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Abstract: Among marine organisms, sponges are the richest sources of pharmacologically-active
compounds. Stemming from a previous lead discovery program that gathered a comprehensive
library of organic extracts of marine sponges from the off-shore region of Portugal, crude extracts
of Erylus cf. deficiens collected in the Gorringe Bank (Atlantic Ocean) were tested in the innovative
high throughput screening (HTS) assay for inhibitors of indoleamine 2,3-dioxygenase (IDO) and
showed activity. Bioassay guided fractionation of the dichloromethane extract led to the isolation
of four new glycolipids, named erylusamide A-D. The structures of the isolated compounds
were established by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, high-resolution
electrospray ionization mass spectrometry (HR-ESI-MS) and chemical derivatization. The metabolites
shared a pentasaccharide moiety constituted by unusual highly acetylated D-glucose moieties as well
as D-xylose and D-galactose. The aglycones were unprecedented long chain dihydroxyketo amides.
Erylusamides A, B and D differ in the length of the hydrocarbon chain, while erylusamide C is a
structural isomer of erylusamide B.

Keywords: Erylus; indoleamine 2,3 dioxygenase; glycolipids; marine natural products; sponges;
anti-cancer; erylusamides

1. Introduction

The secondary metabolites found in marine invertebrates represent a rich source of novel
chemical diversity for lead compounds, with sponges being the most prolific source of new molecules.
Between these structurally unique metabolites, glycolipids play an important role. Glycolipids belong
to the broad class of glycoconjugates and are characterized by having one or more monosaccharide
residues linked by a glycosidic bond to a hydrophobic moiety, such as an acylglycerol, a sphingoid,
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or a prenyl phosphate [1]. Glycolipids, including glycosphingolipids and gangliosides, are widely
found in marine invertebrates, especially in echinoderms (sea stars, sea cucumbers) and sponges,
and show a large variety of biological activities such as antitumor, immunomodulatory and nitric
oxide release-inhibiting activities [2].

Sponges of the genus Erylus Gray, 1867 (Tetractinellida, Geodiidae) were reported to produce
uncommon phospholipid methyl branched fatty and unusual glycolipids, some of which have
interesting pharmacological activities, such as anticancer and interleukin-6 (IL-6) receptor antagonists
(Table 1). The same type of glycolipids found in Pachymatisma johnstonias, a species that belongs to the
same family of Erylus, showed inhibitory activity of bacterial type III secretion [3].

Table 1. Glycolipid and lipid content of Erylus and Pachymatisma species.

. . Compounds
Sponge/Origin - - — - — - - — - — - — — - — - — - — % Aclivig T oo
Fatty acid: Methyloctadecanoic
Tetradecanoic 5,9-Icosadienoic
13-Methyltetradecanoic 19-Methyl-5,9-icosadienoic
12-Methyltetradecanoic 18-Methyl-5,9-icosadienoic
3-Methylpentadecanoic Heneicosanoic
Hexadecenoic Tricosanoic
Erylus formosus Methylpentadecanoic Tetracosanoic
La Parguera, Hexadecanoic Pentacosanoic
Puerto Rico [4] 3-Methylhexadecanoic 24-Methyl-5,9-pentacosadienoic
15-Methylhexadecanoic 5,9-Hexacosadienoic
14-Methylhexadecanoic 25-Methyl-5,9-hexacosadienoic
5,9-Octadecadienoic 24-Methyl-5,9-hexacosadienoic
Octadecenoic 5,9-Octacosadienoic
Octadecanoic 5,9-Nonacosadienoic
NR
Fatty acid:
Tridecanoic (5Z,97)-2-Methoxy-5,9-nonadecadienoic
12-Methyltridecanoic 11-Eicosenoic
Tetradecanoic Eicosanoic
3-Methyltetradecanoic (5Z,97)-19-Methyl-5,9-eicosadienoic
13-Methyltetradecanoic (5Z,97)-18-Methyl-5,9-eicosadienoic
12-Methyltetradecanoic Methyleicosanoic
9-Pentadecenoic (57,97)-5,9-Heneicosadienoic
Pentadecanoic 19-Methyleicosanoic
3-Methylpentadecanoic 18-Methyleicosanoic
14-Methylpentadecanoic (56Z,9Z)-2-Methoxy-5,9-eicosadienoic
13-Methylpentadecanoic 11-Nonadecenoic
(Z)-9-Hexadecenoic Nonadecanoic
(Z)-11-Hexadecenoic 5,8,11,14-Eicosatetraenoic
Hexadecanoic Docosanoic
(Z)-15-Methyl-9-hexadecenoic 16-Methyldocosanoic
10-Methylhexadecanoic 21-Methyldocosanoic
- 15-Methylhexadecanoic 20-Methyldocosanoic
E;%l:; ag ;)g:rlfsn 14-Methylhexadecanoic Tricosanoic
(Puerto Rico) [5] (5Z,9Z)-2-Methoxy-5,9-hexadecadienoic Methyltricosanoic
(2)-9-Heptadecenoic Tetracosanoic
(Z)-11-Heptadecenoic Methyltetracosanoic

Heptadecanoic
(5Z,9Z)-2-Methoxy-15-methyl-
5,9-hexadeca-dienoic
Methylheptadecanoic
(52,97)-5,9-Octadecadienoic
(9Z)-2-Methoxy-15-methyl-9-hexadecenoic
(Z)-9-Octadecenoic
(Z)-11-Octadecenoic
2-Methoxy-14-methylhexadecanoic
Octadecanoic

Methyl-6-octadecenoic
(5Z,97)-17-Methyl-5,9-octadecadienoic
11-Methyloctadecanoic
(5Z,97)-2-Methoxy-5,9-octadecadienoic

(5Z,97)-24-Methyl-5,9-pentacosadienoic
(5Z,97)-23-Methyl-5,9-pentacosadienoic
(52,97)-5,9-Hexacosadienoic
(56Z,97)-25-Methyl-5,9-hexacosadienoic
(5Z,9Z)-24-Methyl-5,9-hexacosadienoic
(5Z,97)-5,9-Heptacosadienoic
(5Z,9Z)-26-Methyl-5,9-heptacosadienoic
(5Z,97)-25-Methyl-5,9-heptacosadienoic
(5Z,97)-5,9-Octacosadienoic
(52,9Z)-5,9-Nonacosadienoic
Methylnonadecanoic
17-Methyloctadecanoic
16-Methyloctadecanoic
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Table 1. Cont.

