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Modelling adaptation strategies 
to reduce adverse impacts 
of climate change on maize 
cropping system in Northeast 
China
Rong Jiang1,2, Wentian He3*, Liang He4, J. Y. Yang2, B. Qian5, Wei Zhou1 & Ping He1*

Maize (Zea mays L.) production in Northeast China is vulnerable to climate change. Thus, exploring 
future adaptation measures for maize is crucial to developing sustainable agriculture to ensure food 
security. The current study was undertaken to evaluate the impacts of climate change on maize 
yield and partial factor productivity of nitrogen (PFPN) and explore potential adaptation strategies 
in Northeast China. The Decision Support System for Agrotechnology Transfer (DSSAT) model was 
calibrated and validated using the measurements from nine maize experiments. DSSAT performed 
well in simulating maize yield, biomass and N uptake for both calibration and validation periods 
(normalized root mean square error (nRMSE) < 10%, −5% < normalized average relative error (nARE) 
< 5% and index of agreement (d) > 0.8). Compared to the baseline (1980–2010), the average maize 
yields and PFPN would decrease by 7.6–32.1% and 3.6–14.0 kg N kg−1 respectively under future 
climate scenarios (2041–2070 and 2071–2100) without adaptation. Optimizing N application rate 
and timing, establishing rotation system with legumes, adjusting planting dates and breeding long-
season cultivars could be effective adaptation strategies to climate change. This study demonstrated 
that optimizing agronomic crop management practices would assist to make policy development on 
mitigating the negative impacts of future climate change on maize production.

Maize (Zea mays L.) is one of the most important cereal crops to support food security. However, the global 
average maize yields have declined by approximately 3.8% over the last decades due to climate change1. Northeast 
China is the dominant maize production area in China and plays a unique role in food security. Maize planting 
area and production in this region account for 31.5% and 32.8% of the total for China, and 6.8% and 7.4% of the 
global total in 2018, respectively2,3. However, Northeast China is one of the most vulnerable regions to climate 
change, as annual mean temperature has been significantly increasing by 0.38 °C per decade, and precipitation 
has decreased slightly with more frequent droughts and floods during the last 50 years4,5. Previous studies have 
showed that the negative impacts of climate change on maize yield were mainly associated with the warming and 
increased drought frequency during the growth periods in Northeast China6–8. Maize potential and attainable 
yields were estimated for a reduction of 2.1% and 8.0%, respectively in Northeast China from 1961 to 2009 due 
to climate change using the Agricultural Production Systems Simulator (APSIM) model7. Maize yield gaps are 
mainly affected by management practices (e.g., cultivars and fertilizer input) over the period 1961–20109. Thus, 
adjustment of management practices (e.g., optimizing fertilization and adopting high-yield cultivars) played an 
important role to close yield gap, improve nutrient use efficiency (NUE) and minimize environmental risks under 
climate change. Lv et al.7 demonstrated that the improved cultivars and agricultural practices could mitigate the 
negative impacts of climate change from 1961 to 2009 relative to the yields of the cultivar planted in the 1960s. 
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Thus, exploring effective adaptation measures in Northeast China is crucial to improving maize production and 
maintaining environmental health under future climate change.

Many potential adaptation strategies have been explored to mitigate the negative impacts of maize yield under 
climate change conditions. Several studies indicated that adjustment of crop phenology could be beneficial for 
mitigating yield loss under future climate scenarios (e.g., elongating maturity and changing sowing date)10–12. For 
examples, Lin et al.10 showed that maize yield loss could be mitigated by substituting local cultivars with later-
maturing and delaying the planting date in Heilongjiang province, Northeast China under future climate change. 
In addition, several other studies also suggested that agronomic practices should be considered as adaptation 
measures (e.g., optimization of fertilizer application rate and crop rotation system)13–15. Fertilizer application 
rate and timing should be adjusted to meet the nutrient demands of crop growth and avoid nutrient loss when 
crop biomass decreases due to water and temperature stress over time under climate change14,15. For example, 
He et al.14 explored the response of maize yields to fertilizer application rate under future climate scenarios, 
which suggested that the nitrogen (N) rate of 150 kg N ha−1 would be suitable for high maize yields in Canada 
based on the Decision Support System for Agrotechnology Transfer (DSSAT) model. Crop rotation diversity is 
beneficial to improving soil physical quality, nutrient availability and soil microbial diversity, which contributes 
to high crop yield and low environmental risk16–18. Ma et al.19 predicted that including legumes in rotation 
would be advocated for mitigation under a changing climate, which would increase crop yields by about 5% for 
rainfed agricultural systems in Australia. Therefore, exploring adaptation strategies based on comprehensive 
agronomic management practices are essential to promoting sustainable maize production in Northeast China 
under future climate change.

