the most suitable method
for quantitative variables [46]. With hierarchical clustering, the sum of squares starts at zero
(because every point is in its own cluster) and grows as the clusters are merged. Ward’s
method keeps this growth as small as possible [46]. After creating the hierarchical tree of
clusters, it is pruned by specifying an arbitrary number of clusters, which was set to 3 in this
study (excluding the poor fit cluster). This was done to assess the tumour haemodynamic
heterogeneity using a three-region clustering of the DCE-MRI-based parameters, resulting
in areas of low, medium, and high values. The number of pixels in these cluster were
indicated as Nx,y, where x = Ktrans, ve, Kep, vp , τi and Fp and y = low, med and high. The
mean value of the parameters (x) was also calculated across all the clusters.

2.2. Statistical Analysis

The goodness of fit was estimated using mean R2 value (from all tumour pixels ex-
cluding the necrotic ones) for the different pharmacokinetic models. Pearson’s correlation
coefficients were calculated to evaluate the correlation between tumour volumes and cor-
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responding DCE-MRI derived pharmacokinetic parameters. The significance level was
set at p ≤ 0.05. Differences between JAS239 and control group (% change in mean of esti-
mated parameters on T3, T6, and T8 or T10 scans with respect to T0) were evaluated using
Wilcoxon rank sum test. All analyses were conducted using MATLAB. The pharmacokinetic
models, showing a significant increase in the number of necrotic pixels with increase in
tumour volume (based on Pearson’s correlation coefficient), along with a decrease in high
Ktrans pixels with an increase in tumour volume (based on Pearson’s correlation coefficient)
and also exhibiting high mean R2 in the tumour ROI, were selected to assess response to
treatment.

3. Results

The DCE-MRI data quality was good in all cases, and the tumour data were fitted well,
as shown for the SSM model in a representative case (Supplementary Figure S1). Figure 1
shows the four-region clustering of the DCE parameter maps (with SSM) performed using
hierarchical clustering algorithm from tumour bearing rodents at three different days as
the tumour grew (top to bottom).
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Figure 1. (A) Assessing tumour haemodynamic heterogeneity with DCE-MRI using the SSM model.
T2 weighted images from a control animal bearing F98 tumour at T0 (top row), T6 (middle row), and
T8 (bottom row). The colour coded parametric maps of Ktrans, Kep, ve , τi and segmented into clusters
using hierarchical clustering algorithm are displayed as overlays on the T2 weighted images in the
respective columns, and the zoomed area of the tumour are shown. The poor fit necrotic clusters
(black), low (blue), medium (green), and high value clusters (red) are shown, and the mean values of
the parameters in the respective clusters are explained in the colour bars. (B) Clustered Ktrans and
ve map using SSM overlaid on T2 weighted images from time points T0, T6, and T10 from a GL261
mouse GBM and an example of a GL261 tumour tissue Gd-DTPA kinetics and corresponding model
fitting using SSM.

Tables 1 and 2 show the correlations between the clustered parameters and tumour
volume from the 35 datasets. The 2CXM and SSM models provided the best fit (mean
R2 > 0.96) in the tumour ROI compared to the other models, as shown in Table 1B. These
two models were, therefore, selected for further assessment of treatment response.
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Table 1. Pearson’s correlation (r) for tumour volume vs. necrotic pixels (A), R2 for fitted pixels across
all the datasets using all models (B) and Pearson’s correlation (r) for tumour volume vs. Nx,low (C).

A: Pearson’s Correlation (r) for Tumour Volume vs. % of Necrotic Pixels

TM ETM SSM 2CXM SSM2

−0.23 −0.23 0.53 (p < 0.001) 0.54 (p < 0.001) 0.24

B: Mean ± S.D R2 for fitted pixels across all the datasets using all models

TM ETM SSM 2CXM SSM2

R2 0.95 ± 0.01 0.956 ± 0.01 0.962 ± 0.007 0.968 ± 0.007 0.96 ± 0.008

C: Pearson’s correlation (r) for tumour volume vs. Nx,low

TM ETM SSM 2CXM SSM2

NKtrans ,low 0.008 −0.006 0.26 0.25 0.18

NKep,low −0.07 0.11 0.26 0.16 0.17

Nve ,low −0.43 (p < 0.01) −0.42 (p < 0.01) −0.08 −0.18 0.09

Nvp ,low N.A 0.3 N.A 0.3 0.28

Nτi ,low N.A N.A 0.20 N.A 0.1

NFp ,low N.A N.A N.A 0.003 N.A

Note. TM, Tofts model; ETM, extended Tofts model; SSM, Shutter speed model; 2CXM, two-compartment
exchange model; SSM2, second generation Shutter speed model; N.A, not applicable. Bold in the text indicates
significant result.