Sponge/Origin =~ - - — - — — — - - — - - — - - — - - -~ kan;% %‘1%1,‘15 ,,,,,,,,,,,,,,,,,,,,,,,,,
Erylusamine A: ’ o o
Rl = CH2CH2CH3, Rz =H (H3C)2N o~ ~UN A . R
Erylusamine B: ) OAc :
0 H
Erylus placenta Ry T CHZ.CH(¢H3)2' R;=H Aco%ﬂwo o s
Hachijojima Island ~ Erylusamine C: A ore
(Japan) [6,7] Ry = CH,CH(CH3)2 R = Ac ro .

Erylusamine D:
R1 = CH2CH2CH2CH2CH3 Rz =Ac

Erylusamine TA:
Ry = Ac; Ry = (CH2)5N(CH3); R3 = H,
n=8 m=2
Erylusine:
Erylus cf. Lendenfeidi X1 A¢ Ro = (CH2)sNCH3(CH2)4N(CHa)o;
Guilf of Eilat Ry=Hn=8m=2

(Red sea) [8] Erylusidine
Rl = H; Rz = (CH2)4NHC = NH(NHZ),

Rs = COCH,CH(CHa),,

Erylus trisphaerus Trisphaerolide
Dominica [9]

Low in vitro cytotoxicity against MCF7 human breast cancer cells

OAc OH
OAc
0O, o] OH
, ngmﬁm A W on
Pachymatisma Pachymoside A o Hod\ o1 N
(o]

johnstonia Isle of aco | oA CH3 0
Mann (UK) [3]

AcO | ffOAc

Crude extract showed inhibitory activity of bacterial type III secretion

NR: not reported.

Indoleamine 2,3-dioxygenase (IDO1), formerly known as IDO before the discovery of a second
isoform, is the first and rate-limiting enzyme in the oxidative degradation of the essential amino
acid tryptophan through the kynurenine pathway and plays a role in the control of infection and in
evasion of T-cell-mediated immune rejection [10]. It is believed that IDO1 inhibits the proliferation and
differentiation of T cells, which are sensitive to the degradation of tryptophan and accumulation of its
catabolites. IDOL1 is overexpressed in a variety of tumor cell types and acts against the T-cell attack,
thus facilitating the growth and survival of malignant cells [11]. For these reasons, IDO1 has emerged
as a key target in cancer immunotherapy. Several inhibitors have been synthesized and proved to
be efficient, alone or in combination with other therapeutics. However, by 2014, the pipeline of IDO
inhibitors comprised only four drug candidates: indoximod, epacadostat, NLG919 and an IDO derived
peptide [12]. Indoximod (D-1-methyl-tryptophan) is being tested in combination with other drugs in
several phase I and II clinical trials. Epacadostat (INCB024360), an hydroxyamidine that targets and
binds to IDO1 is now in several phase I and II clinical trials [13]. NLG919 is an imidazoleisoindole
derivative undergoing phase I clinical trials in the treatment of recurrent advanced solid tumors
alone or in combination with other drugs. After the human IDO1 structure was determined by X-ray
crystallography in 2006, several synthetic inhibitors were developed based on the structure of the
active-site [14]; however, to the best of our knowledge, no comprehensive screening of compounds
(or extracts) from marine origin was ever undertaken.

With that background in view, in a previous project, we have undertaken a comprehensive
screening of crude extracts of sponges from the Portuguese coast using the Blockade application
of GPS D? High Throughput Screening (HTS) system that uses the human version of indoleamine
2,3-dioxygenase 1 (IDO1) as therapeutic target [15]. This paper describes the isolation and structure
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determination of four new glycolipids, named erylusamides A-D, compounds 1-4 (Figure 1), found in
the IDO'’s inhibitor organic extract of Erylus cf. deficiens Topsent, 1927.

\”)\ )J\/\/\u 5 /\/\/\)b\(CHz)/\\/\\/ R

Ot

(1) Erylusamide A: n=4, R'=(CH,),CH,4
OAc (2) Erylusamide B: n=>5, R'=(CH,);CH,
H HO. 11 o (3) Erylusamide C: n=5, R'=CH,CH(CHj;),
\ H OAc (4) Erylusamide D: n= 6, R'=(CH,);CH,;
AQ & 1 Ac H H H
H Ao OAc

Figure 1. Structures of erylusamides A-D.

2. Results and Discussion

Within the scope of a previous drug discovery campaign, a comprehensive library of 185 organic
extracts of sponge specimens collected in several off-shore Portuguese locations (Berlengas, Azores
and Gorringe bank) was constructed. The extracts were screened as modulators of proteins involved
in cancer and neurodegenerative diseases using the Global Platform Screening for Drug Discovery
(GPS D2) technology developed by the Portuguese biotech company BIOALVO (Lisbon, Portugal),
which uses modified Saccharomyces cerevisiae strains designed to express specific targets involved in
diseases with a tremendous social and economic burden. BIOALVO’s BLOCKADE application, which
targets compounds able to inhibit the enzyme indoleamine 2,3 dioxygenase (IDO-1), was selected to
first test the extracts. Extracts were considered positive if they inhibited the growth of BLOCKADE
yeast >60% [15]. In the BLOCKADE screening, the dichloromethane extract of the marine sponge
Erylus cf. deficiens collected in the Gorringe Bank (Atlantic Ocean) tested positive at a concentration of
0.125 mg/mL. The activity of this extract was confirmed using an additional assay with African green
monkey kidney fibroblast COS7 cells transfected with IDO, revealing an IDO inhibitory activity of
80%. The organic extract was further separated by flash chromatography on C18 reverse phase silica
gel (RP-18) into eleven fractions, one of which (fraction 2) conserved the activity of the original extract,
inhibiting kynurenine production by 80% at the same concentration.