Process-based models are valuable tools in evaluating management practices and climate change impacts on 
crop production, soil water balance and carbon (C) & N dynamics in diverse agroecosystems20,21. The DSSAT 
model is a widely used tool for testing cropping technologies, assessing management practices, and exploring 
climate change mitigation stategies14,21–24. The DSSAT model has been successfully used to optimize field man-
agement practices to achieve high crop yield, improve understandings of crop physiology, soil management and 
weather effects on crop growth and environmental quality25,26, and explore the responses of crop production to 
climate change and develop effective adaptation strategies10,12,14,27. Although the DSSAT model has been used to 
simulate the impacts of climate change on maize yield, no detailed adaptation strategies were assessed in simula-
tions by considering comprehensive management practices for improving maize production and N use efficiency 
in Northeast China. Therefore, the objectives of this study were (1) to calibrate and evaluate the DSSAT model 
using the measured maize yield, biomass and N uptake from nine field experiments in Northeast China; (2) to 
simulate the climate change impacts on maize yield and partial factor productivity of N (PFPN) during two future 
periods of 2041–2070 and 2071–2100, relative to the baseline (1981–2010) under Representative Concentration 
Pathways (RCP) 4.5 and 8.5 scenarios; and (3) to explore potential adaptation strategies to reduce the negative 
impacts of future climate change on maize yield and N use efficiency.

Results
Model calibration and validation.  For calibration, the simulated maize yield, biomass and plant N 
uptake matched well with the measured data under the optimum nutrient application (OPT) treatment at all 
sites. The average  statistical values of nRMSE ≤ 6.0%, −4.8% ≤ nARE ≤ 0.4% and d ≥ 0.79 indicated “good” to 
“excellent” agreements between the simulated and measured maize yield, biomass and plant N uptake (Table 1 
and see Supplementary Fig. S1, 2). For validation, the model performance was “good” to “excellent” for maize 
yield, biomass and N uptake simulation under the farmers’ practice (FP) treatment at all sites based on the aver-
age statistical value of nRMSE ≤ 6.4%, −1.4% ≤ nARE ≤ 3.3% and d ≥ 0.76 (Table 1 and Supplementary Fig. S1, 2). 
Additionally, the model slightly overestimated maize yield and N uptake for the FP treatment at all sites, except 
for the maize yield at HLJ site. Overall, simulations were in agreement with the observations under both the OPT 
and FP treatments across all sites.

Climate change impacts on maize yield and N use efficiency.  The maize yields were simulated 
using the DSSAT model for the baseline (1980–2010) and two future periods [2050s (2041–2070) and 2080s 
(2071–2100)] based on two climate change scenarios (RCP4.5 and RCP8.5) (Fig. 1). The maize yields in climate 
model BCC-CSM1.1 (m) (BC2) were higher than those of in BCC-CSM1.1 (BC1), except at JL and HLJ sites 
under the baseline scenario. Compared to the baseline, the average maize yields of BC1 and BC2 decreased by 
4.4, 10.8, 27.7 and 40.2% for LN, 12.6, 21.1, 23.1 and 33.6% for JL, and 5.9, 8.4, 15.6 and 22.6% for HLJ under the 
RCP 4.5 2050s, RCP 4.5 2080s, RCP 8.5 2050s and RCP 8.5 2080s, respectively. Under the RCP 4.5 scenarios, the 
greatest negative impacts of climate change on maize yields and PFPN were observed at JL sites, followed by LN 
and HLJ. Under the RCP 8.5 scenarios, however, the descending order of the negative impacts changed to LN, JL 
and HLJ. The average PFPN ranged from 35.7 to 23.4 kg N kg−1, 44.6 to 33.7 kg N kg−1 and 44.2 to 36.2 kg N kg−1 
at LN, JL and HLJ respectively under future climate scenarios (Supplementary Fig. S3).