Table 2. Pearson’s correlation (r) for tumour volume vs. Nx,med (A), and Pearson’s correlation (r) for
tumour volume vs. Nx,high (B).

A: Pearson’s Correlation (r) for Tumour Volume vs. % of Nx,med

TM ETM SSM 2CXM SSM2

NKtrans ,med −0.01 −0.03 −0.12 −0.27 −0.06

NKep,med −0.03 −0.01 −0.24 −0.21 −0.20

Nve ,med −0.43 (p < 0.01) −0.43 (p < 0.01) −0.27 −0.52 (p < 0.01) −0.30

Nvp ,med N.A −0.3 N.A −0.15 −0.4

Nτi ,med N.A N.A −0.1 N.A 0.05

NFp ,med N.A N.A N.A −0.31 N.A

B: Pearson’s correlation (r) for tumour volume vs. % of Nx,high

TM ETM SSM 2CXM SSM2

NKtrans ,high −0.02 −0.05 −0.25 −0.22 −0.11

NKep,high 0.01 −0.14 −0.21 −0.07 −0.03

Nve ,high 0.65 (p < 0.001) 0.65 (p < 0.001) 0.7 (p < 0.001) 0.75 (p < 0.001) 0.6 (p < 0.001)

Nvp ,high N.A −0.25 N.A −0.3 −0.1

Nτi ,high N.A N.A −0.2 N.A −0.2

NNFp ,high N.A N.A N.A 0.24 N.A

Note. TM, Tofts model; ETM, extended Tofts model; SSM, Shutter speed model; 2CXM, two-compartment
exchange model; SSM2, second generation Shutter speed model; N.A, not applicable. Bold in the text indicates
significant result.

Representative example images from a JAS239-treated rat and a saline control are
displayed in Figure 2A,B. The percentage change in volume and mean Ktrans (obtained
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using SSM) at time points T0, T3, T6, and T8 are shown along with the treatment points
marked with coloured arrows on the X-axis.
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Figure 2. (A) T2 weighted images from a JAS239-treated rat acquired on T0, T3, T6, and T8. Percentage
change (with respect to baseline) in volume and mean Ktrans (obtained using SSM) at respective time
points along with points of injections marked with arrows (red) (B) T2 weighted images from a saline
treated (control) rat acquired on T0, T3, T6, and T8. Percentage change in volume and mean Ktrans

(obtained using SSM) at respective time points along with points of injections marked with arrows
(grey).

3.1. Necrotic Region

Table 1A shows the correlation values between tumour volume and necrotic regions
(poorly fitted pixels) from the 35 datasets using different models. A significant correlation
between tumour volume and the number of necrotic pixels was observed using the SSM
(r = 0.53, p < 0.001) and the 2CXM (r = 0.54, p < 0.001) model.

For F98 rat GBMs, the SSM and 2CXM models demonstrated an increasing trend
in the percentage of necrotic pixels due to JAS239 treatment from T3 to T8 compared to
control animals (Figure 3A). However, this increase was only statistically significant on T3
(p = 0.04).
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Figure 3. (A) Box plot for percentage change (with respect to baseline) in necrotic pixels in F98 rat
GBM with JAS239 (red) and saline (grey) treatment at different time points using the SSM and 2CXM
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mice GBM with regards to the number of pixels representing the necrotic pixels. The asterisk indicates
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There was an increasing trend in necrotic pixels with JAS239 treatment compared to
control in GL261 cases (Figure 3B).

Ktrans

As shown in Tables 1 and 2, no significant correlation between tumour volume and
clustered Ktrans pixels were observed using any of the models. Significant correlations were
also not observed between mean Ktrans value and tumour volume using any models as
shown in Supplementary Table S1.