'H nuclear magnetic resonance (NMR) spectrum of fraction 2 (150 mg) revealed complex signals
belonging to sugar components between 6 6.4 and 3.5 ppm, together with aliphatic resonances, due to
a lipid moiety in the upfield region of the spectrum, thus suggesting the occurrence of a series of
glycoconjugates. Hence, as a first step in the structure elucidation of the bioactive components, a
methanolysis reaction was performed on an aliquot of the mixture to liberate the aglycone from
the monosaccharide pool. Methyl glycosides were converted into the corresponding trimethylsilyl
(TMS) derivatives [16] and analysed by GC-MS in comparison with authentic standards. According to
retention time and characteristic MS fragmentation patterns, monosaccharide units were identified as
D-xylose, D-glucose and D-galactose. On the other hand, aglycones showed IR bands at 3349, 1740,
1701 and 1636 cm ™!, suggesting the presence of hydroxyl, ester, ketone and amide functionalities,
which were confirmed by NMR data. Separation of individual components was achieved by RP-HPLC
on a phenyl-hexyl column (Phenomenex) affording 1-4 (Figure 1), as pure compounds, here named
erylusamides A-D. High-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analysis
in negative ionization polarity revealed that compounds 14 constituted a series of homologous
compounds displaying molecular mass ions at m/z 1782.8345, 1796.8515, 1796.8434 and 180.8644.
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Erylusamide A (1) gave a molecular ion [M — H]™ at m/z 1782.8345, which accounts for the
molecular formula CgzH133NOyg requiring 18 degrees of formal unsaturation. 1D and 2D-NMR
data (Tables 2 and 3) revealed diagnostic signals of an oligosaccharide moiety composed of five
sugar residues, and of a polyketide aglycone displaying three carbonyl signals at  210.5, 174.9 and
173.2 ppm in the 13C NMR spectrum. Several different spin systems were identified in the aglycone
moiety through COSY and HSQC-TOCSY connectivities, and joined by HMBC correlations (Figure 2).
In particular, one terminal end of the aglycone polyketide chain was assigned to a N-methylalanine
substructure. In fact, a deshielded signal at  5.75 (H-2/, q) was coupled in the COSY spectra with
a methyl doublet at 5 1.54 (H3-4'), as well as in the HMBC spectra, and showed correlations with
a carboxyl function at § 174.9 ppm (C-1') and a methyl carbon on a nitrogen atom at § 31.5 ppm
(C-3'). In turn, the corresponding proton of this later signal was coupled to the carbonyl group at
§173.2 ppm. The N-methylalanine moiety displayed two sets of signals (ratio 3:1) in 'H NMR spectrum
of 1, consistent with a syn/anti rotamer equilibrium typically observed with tertiary amides [17],
the major conformer being the syn one as deducted from the NOESY correlation H-2 and H-3'. Indeed,
this phenomenon was also observed for structurally related pachymoside A, a glycolipid isolated from
the marine sponge Pachymatisma johnstonia [3].

Table 2. NMR data for the aglycone ? moieties of erylusamides A-D (1-4) in pyridine-ds.

1 2 3 4
N° 513C '5(]1’1'1311)“ N° 513C 6(;11_ng];1 N° s13C B(Il,lil-llzl;l N° s13C 5(;,1:1:;;1
) 173.2 - 1 173.2 - 1 173.2 - 1 173.2 -
173.1 - 173.1 - 173.1 - 173.1 -
2 33.8 243, m 2 33.8 243, m 2 33.8 243, m 2 33.8 243, m
3 25.5 1.81, m 3 25.5 1.81, m 3 25.5 1.81, m 3 25.5 1.82, m
4 29.7 1.38, m 4 29.8 1.38, m 4 29.8 1.39, m 4 29.7 1.38, m
5-12  29.6-29.9 &iﬁaf 5-12  29.6-29.9 &i‘r}af 5-12  29.7-29.9 &i‘jﬁf 5-12  29.6-29.9 1()119.9;};)3
13 29.6 1.28, m 13 29.6 1.28, m 13 29.6 1.28, m 13 29.6 1.28, m
14 24.2 1.64, m 14 24.2 1.64, m 14 24.2 1.64, m 14 24.2 1.65, m
15 428 242, m 15 27 242, m 15 428 242, m 15 428 242, m
16 210.5 - 16 210.5 - 16 210.5 - 16 2105 -
17 28 242, m 17 27 242, m 17 428 242, m 17 428 242, m
18 24.2 1.64, m 18 24.2 1.64, m 18 24.2 1.64, m 18 24.2 1.65, m
19-23  29.6-29.9 1()12;}:}3 19-24  29.6-29.9 1(‘)151;11;3 19-24  29.7-29.9 10'15;1:; 19-25  29.7-29.9 gfe‘rlls
24 29.7 1.83, m 25 29.7 1.82, m 25 29.7 1.81, m 26 29.7 1.83, m
25 74.9 5.53, m 26 74.9 553, m 26 74.9 554, m 27 74.9 5.54, m
AcO  169.7* AcO  169.7* AcO  169.7* AcO  169.7*
26 80.7 4.03, m 27 80.8 4.03, m 27 80.7 4.03, m 28 80.8 4.05, m
27 30.9 1.79, m 28 30.9 1.79, m 28 39.1 1.16, m 29 30.9 1.80, m
28 320 1.23, m 29 320 1.23, m 29 28.2 1.51, m 30 32.0 1.25, m
29 228 1.28, m 30 228 1.28, m 30 228 0.85, d (6.0) 31 229 1.27, m
30 14.7 0.84, t (7.0) 31 14.2 0.86, t (6.5) 31 228 0.85, d (6.0) 32 14.2 0.86, t (6.6)
32 2.8 0.85, d (6.0)
v 174.9 - v 174.9 - v 174.9 - v 175.0 -
174.5 - 174.5 - 174.5 - 174.6 -
5 52.7 5.75,q (7.2) 5 06 5.74,q (7.3) » 52.7 5.74,q (7.3) 2 52.7 5.75,q (7.3)
55.8 4.97,q(7.3) 4.97,q (7.4) 55.7 4.97,q(7.3) 55.8 4.97,q(7.2)
5 315 3.06, s 5 315 3.06, s 5 315 3.06, s 5 315 3.07,s
28.9 3.14,s 28.9 3.13,s 289 3.14,5 289 3.15,5
v 15.0 1.54,d (7.3) g 15.0 1.55,d (7.3) g 15.0 1.55,d (7.3) v 15.0 1.54,d (7.4)
16.0 1.60, d (7.2) 16.0 1.69,d (7.1) 16.0 1.60, d (7.3) 16.0 1.61,d (7.2)