Potential adaptation measures under future climate scenarios.  Maize yield response to N applica-
tion rate and timing. The simulated maize yields dramatically increased with an increase of N application rate 
for all scenarios, and maize yields leveled off when the N application rate exceeded 240 kg N ha−1 at LN and JL 
sites, and 210 kg N ha−1 at HLJ (Fig. 2 and Supplementary Fig. S4). Compared to the 210 and 240 kg N ha−1 as 
basal fertilizer, higher or comparable maize yields were observed at 180 kg N ha−1 as two-time splitting at HLJ 
and at 210 kg N ha−1 as two-time splitting at LN and JL respectively under all climate scenarios. Compared to 
the default values, the average maize yields increased by 2.7%, 0.9% and 1.1% at LN, JL and HLJ when the N 
application rate at 210, 210 and 180 kg N ha−1 as two-time splitting under baseline scenario, while the average 



3

Vol.:(0123456789)

Scientific Reports |          (2021) 11:810  | https://doi.org/10.1038/s41598-020-79988-3

www.nature.com/scientificreports/

maize yields increased by 2.1–4.2%, 0.5–4.6% and 1.0–3.2% under future RCP scenarios, respectively (Table 2). 
Compared to the default N management, the average PFPN slightly increased by 0.6–1.4 kg N kg−1 at LN, by 
0.2–1.9 kg N kg−1 at JL, and by 0.4–1.2 kg N kg−1 at HLJ under future climate scenarios based on the optimized 
N application rates and timing (Supplementary Table S1). The results indicated that the N application rates of 
180–210 kg N ha−1 as two-time splitting at LN and JL, and 150–180 kg N ha−1 at HLJ are appropriate to achieve 
a stable and higher yield for both current and future climate change conditions.

Table 1.   Statistical evaluation between the simulated and measured maize yields, biomass and plant nitrogen 
(N) uptake from 2011 to 2016 at Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces in Northeast 
China. OPT optimum nutrient application, FP farmers’ practice, nRMSE normalized root mean square error, 
nARE normalized average relative error, d index of agreement.

Item

Calibration (OPT) Validation (FP)

LN JL HLJ LN JL HLJ

Maize yield

Measured (Mg ha−1) 10.20 10.09 9.36 9.88 9.74 9.09

Simulated (Mg ha−1) 10.15 9.92 9.35 10.19 9.85 8.96

nRMSE (%) 4.7 4.0 5.0 5.3 4.7 6.2

nARE (%)  − 0.5  − 0.8  − 0.1 3.2 0.9  − 1.4

d 0.79 0.93 0.85 0.78 0.91 0.83

Biomass

Measured (Mg ha−1) 20.71 19.83 20.70 20.45 19.97 19.55

Simulated (Mg ha−1) 20.63 19.74 20.47 20.71 19.93 19.77

nRMSE (%) 3.1 3.4 4.3 3.6 3.8 4.8

nARE (%)  − 0.3 0.0  − 1.1 1.3 0.1 1.1

d 0.87 0.86 0.86 0.84 0.86 0.88

Plant N uptake

Measured (kg N ha−1) 212 184 185 216 187 176

Simulated (kg N ha−1) 202 183 185 223 195 177

nRMSE (%) 6.0 4.0 5.9 5.1 6.2 6.4

nARE (%)  − 4.8 0.1 0.4 3.3 3.2 1.0

d 0.80 0.83 0.87 0.79 0.76 0.82

Figure 1.   Effects of climate change scenarios on maize yields under BC1 (a1, b1, c1) and BC2 (a2, b2, c2) 
climate scenarios at Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces in Northeast China. The black 
(solid) and red (dashed) lines, lower and upper edges of the boxes, and bars and dots outside the boxes represent 
median and mean values, 25th and 75th, 5th and 95th, and < 5th and > 95th percentiles of all data, respectively.
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Maize yield response to maize‑soybean rotation.  Compared to maize monoculture, higher maize yields were 
obtained with maize-soybean  (Glycine max [L.] Merr) rotation under both baseline and future climate sce-
narios (Fig. 2 and Supplementary Fig. S4). The average maize yields from maize-soybean rotation increased by 
12.0–19.8%, 3.1–9.3%, and 7.3–10.1% across all scenarios at LN, JL and at HLJ, respectively, compared to the 
default maize cropping system (Table 2). Particularly, similar maize yields could be achieved when the N appli-
cation rate was 150–180 kg N ha−1 as basal at LN and JL, and 120–150 kg N ha−1 as basal at HLJ compared to 
that of 180–210 kg N ha−1 and 150–180 kg N ha−1 as two-splitting for maize monoculture under future climate 
scenarios, respectively. The average PFPN was increased by 3.3–5.4, 1.6–4.0 and 3.2–4.0 kg kg−1 at LN, JL and 
HLJ respectively, compared to the default values for all scenarios (Supplementary Table S1).