For F98 rat GBMs, a significant decrease in NKtrans ,high was observed in control animals
(p = 0.02) between T3 and T8, respectively, using the 2CXM model, as shown in Figure 4. A
significant decrease in NKtrans ,high (p = 0.02) with a significant increase in NKtrans ,low (p = 0.04)
was observed on T3 in JAS239-treated as compared to control animals using SSM. A
significant decrease in NKtrans ,high (p = 0.02) was observed on T6 in JAS239-treated compared
to control animals using 2CXM. Supplementary Figure S2 shows the boxplots of percentage
change in the mean Ktrans showing a significant decrease (p = 0.02) on T6 using the SSM in
JAS239-treated as compared to control animals. This indicates a reduction of permeability
and perfusion of the tumour with JAS239 treatment.
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Figure 4. Box plot for percentage change (with respect to baseline) in NKtrans ,y (where y = low, med
and high) in F98 rat GBM with JAS239 (red) and saline (grey) treatment at different time points using
the SSM (top) and 2CXM (bottom) models, respectively. The asterisk indicates significant difference.

No significant change or trend was noticed for the GL261 mice treated with JAS239
(Figure 5 and Figure S4).
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Figure 5. Box plots showing percentage change (with respect to baseline) in GL261 mice GBM with
regards to the number of pixels representing the clustered parameters Ktrans and ve on the top and
Fp on the bottom (only the parameters that changed significantly from baseline values are shown).

Kep

No significant correlation between tumour volume and clustered Kep pixels were
found using any of the models (Tables 1 and 2). In terms of mean value, no significant
correlations were found between Kep and tumour volume using any model, as shown in
Supplementary Table S1.

For F98 rat GBMs, no significant change in NKep,y (where y = low, med and high) was
observed during treatment, as shown in Figure 6. Supplementary Figure S2 shows the



Cancers 2022, 14, 1223 10 of 18

boxplots of percentage change in the mean Kep using the SSM and 2CXM models after
treatment with JAS239 and saline. A significant decrease in mean Kep (p = 0.045 and 0.02)
was observed on T3 and T6 in JAS239 compared to control animals using SSM. A significant
reduction in mean Kep (p = 0.043 and 0.02) was observed on T3, and T6 in JAS239-treated
animals using the 2CXM.

Cancers 2022, 13, x  10 of 19 
 

 

For F98 rat GBMs, no significant change in 𝑁Kep,𝑦 (where 𝑦 = low, med and high) 

was observed during treatment, as shown in Figure 6. Supplementary Figure S2 shows 
the boxplots of percentage change in the mean Kep using the SSM and 2CXM models after 

treatment with JAS239 and saline. A significant decrease in mean Kep (p = 0.045 and 0.02) 
was observed on T3 and T6 in JAS239 compared to control animals using SSM. A signifi-

cant reduction in mean Kep (p = 0.043 and 0.02) was observed on T3, and T6 in JAS239-
treated animals using the 2CXM. 

 

Figure 6. Box plot for percentage change (with respect to baseline) in 𝑁Kep,𝑦 (where 𝑦 = low, med 

and high) in F98 rat GBM with JAS239 (red) and saline (grey) treatment at different time points 
using the SSM (top) and 2CXM (bottom) models, respectively. 

No significant change or trend in any of the parameters was observed for the GL261 
mice treated with JAS239. 

𝒗𝒆  

A significant negative correlation between 𝑁𝑣𝑒 ,𝑙𝑜𝑤  and tumour volume was found 

using TM (−0.43, p <  0.01) and ETM (−0.42, p <  0.01), as shown in Table 1C. A significant 

negative correlation between 𝑁𝑣𝑒 ,𝑚𝑒𝑑 and tumour volume was found using TM (−0.43, p 

<  0.01) and ETM (−0.43, p <  0.01) and the 2CXM (−0.52, p <  0.01) as shown in Table 2A. A 

significant positive correlation (r > 0.5, p <  0.001) between 𝑁𝑣𝑒 ,ℎ𝑖𝑔ℎ and tumour volume 

was found using all models as shown in Table 2B. In terms of mean value, no significant 
correlations were found between 𝑣𝑒  and tumour volume using any of the models as 
shown in Supplementary Table S1 suggesting the utility of the cluster analysis for as-

sessing intra-tumoural heterogeneity in extracellular-extravascular volume. 