# duplicated values correspond to the major syn and minor anti rotamers respectively; * Overlapped with
C-4 Gle3.
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Table 3. NMR data for the carbohydrate moieties of erylusamides A-D (1-4) in pyridine-ds.

1 2 3 4
Position = e S H,m(,Hz  5°C  5'H,m(,Hz 5P°C 5'H,m(,H» 5°C  5'H m(,Ho)
Gal
1 104.4 5.16,d (7.5) 104.4 5.16,d (7.7) 104.4 5.15,d (7.6) 1044 5.16,d (7.7)
2 70.7 454, m 707 453, m 70.7 453, m 70.72 453, m
3 84.4 424, m 843 425, m 843 425, m 84.32 424, m
4 69.0 4.70, brs 68.9 471, brs 68.7 471, brs 68.91 472, brs
5 773 421, m 774 420, m 773 421,m 77.27 420, m
438, dd 616 438,dd 438, dd 438, dd
e e Gho o G e cnie
(6.8;10.6) (6.9;10.6) (6.7;10.9) (6.9;10.6)
Xyl
1 1032 4.90,d (7.3) 1032 489,d (7.3) 1032 490, d (7.6) 1032 490, d (7.4)
2 783 422,m 782 422,m 78.3 421, m 783 421, m
3 88.2 425, m 88.1 424, m 88.0 424, m 88.0 426, m
4 69.0 400, m 68.9 3.99, m 69.0 3.99, m 69.0 400, m
C e W e R e R e
Glcl
1 1046 4.86,d (7.9) 1046 487,d (7.8) 1046 4.88,d (8.0) 1046 487,d (8.0)
2 74.9 397, m 74.6 3.96, m 74.6 397, m 74.6 398, m
3 76.6 418, m 76.6 418, m 76.6 418, m 76.6 418, m
4 81.9 3.97,m 81.8 397, m 81.9 3.97, m 81.9 397, m
5 73.0 409, m 729 408, m 73.0 410,m 73.0 411, m
¢ e3 Glgm  ®3 gim e gen e g
Ac(C-6) 1710 - - 1710 1710 -
Glc2
1 1028 5.55,d (8.0) 1028 5.55,d (8.2) 1028 5.55,d (8.5) 1028 5.55,d (8.1)
) 722 548, dd 722 5.47,dd 722 5.48,t 721 548, dd
(82;9.5) (8.4;9.3) 9.3) (8.4,9.3)
735 5.78, £ (9.6) 735 5.78, 1 (9.6) 735 5.78,t(9.9) 734 5.78,t(9.5)
4 69.4 5.42,t(9.8) 69.4 542,1(9.7) 69.4 5.42,t(9.7) 69.4 542,1(9.7)
5 721 422,m 721 421, m 721 422,m 721 422, m
62.7 432,dd 62.7 432,dd 62.6 431,dd 62.7 431,dd
] 23;12.1) 2.1;11.8) (~2;11.8) (2.312.1)
451,dd 450,dd, 452,dd 451,dd
(5.4;12.1) (5.3;12.0) 4.8;11.8) (5.4;12.1)
Ac(C2) 1702 R 1702 ; 1702 R 1702 ;
Ac(C-3) 1701 - 170.1 ; 1722 ; 1702 ;
Ac(Ch) 1698 . 169.9 ; 169.9 . 169.9 ;
Ac(C-6) 1704 . 1705 ; 1705 . 1705 ;
Glc3
1 99.6 6.37,d (7.9) 99.6 6.35,d (8.0) 99.6 6.36,d (7.6) 99.6 6.36,d (7.9)
2 723 5.62,m 722 561, t (10) 722 5.62,m 722 562, m
3 73.7 5.90, t (9.4) 73.7 5.89,t(9.5) 73.7 59, (9.3) 73.7 5.90, t (9.5)
4 69.7 5.58, m 69.7 5.56, m 69.7 5.56, m 9.7 5.56, m
5 723 393, m 722 392, m 722 392, m
] 625 419, m 625 456, m 624 419, m 624 418, m
457,m 418, m 456, m 457, m
AdC2) 1696 - 169.6 ; 169.7 - 169.7 -
AdC3) 1705 - 1705 - 1705 - 1705 -
AcC-0) 1697 R 169.7 - 169.8 - 169.7 -

Ac(C-6) 170.2 - 170.4 - 170.4 - 170.4 -
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___________________________________

_________________

Figure 2. Key HMBC (red ashes) and HSQC-TOCSY (blue lines) correlations establishing the structure
of the aglycone moiety.

The presence of two vicinal oxymethine groups constituting an isolated stereocluster was the
most striking feature of the aglycone moiety. In the HSQC spectrum, the crosspeaks at 5 80.7/6 4.03
and & 74.9/6 5.53 suggested the presence of two non-equivalent secondary O-substituted alcohols.
An HMBC cross-peak was observed between the proton at § 4.03 and the carbon at 5 74.8 ppm.
However, no COSY correlation was observed between the two oxymethine signals suggesting that the
dihedral angle between the two protons should be around 90° [18]. These data were consistent with
a vicinal diol, with one hydroxyl group acylated and the other one linked to a sugar moiety [19,20].
Furthermore, a connection could be assigned between this diol moiety and terminal n-butyl, as depicted
from the H2B crosspeak between C-26 (5 80.7) and the proton at 6 1.79 ppm (H-27), as well as
HSQC-TOCSY long range correlations 30.9 — 32.0 — 22.8 — 14.7 — 0.84. The remaining deshielded
signal at 6 210.5 corresponded to an aliphatic symmetrical ketone, as deduced from the HMBC
correlation with two separated CHj signals at 6 2.42 (4H) and 1.64 (4H) ppm. Compound 1 was
methanolysed to liberate the aglycone methyl ester (compound 5, Figure 3), which was further
converted in the corresponding acetonide, and their MS and NMR spectra (see Sections 3.4 and 3.7)
analysed and compared with those of compound 1. Compound 5 showed a molecular adduct ion
[M + Na]* at m/z 620.5 (Figure 3) compatible with the methyl ester of the deacetylated free aglycone.
Comparison of this result with the ones obtained from MS analysis of compound 1 confirmed the
presence of an acetyl group on the aglycone moiety: the MS/MS data on molecular ion [M — H]™ at
m/z 1782.8 of compound 1 showed a fragment ion at m/z 624.5, due to the loss of the oligosaccharide
portion, compatible with an monoacetylated aglycone moiety. Additionally, a detailed analysis of
tandem mass spectrometry (ESI*-MS/MS) data (Figure 3) obtained on the aglycone methyl ester 5,
at m/z 620.5, suggested the location of the carbonyl function at C-16 in the aliphatic chain. In fact,
product ion spectra contained diagnostic ions at m/z 265.3 [C15H300; + Na]* and 390.3 formally
arising from «-cleavage of the carbonyl group. Furthermore, a fragment ion at m/z 138.1 confirmed
the presence of the N-methylalanine moiety.

Finally, analysis of NMR spectra of the acetonide 6 (see Section 3.7) confirmed the occurrence and
relative stereochemistry of the 1,2 diol system: the two oxymethine protons at 5 3.72 and 3.74 were
coupled by H2BC to the downfield shifted carbons at 6 81.4 and 1.5, respectively, as well as by HMBC
with the oxygenated carbon signal at 6 107.8, bearing, in turn, the two acetonide methyl groups at
5 1.50). According to the carbon chemical shifts of these methyl groups of 6, overlapping at 27.0 ppm,
the relative stereochemistry of the 1,2-diol was proposed as threo. [21-23].

138.1 390.3
20 _: S
o o
1 | ! l
H;CO | I N .
: N : (CHZMCH2)4 : : (CHZ)?\)Y\/\
| |
(o} | ! i o) OH
Il - > Il - -
560.6 503.5 -H,0
265.3

Figure 3. ESI-MS/MS analysis of the aglycone methyl ester 5 at m/z 620.5 [M + Na]*.
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The aglycone part as described above accounted for four out of the 18 formal unsaturations
predicted by the molecular formula of 1. Thus, the remaining 14 double bond equivalents were
attributable to the glucosidic portion. The analysis of the 'H, 1*C and HSQC spectra revealed five
anomeric carbons, accounting for five sugar rings. The remaining formal unsaturations were assigned
to nine acetate residues, which fulfilled the observed [M — H]™ ion peak at m/z 1782.8345.

Hydrolysis of compound 1 showed that D-xylose, D-galactose and D-glucose were the only
monomers present with a ration 1:1:3. The sequence of these sugar residues was determined by
extensive NMR study, especially based on 2D techniques (COSY-45, HSQC, HSQC-TOCSY, H2BC,
HMBC and NOESY) (Table 2).

The five anomeric carbons and their attached protons were unequivocally identified at !> C/ H:
104.6/4.86 (d, ] =7.9 Hz); 104.4/5.16 (d, | = 7.5 Hz); 103.2/4.90 (d, ] = 7.3 Hz); 102.8/5.55 (d, ] = 8.0 Hz)
and 99.6/6.37 (d, | = 7.9 Hz) (Figure 4). The anomeric configurations were assigned as 3 from the
magnitude of the 3] 5, values, all within the 7-9 Hz interval, typical of diaxial proton coupling [24].
Moreover, the 1>*C NMR shifts of the anomeric carbons, approximatively 100 ppm, also indicate that
the corresponding sugars are connected through 3-glycosidic bonds [25,26].

T
g o
oo Le
0
06 °
9 ,
Gle-1
¢ Xyl ik
) Gal %y
Gle-2 0 Cle-3
tr Is!ol o I5.I5I o '5.'0’ o I4!5I o ‘4}0‘ T IF2'[pp'm]

Figure 4. Expansion of HSQC spectrum of erylusamide A (1) showing the anomeric carbon,
the oxymethines and oxymethylenes correlations.

Six of the oxymethines (0H 5.90, 5.78, 5.62, 5.58, 5.48 and 5.42) and three of the oxymethylenes
(0H 4.51/4.32, 4.57/4.19, 5.16/4.92) had proton resonating at 1-2 ppm downfield with respect to
free hydroxyl groups [19], which indicated the sites of acetylation (Figure 4). The position of acetyl
groups was ascertained by HMBC correlations between the acetyl carbonyls and the corresponding
oxymethine protons (Figure 5).