For F98 rat GBMs, a significant increase in 𝑁𝑣𝑒 ,𝑙𝑜𝑤  was observed in JAS239-treated 

animals (p = 0.04) between T3 and T8 using 2CXM, as shown in Figure 7. A significant 

increase in 𝑁𝑣𝑒,ℎ𝑖𝑔ℎ (p = 0.04) was observed on T6 in JAS239-treated compared to control 

animals using 2CXM. A significant increase in mean 𝑣𝑒 (p = 0.043) was observed on T6 in 
JAS239-treated as compared to control animals and a significant decrease (p = 0.045) be-

tween T3 and T8 of JAS239 treatment was found using the SSM. A significant increase in 
mean 𝑣𝑒 (p = 0.02 and 0.02) was observed on T3 and T6 in JAS239-treated as compared to 
control group and a significant decrease (p = 0.03) between T3 and T8 of JAS239 treatment 

was found using the 2CXM, as shown in Supplementary Figure S3. This indicates reduced 
cell density with JAS239 treatment. 

Figure 6. Box plot for percentage change (with respect to baseline) in NKep,y (where y = low, med
and high) in F98 rat GBM with JAS239 (red) and saline (grey) treatment at different time points using
the SSM (top) and 2CXM (bottom) models, respectively.

No significant change or trend in any of the parameters was observed for the GL261
mice treated with JAS239.

ve

A significant negative correlation between Nve ,low and tumour volume was found
using TM (−0.43, p < 0.01) and ETM (−0.42, p < 0.01), as shown in Table 1C. A significant
negative correlation between Nve ,med and tumour volume was found using TM (−0.43,
p < 0.01) and ETM (−0.43, p < 0.01) and the 2CXM (−0.52, p < 0.01) as shown in Table 2A.
A significant positive correlation (r > 0.5, p < 0.001) between Nve ,high and tumour volume
was found using all models as shown in Table 2B. In terms of mean value, no significant
correlations were found between ve and tumour volume using any of the models as shown
in Supplementary Table S1 suggesting the utility of the cluster analysis for assessing
intra-tumoural heterogeneity in extracellular-extravascular volume.

For F98 rat GBMs, a significant increase in Nve ,low was observed in JAS239-treated
animals (p = 0.04) between T3 and T8 using 2CXM, as shown in Figure 7. A significant
increase in Nve ,high (p = 0.04) was observed on T6 in JAS239-treated compared to control
animals using 2CXM. A significant increase in mean ve (p = 0.043) was observed on T6
in JAS239-treated as compared to control animals and a significant decrease (p = 0.045)
between T3 and T8 of JAS239 treatment was found using the SSM. A significant increase in
mean ve (p = 0.02 and 0.02) was observed on T3 and T6 in JAS239-treated as compared to
control group and a significant decrease (p = 0.03) between T3 and T8 of JAS239 treatment
was found using the 2CXM, as shown in Supplementary Figure S3. This indicates reduced
cell density with JAS239 treatment.
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No significant change or trend was noticed for the GL261 mice treated with JAS239
(Figures 5 and S4).

vp

No significant correlation between tumour volume and clustered vp pixels were found
using any model (Tables 1 and 2). In terms of mean value, no significant correlations were
found between vp and tumour volume using any of the models, as shown in Supplementary
Table S1.

For F98 rat GBMs, no significant change in Nvp ,y (where y = low, med and high)
was observed during treatment, as shown in Figure 8. No significant change in mean vp
was observed between JAS239-treated and control animals, as shown in Supplementary
Figure S3.

No significant change or trend was observed for the GL261 mice treated with JAS239.

Fp

No significant correlation between tumour volume and clustered Fp pixels were found
using any model (Tables 1 and 2). In terms of mean value, no significant correlations were
found between Fp and increasing tumour volume using any of the models, as shown in
Supplementary Table S1.

For F98 rat GBMs, a significant increase in NFp ,low (p = 0.02) was observed on T3 in
JAS239-treated as compared to control animals using 2CXM and a statistically significant
decrease in NFp ,med (p = 0.02) and NFp ,high (p = 0.02) was observed on T3 in JAS239-treated
compared to control animals using 2CXM, as shown in Figure 8. Mean Fp decreased
significantly (p = 0.028) on T3 in JAS239-treated as compared to control animals, as shown
in Supplementary Figure S3. This indicates a reduction in perfusion with JAS239 treatment.

No significant change or trend was noticed for the GL261 mice treated with JAS239
(Figures 5 and S4).

τi

As shown in Tables 1 and 2, no significant correlation between the tumour volume
and clustered τi pixels were found using any of the models. In terms of mean value, no
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significant correlations were found between τi and tumour volume using any of the models
as shown in Supplementary Table S1.

For F98 rat GBMs, no significant change in Nτi ,y (where y = low, med and high)
was observed during treatment, as shown in Figure 8. No significant change in mean τi
was observed between JAS239-treated and control animals, as shown in Supplementary
Figure S3.

No significant change or trend was noticed for the GL261 mice treated with JAS239.
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Figure 8. Box plot for percentage change (with respect to baseline) in Nτi ,y (where y = low, med and
high) (top) in F98 rat GBM with JAS239 (red) and saline (grey) treatment at different time points
using the SSM model. The differences in the Nvp ,y using 2CXM model are shown in the middle
and differences in the NFp ,y using 2CXM model are shown in the bottom. The asterisk indicates
significant difference.

3.2. Tumour Volume

At the end of treament day (T6), the percent change with respect to baseline in tumour
volumes in JAS239-treated animals was compared to control animals. For F98 rat GBMs,
the control saline treated animals demonstrated a statistically significant increase (p = 0.033)
in tumour volume as compared to JAS239-treated animals (Figure S5). For GL261 mice
GBMs, the control saline treated mice also showed a larger increase in tumour volume as
compared to JAS239-treated animals (Figure S5). However, the increase was not statistically
significant.

4. Discussion

Using different pharmacokinetic models, our study demonstrated the utility of the
clustering approach in evaluating tumour haemodynamic heterogeneity in the F98 and
GL261 GBMs. A correlation between the tumour volume and clustered pharmacokinetic
markers clearly demonstrated hemodynamic variations within the tumour. We further
showed that the clustering algorithm could assess treatment induced changes in the F98
and GL261 GBMs.
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GBMs are highly heterogeneous and hypoxic compared with other brain tumours, ex-
hibiting considerable variation in the microvascular structure [45,47]. The spatial variations
may change during tumour growth [45] or with treatment. Imaging-based biomarkers
have the potential to evaluate intra-tumoural heterogeneity and its relationship to tumour
growth and response to therapy [26,48]. MRI is a useful modality for evaluating spatial
and temporal variations in alterations in the biologic characteristics of tumours that may
include changes in apoptosis, cellular proliferation, cellular invasion, and angiogenesis [49].
If MRI features of the tumour correlate with genetic characteristics, it may be possible to
noninvasively identify tumour genetic features [49]. Contrast enhancement on DCE-MRI
results from the breakdown of the blood–brain barrier and can be used to identify areas
of necrosis. In addition, physiologic characteristics such as apparent diffusion coefficient
and perfusion have been found to correlate to tumoural cellularity and angiogenesis [49].
The spatial distribution of DCE-MRI-based perfusion parameters within the tumour area is
a very important tool allowing for the assessment of the angiogenic compositions of the
tumour [22,23]. The profound intra-tumour vascular heterogeneity in GBMs is due to aber-
rant microvasculature and inefficient nutrient delivery [50]. In this study, we demonstrated
segregation of the heterogeneous regions of the GBM, including the existence of necrotic
regions with the help of DCE-MRI-based pharmacokinetic parameters. As the tumour
volume increased, a significant increase in the number of necrotic pixels was observed,
indicating a decrease in vascular density and an increase in de novo cell death. This is
because the tumour parenchyma outgrows the vascular network [51]. Few studies have
also reported that DCE-MRI can be used to assess intra-tumour heterogeneity [52,53] and
that a variation in Ktrans between and within tumours is not related to tumour size [52].
When the mean value of the parameters Ktrans, ve, Kep, vp , τi , Fp were used, we also did not
observe any significant correlation with tumour volume. This suggests that the mean values
fail to reflect tumour heterogeneity, which is an essential feature for assessing treatment
since it can identify the sub population of cells that are underperfused and likely to be
treatment resistant.