The long-range HMBC correlation between C-26 (6 80.7 ppm) and the (3-anomeric proton at  4.86
disclosed the linkage between the aglycone portion and the first unit of the pentasaccharide chain,
which was assigned to a monoacetylated glucose residue (Glcl). In fact, starting from the anomeric
proton TOCSY experiments allowed to delineate the entire spin system while relative configuration was
achieved by analysis of NOESY data and | couplings. Furthermore, H-6 methylene resulted deshielded
thus suggesting the first acetylation site. The MS/MS fragment at m/z 828.5 [aglyconeGlcl — H] ™)
from the ion [M — H] ™ at m/z 1782.8 is compatible with a monoacetylated glucose.
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Figure 5. Expansion of HMBC spectrum showing correlations to acetate carbonyls in sugar moiety.

The HMBC cross peak between C-4 Glcl and the anomeric proton at 4.90 identified the glycosidic
bond between this glucose and the xylose residue, confirmed by the correlation between C-1 Xyl and
H-4 Glcl. Xylose showed another glycosidic bond with another glucose residue, which was depicted
from cross peaks C-2 Xyl/H-1 Glc3 and C-1 Glc3/H-2 Xyl. A third (3-glycosidic bond between xylose
and a galactose residue was apparent from the long range correlation C-3 Xyl/ H-1 Gal and the NOESY
correlation H-3 Xyl/H-1Gal. Finally, the galactose residue was connected to another glucose unit
through the cross peak between C-3 Gal and H-1 Glc2 (Figure 6).

HR-ESI-MS of erylusamides B (2) and C (3) showed [M — H]™ ions at m/z 1796.8515 and 1796.8434
respectively, consistent with the empirical formula CgsH135NOyg, suggesting an isomeric relationship,
which was reflected in a different behaviour of the two metabolites in HPLC analysis. A careful
comparison of NMR spectra indicated structures with aglycones closely related to erylusamide A,
which differed for an extra methylene, also confirmed by the peak at m/z 638.5 [aglycone — H]™
(C3yHggO7N) in both ESI™-MS/MS analyses.

Gal
H o H o HO
AcO H
AcO O
J\ A ‘_/ oo
He oo, Hy
Glc2

Figure 6. Key HMBC (red ashes), NOESY (dashed ashes) and HSQC-TOCSY (blue lines) correlations
establishing the structure of the pentasaccharide moiety.

1H and '3C NMR spectra of compound 2 were almost superimposable with those of 1, suggesting
that the additional methylene should be positioned within the long hydrocarbon chain. Furthermore,
NMR data showed that the only difference between the isomeric compounds 2 and 3 was at one chain
end of the aglycone moiety, where an isobutyl group in 3 replaced the terminal n-butyl residue of 2.
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In fact, the 'H NMR spectrum of 3 showed the presence of a doublet at 5 0.85 ppm (6 H, ] = 6.0 Hz) and
a multiplet signal at 4 1.51 assigned, respectively, to the methyl and methine protons of the isobutyl
moiety. The signal at 6 1.16 was attributed to the remaining methylene group. The two equivalent
methyl carbons of the isobutyl moiety were observed at & 22.8 ppm, while the methine carbon and the
methylene appeared, respectively, at § 28.2 and 6 39.1 ppm.

Erylusamide D (4) had a molecular formula of CgsH134049N as revealed by HR-MS-ESI [M — H]~
molecular ion peak at 1810.8644. NMR spectra of 4 and 1 were almost superimposable, the only
difference being, as for compound 2, the length of the hydrocarbon chain that has two extra methylene
groups, confirmed by the presence, in the ESI”-MS/MS spectrum, of the fragment at m/z 652.5
[aglycone — H]™ (C3gH7oO7N).

In conclusion, the bioassay guided fractionation of the dichloromethane extract of the marine
sponge Erylus cf. deficiens afforded a glycolipid fraction showing IDO inhibitory activity, from which
were isolated four new polyketide glycosides structurally related to erylusamines reported in congener
sponges [6-8]. The identification of the glycolipid content of sponges is important, not only due to
the bioactivity that they usually display, but also because they have become useful markers in the
taxonomic classification.

3. Materials and Methods

3.1. General Experimental Procedures

NMR spectra were acquired on a Bruker DRX-600 apparatus (Bruker BioSpin GmbH, Rheinstetten,
Germany) operating at 600 for 'H and 150 MHz for '3C). Chemical shifts were expressed as & values and
reported to the residual solvent signals (pyridine-ds, 6y = 8.73, 7.58 and 7.21; 6c = 149.9, 135.5 and 123.5);
coupling constants were reported in units of Hertz (Hz). HR-ESI-MS analysis was run on a Q-Exactive
mass spectrometer (Thermo Fisher Scientific, Rockford, IL, USA). ESI-MS/MS spectra were achieved
on a Q-Tof micro mass spectrometer (Waters, Milford, MA, USA). GC-MS analysis were performed on
a Shimadzu GCMS-QP 2010Plus (Kyoto, Japan) using a Teknokroma TRB-1 column (30 m x 0.25 pm)
(Barcelone, Spain).

IR spectra were obtained using a Mattson Satellite FI-IR (Waltham, MA, USA) and only the
diagnostic absorption bands are reported, in cm~!. Flash column chromatography was performed
on reversed-phase silica gel LiChroprep® RP-18 40-63 pum (Merck Ref. 113900, Darmstadt, Germany).
Thin layer chromatography was performed on silica gel 60 Fy54 aluminum sheets (Merck Ref. 5554)
and visualized with UV light (254 nm) and vanillin/sulfuric reagent (0.5 g vanillin in sulfuric/MeOH
4:1 v/v) followed by heating up to 120 °C.

HPLC separations were performed on an Ultimate 3000 Dionex liquid chromatograph (Germering,
Germany) equipped with a Phenomenex Luna 2.6 u phenyl-hexyl column 100 A (150 mm x 4.60 mm)
(Torrance, LA, USA).

All solvents and reagents were obtained from commercial suppliers and were used without
further purification.