Automatic segmentation into informative subregions (“habitats”) within tumours can
be linked to underlying tumour pathophysiology [26]. Deep learning methods do not
require accurate segmentation; it creates their features through multiple layers of learn-
ing [54]. For medical images, convolutional neural networks (CNNs) and unsupervised
methods are commonly used for dividing data into groups, or clusters, with similar proper-
ties. Clustering of the image voxels has been done before based on the pharmacokinetic
parameters [55]. We used a similar hierarchical clustering to assess tumour haemodynamic
heterogeneity without introducing a bias typically introduced while using an ROI-based
approach.

Correlation analysis was performed to assess the relationship between the number of
pixels representing a cluster in the DCE parametric maps with tumour growth. Although
we did not find any significant correlation between tumour growth and NKtrans ,y using any
of the models, we did observe a significant correlation between Nve ,y and tumour growth.
A significant increase in the number of necrotic pixels, a significant negative correlation
between Nve ,low and a significant positive correlation between Nve ,high with increasing
tumour volume indicates decreased vascular density with tumour growth. Based on
Pearson’s correlation coefficient and R2, the SSM and the 2CXM models were selected to
detect changes in Ktrans, ve, Kep, vp , τi , Fp in the tumours with JAS239 treatment.

The relationship between DCE-MRI parameters (essentially Ktrans, which reflects the
effectiveness of the delivery of oxygen and therapeutic agents between the plasma and
interstitial space of the tumour) and clinical outcome following treatment has been eval-
uated before [56]. Studies on hepatocellular and renal cancer suggest that both a higher
Ktrans at baseline and an early reduction of Ktrans are significantly associated with im-
proved outcomes following anti-angiogenic treatment [57–61]. Decrease in permeability
has been found to be predominant response of tumour vasculature to bevacizumab ther-
apy in GBMs [62]. GBM patients who underwent DCE-MRI prior and up to 96 h after
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initialisation of bevacizumab (BEV) treatment showed early reduction in Ktrans (measured
96 h after treatment initialisation) but did not correlate with overall survival. The extent
of early reduction in Ktrans following treatment initialisation with BEV and dose-intense
temozolomide did not have an impact on disease outcome in recurrent GBM [63]. However,
another study in patients with recurrent GBM showed that a greater reduction in Ktrans was
associated with a significantly longer overall survival [64]. Human renal cell carcinoma
xenograft models showed temporal changes following treatment with sorafenib. Ktrans was
significantly decreased compared with baseline values as early as three days after the start
of sorafenib [65]. ve has been proven clinically important in assessing tumour response
to treatment [66]. Increase in ve at an early stage of chemoradiotherapy in cervical cancer
patients has also been reported [66].

In this study, we also observed early changes in pharmacokinetic parameters in
response to treatment with JAS239 in F98 rat GBMs. A significant decrease in NKtrans ,high
(using SSM) and NFp ,high (using 2CXM) along with a significant increase in NKtrans ,low (using
SSM) and NFp ,low (using 2CXM) during treatment (T3) suggests therapy induced acute
changes in tumour permeability and perfusion. The change in Fp in the present study
suggests that tumour perfusion, apart from endothelial permeability, is critical to delivering
therapeutic agents. A significant decrease in NKtrans ,high using the 2CXM model and mean
Ktrans using SSM on T6 with JAS239 suggests a sustained decrease in permeability and
perfusion until the end of treatment. A significant increase in Nve ,high using 2CXM on T6
suggests reduced cell density with JAS239 treatment and could be theoretically interpreted
as increase in extracellular fluid levels due to the disintegration of tumour cell membranes.
Kep calculated as a ratio between Ktrans and ve did not provide any unique information,
but a decrease in mean Kep was observed with JAS239 treatment. No significant change
in vp was observed which is somewhat surprising because new blood vessel proliferation
in GBM results in increased vascular density. This will require further investigation with
larger sample size and histological validation.