3.2. Biological Material

A specimen of Erylus cf. deficiens Topsent, 1927 (Demospongiae, Tetractinellida, Geodiidae) was
collected by scuba diving on the Gorringe Bank, a seamount located 150 km off the southwest coast
of Portugal, at a depth between 40 and 50 m, and kept at —20 °C until processed. Identification was
performed through analyses of the skeletal characters (spicules) under optical microscopy. A voucher
sample was preserved in 90% ethanol and deposited in the Biology Department’s zoological collection
of the University of the Azores, Ponta Delgada, Portugal (collection DBUA.Por).
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3.3. Extraction and Isolation Procedures

The lyophilized specimens (63 g) were triturated in a grinder and extracted with methanol
at room temperature for 24 h, yielding 7.2 g of crude extract after solvent evaporation under
vacuum. This methanol extract was subsequently re-extracted with dichloromethane for 24 h, at room
temperature, affording 1.8 g of extract. An aliquot of the dichlorometane extract (0.958 g) was coarse
fractionated by RP-C18 flash chromatography with an eluent gradient of decreasing polarity from
methanol to dichloromethane/methanol 9:1, in a total of 11 fractions. The more active fraction in the
bioassay (fraction 2, 150 mg, eluent: methanol) was fractionated by HPLC using a column Phenomenex
Luna 2.6 p phenyl-hexyl 100 A (150 mm x 4.60 mm) and a gradient of MeOH/0.1%TFA in H,O (flow
0.75 mL-min~! from 80:20 to 100% MeOH). Erylusamides A-D (compounds 1-4) were obtained by
injection of more than two hundred 10 uL samples and pooling homologues fractions. Erylusamide
A: (RT: 27.71 min, 27.7mg), Erylusamide B: (RT: 29.10 min; 23.0 mg), Erylusamide C: (RT: 30.74 min;
17.9 mg) and Erylusamide D: (RT: 33.41 min; 8.7 mg).

Erylusamide A (1): Colorless oil; 1H and 13C NMR data, see Tables 2 and 3; HR-ESIMS m/z
1782.8345 [M — H]~ (caled for Cg3H13p040N, 1782.8325); ESI-MS/MS m/z 828.5 [aglyconeGlcl — H]~
(C44H75013N), 624.5 [aglycone — H]™ (C34HggO7N).

Erylusamide B (2): Colorless oil; 1H and 3C NMR data, see Tables 2 and 3; HR-ESIMS m1/z
1796.8515 [M — H]~ (calcd for CgaH134049N, 1796.8482). ESI-MS/MS m/z 842.6 [aglyconeGlcl — H]~
(C45HgpO13N), 638.5 [aglycone — H]™ (C37HggO7N).

Erylusamide C (3): Colorless oil; IH and 3C NMR data, see Tables 2 and 3; HR-ESIMS m/z
1796.8434 [M — H]~ (calcd for CgaH134049N, 1796.8482). ESI-MS/MS m/z 842.6 [aglyconeGlcl — H]~
(C45HgpO13N), 638.5 [aglycone — H]™ (C37HggO7N).

Erylusamide D (4): Colorless oil; 1H and 13C NMR data, see Tables 2 and 3; HR-ESIMS m/z
1810.8644 [M — H]~ (calcd for CgsH136049N, 1810.8638). ESI-MS/MS m/z 856.6 [aglyconeGlcl — H] ™~
(C46HgoO13N), 652.5 [aglycone — H]™ (C38H7yO7N).

3.4. Methanolysis of Crude Fraction of Glycolipids

A portion of the crude fraction of glycolipids (12.9 mg) was dissolved in 1.5 mL of 2 M HCl in
MeOH. The reaction mixture was stirred at 80 °C with refluxing for 4.5 h and, after cooling, neutralized
with 5% ammonium hydroxide aqueous solution and finally evaporated to dryness under vacuum.
The residue was partitioned between HyO and dichloromethane (2 mL x 3). Both phases were
evaporated. The aglycone went into the organic phase and the methyl glycosides into the aqueous one.

Aglycone methyl ester (compound 5, major/*minor rotamer):

1H NMR (pyridine-ds, 600 MHz): 5 5.38/4.93* (1H, q, ] = 7.3Hz, H-2'); 3.96 (1H, m, H-26); 3.97 (1H,
m, H-25); 3.63/3.67* (3H, s, CH30); 2.94/2.97* (3H, s, H-3'); 2.40 (4H, m, H-15/H-17); 2.38 (2H, m,
H-2); 1.88 (2H, m, H-23); 1.87 (2H, m, H-27); 1.77 (2H, m, H-3);1.60 (4H, m, H-14/H-18); 1.62 (2H, m,
H-28); 1.41/1.46* (3H, d, ] = 7.3Hz, H-4'); 1.32 (2H, m, H-29); 1.36 (2H, m, H-4); 1.28 (2H, m, H-13); 1.26
(24H, m); 0.85 (3H, t, ] = 7.1Hz, H-30). 13C NMR (pyridine-ds, 150 MHz): § 210.5 (C, C-16); 173.1/172.9*
(C, C-1); 172.8/172.3* (C, C-1'); 75.2 (CH, C-26); 75.0 (CH, C-25); 53.2/55.6* (CH, C-2'); 51.3/52.2* (CHj,
CH;0); 43.0 (CH,, C-15/C-17); 34.0 (CH,, C-2); 33.8 (CH,, C-24/C-27); 32.6 (CH,, C-28); 32.1/29.0*
(CHs, C-3); 29.6 (CH,, C-4/C-13); 27.1 (CH,, C-23); 25.4 (CH,, C-3); 24.3 (CH,, C-14/C-18); 23.1
(CH,, C-29); 15.0/15.9* (CHj;, C-4'); 14.6 (CHj, C-30). HR-ESIMS 1/z 620.4856 [M + Na]* (calcd. for
C35Hg7O¢NNa, 620.4866). ESI-MS/MS m/z 620.5 [M + Na]*, 560.6, 503.5, 390.3, 265.3, 138.1.

3.5. Derivatization of Glycosides

The methyl glycosides were dissolved in 0.5 mL of pyridine and 36 puL of trimethylsilyl chloride
(TMSCI) and 106 pL of hexamethyldisiloxane (HMDS) were added to the mixture. The reaction mixture
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was stirred at 60 °C for 2 h and evaporated to dryness. The residue was partitioned between H,O
and dichloromethane (3 x 1 mL). The TMS-glycosides went into the organic phase and evaporated
to dryness.

3.6. Preparation of Monosaccharide Standards

Commercial D-glucose, D-galactose and D-xylose were dissolved in 2 M HCl in MeOH and stirred
with refluxing at 80 °C for 2 h. Thereafter, methanol and HCI were removed under a nitrogen stream
without prior neutralization. An excess of TMSCI and HMDS were added to the dried material.
The solutions were then heated at 60 °C for 2 h. The derivatized samples were evaporated under
vacuum and used as standards for GC analysis

3.7. Synthesis of the Acetonide of Compound 5

Compound 5 (0.77 mg, 1.2 pmol) was dissolved in dimethoxypropane (500 uL) with a catalytic
amount of pyridinium p-toluenesulfonate (PPTS). The reaction mixture was heated at 60 °C for 5 h,
then allowed to cool at room temperature and partitioned between water and Et,O (4 x 5 mL).
The organic phase was evaporated to dryness under nitrogen stream affording compound 6 (0.8 mg,
1.2 umol).

Acetonide of compound 5:

'H NMR (pyridine-ds, 600 MHz): 6 5.37 (1H, q, ] = 7.3Hz, H-2); 3.74 (1H, m, H-26*); 3.72 (1H, m,
H-25%); 3.62 (3H, s, OCHs); 2.94 (3H, s, H-3'); 2.43 (4H, m, H-15/H-17); 2.38 (2H, m, H-2); 1.65 (4H,
m, H-14,/H-18); 1.51 (6H, s, acetonide « and p CHjz); 1.41 (3H, d, | = 7.3Hz, H-4'); 1.36 (2H, m, H-4);
1.30 (2H, m, H-29); 1.28 (2H, m, H-13); 0.88 (3H, t, ] = 7.3Hz, H-30). '*C NMR (pyridine-ds, 150 MHz):
6210.6 (C, C-16); (173.2 (C, C-1); 172.7 (C, C-1'); 107.8 (C, acetonide OCQO); 81.5 (CH, C-25%); 81.4 (CH,
C-26%); 53.0 (CH, C-2'); 51.9 (OCH3); 42.7 (CH,, C-15/C-17); 33.3 (CH,, C-27); 31.9 (CHj3, C-1"); 29.6
(CH,, C-4); 29.5 (CH,, C-13); 28.8 (CH,, C-28); 27.7 (acetonide CH3); 25.4 (CH,, C-3); 24.2 (CH,, C-14/
C-18); 23.0 (CH,, C-29); 14.6 (CHz, C4') 14.2 (CHjz, C-30).

3.8. Bioassay Description (GPSD? Screening Application) [15]

Modified yeast cells from overnight growth are re-inoculated at OD 0.1 in selective medium
to induce specific toxicity conditions and are dispensed automatically by a JANUS® Automated
Workstation (Perkin Elmer, Waltham, MA, USA) into a 96-well plate at a final volume of 200 pL.

In addition, 4 pL of organic and aqueous extracts (resuspended in dimethyl sulfoxide at a final
concentration of 25 mg dry extract/mL) are added to 200 uL yeast cells, previously dispensed. One well
is not exposed to any extract as control. Plates are incubated for 3 days. Absorbance and fluorescence
signal were measured constantly every 2.5 h.

3.9. COS-7 Cells Bioassay [15]

COS-7 cells were grown in Dulbecco’s modified eagle medium (DMEM) 1000 mg/mL glucose,
with GlutaMAX and pyruvate (Invitrogen, Carlsbad, CA, USA), supplemented with 10% fetal bovine
serum (FBS) and 1% non-essential amino acids (NEAA). Cells were maintained at 80%—90% confluence
at 37 °C and 5% CO,. COS-7 cells in 24-well plates were transiently transfected with pCDNA3-IDO
using FuGene HD (Roche Diagnostics, Basel, Switzerland) following manufacturer’s instructions.
In addition, 3 h post-transfection, 5 uL of samples’ stock solutions and 0.1x diluted solutions were
added to cells and incubated for 24 h. Transfection efficiency after 24 h of extract exposure was assessed
by direct observation of enhanced green fluorescent protein (EGFP) signal, using an inverted Carl Zeiss
microscope AxioObserver D1 (Exc = 485/20 nm, Em = 515 nm) (Oberkochen, Germany). The IDO
activity was evaluated by measuring kynurenine concentration in the supernatant by HPLC. Briefly,
supernatants from cell culture were collected and immediately frozen at —20 °C until analysis. Protein
precipitation and kynurenine extraction was performed by addition of trichloroacetic acid (TCA) at a
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final concentration of 6%. After discarding cell debris by centrifugation, supernatants were injected
into the HPLC pump (Model LC-6A, Shimadzu Corporation, Kyoto, Japan). Separation was performed
using a reversed-phase cartridge Aquasil RP18 column (200 mm length, 4.6 um grain size) from
Thermo Scientific (Rockford, IL, USA). An SPD-6AU UV-VIS spectrophotometric detector (Shimadzu
Corporation, Kyoto, Japan) in a flow stream series connection was used for detection of kynurenine at
a wavelength of 360 nm. The elution buffer consisted of a degassed potassium phosphate solution
(0.015 mol/L, pH 6.4) containing 27 mL/L acetonitrile. Analysis was carried out at room temperature
at a flow rate of 1.2 mL/min.
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