Although τi has been suggested to be a reliable marker of metabolic activity [16], we
did not observe any significant changes in this parameter with ChoK inhibition. Although
we observed treatment response in terms of early changes in reduction of permeability and
perfusion along with reduced cell density with treatment in the F98 cases, no significant
differences in these parameters was found for the GL261 tumour, indicating that the GL261
model may be highly resistant to treatment with regards to changes in vascular parameters.
These findings agree with a previous study [31], where an anti-vascular agent (BEV) was
used for treatment in this model. Response to treatment is associated with change in
tumour volume [67–70]. Both the tumour models demonstrated a trend in reduction of
tumour volumes with treatment with a significant reduction in the F98 cases.

Our results also demonstrated that the overall trend in percentage change of the
pharmacokinetic parameters followed the same pattern using SSM and 2CXM, which were
chosen for monitoring treatment response based on high mean R2 in the tumour ROI and a
significant increase in the number of necrotic pixels with an increase in tumour volume
along with a decrease in high Ktrans pixels with increase in tumour volume, suggesting that
these models provide similar assessment of the haemoynamic parameters.

Limitations

The significance levels in various parameters were different, which may have been due
to the lower number of animals for the treatment studies. Some technical limitations of this
work include analysing data with a fixed T1 value for which the information was obtained
from a small subset (due to scan time constraints) out of the total number of F98 rat GBMs
used. Moreover, due to scan time constraints, B1 mapping for bias correction in estimation
of the variable flip angle based T1 maps was not performed in this study (for GL261 mouse
GBMs). In addition, the use of population AIF does not consider the individual variations
and might lead to biased estimation of the parameters. Another limitation of the study is
the low number of animals used for monitoring the treatment response and the absence of



Cancers 2022, 14, 1223 15 of 18

histopathological results to confirm the imaging findings. Correlating the findings from
MRI with histopathological data can provide better confirmation of the findings. Future
studies will focus on deteremining an optimal combination of the pharmacokinetic models
to fit all the tumour pixels. In addition, we plan to perform the clustering approach based
on the optimal combination of these models for better accuracy in identifying tumour
haemodynamic heterogeneity.

5. Conclusions

In conclusion, this study demonstrates that the clustered DCE-MRI-based pharma-
cokinetic parameters generated using different models correlate with tumour volume and
may be used for detecting and assessing early therapeutic response. The 2CXM and SSM
models were found to be best to monitor treatment response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14051223/s1, A1: DCE data analysis, Figure S1: An example of fitting tumour tissue
(mean across tumour ROI) from F98 rat GBM (Original: blue, fitted: red) with SSM and the AIF
(yellow) is fitted using hybrid bi-exponential and gamma variate model fitting, Table S1: Pearson’s
correlation (r) for tumour volume vs. mean of parameters, Figure S2: Box plot for percentage change
(with respect to baseline) in mean Ktrans (left: top and bottom) in F98 rat GBM with JAS239 (red)
and saline (grey) treatment at different time points using the SSM and 2CXM models, respectively.
The differences in the mean Kep are shown in the right (top and bottom), Figure S3: Box plot for
percentage change (with respect to baseline) in mean ve (left: top and bottom) in F98 rat GBM with
JAS239 (red) and saline (grey) treatment at different time points using the SSM and 2CXM models,
respectively. The same for mean τi (right: top) using SSM. Box plot for percentage change in mean vp
(right: bottom) with JAS239 (red) and saline (grey) treatment at different time points using the 2CXM
model. The same for mean Fp (bottom) using the 2CXM, Figure S4: Box plots showing changes (with
respect to baseline) in DCE parameters in GL261 mice GBM with JAS239 treatment A. Percent change
in mean Ktrans with respect to baseline values in JAS239 (red) and saline (grey) treatment at different
time points using the SSM and 2CXM models. B. Same for ve C. mean τi using SSM, or D. mean Fp
using 2CXM, Figure S5: Box plots comparing percentage change (with respect to baseline) in tumour
volume between JAS239 (red) and control (grey) groups in F98 rat and GL261 mice GBMs.
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