Maize yield response to planting date.  Changing planting date significantly affected the maize yields under both 
baseline and future climate change scenarios at all sites (Fig. 3). Under baseline scenario, the optimal planting 
dates (Julian day) ranged from 123 to 133 at LN, 113 to 123 at JL and 128 to 138 at HLJ. However, the maize 
yield significantly decreased by 6.8% when the planting dates were delayed by 10 days compared to the current 
seeding dates (123 day) at JL, which was likely attributed to the insufficient thermal time to maturity. In contrast, 
the negative impacts of future climate scenarios on maize production would be mitigated by delaying the plant-
ing 10–20 days (Table 2 and Fig. 3). For example, the average maize yields would increase by 5.9–30.1% for LN, 
1.8–12.7% for JL and 9.0–19.8% for HLJ with increased PFPN if the planting dates were delayed to 133–143 (at 
LN and JL) and 138–148 (at HLJ) compared to the default date under future RCP scenarios (Fig. 3 and Sup-
plementary Table S1). For future climate scenarios, late planting was conducive for increasing maize yields and 
PFPN at all sites.

Maize yield response to cultivar parameters.  As shown in Fig. 4, the average maize yields would increase by 
3.2, 6.6, 10.6 and 5.6% when P1 changed from 320 (default) to 375 under RCP 4.5 2050s, RCP 4.5 2080s, RCP 
8.5 2050s and RCP 8.5 2080s at LN, while the maize yields decreased when P1 exceeded 425 under baseline 
scenario, which was mainly due to the long thermal time from seeding to juvenile causing insufficient thermal 

Figure 2.   Responses of maize yields to nitrogen (N) application rate as basal (a1, b1, c1), as two-time splitting 
(a2, b2, c2) for maize monoculture and as basal for maize-soybean rotation (a3, b3, c3) under climate change 
scenario BC1 (BCC-CSM1.1) at Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces in Northeast China.
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time for maturity. Similarly, the average maize yields would decrease when P1 exceeded 290 and 235 at JL and 
HLJ, respectively. The average maize yields would significantly increase when changing P5 parameters from the 
default values (880, 820 and 756) to 980, 920 and 856 degree days at LN, JL and HLJ under all future climate sce-
narios, respectively (Table 2 and Fig. 4). In addition, the average PFPN showed similar trends with maize yield 
when changing the values of P1 and P5 at each experimental site (Supplementary Table S1).

Discussion
The DSSAT model provided reasonable prediction of grain yields, biomass and N uptake for maize cropping 
system under various management practices and soil conditions across all sites in Northeast China. The slight 
overestimation of N uptake under the FP treatments was partially related to the model overestimating N min-
eralization under overused fertilizer application as basal. A similar result has been reported by Liu et al.28, who 
showed that the over-prediction of the N uptake of maize might be due to an overestimation of N mineralization 
under sufficient N supply condition.

In this study, future climate scenarios would have negative impacts on maize yields in Northeast China based 
on the DSSAT simulation, which was consistent with other modelling studies10,29. The significant decline of maize 
yields under future climate scenarios could be related to the increased temperature. The higher temperature in 

Table 2.   Potential adaptation management practices for maize yields under climate change scenarios at 
Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces in Northeast China. The content within the 
brackets represents the change of potential adaptation management practices on maize yields compared to the 
default. P1, Thermal time from seedling emergence to the end of the juvenile phase (degree days > 8 °C); P5, 
Thermal time from silking to physiological maturity (degree days > 8 °C).

Site Management Item Optimized

Maize yield (Mg ha−1)

Baseline RCP 4.5 2050s RCP 4.5 2080s RCP 8.5 2050s RCP 8.5 2080s

LN

Default – – 7.8 7.5 7.0 5.8 4.9

N rate (mono-
culture) Base 240 8.0 (2.9%) 7.8 (3.6%) 7.3 (4.0%) 5.9 (1.7%) 5.1 (2.9%)

(kg N ha−1) Base and side-
dress

210 (1/3 and 
2/3) 8.0 (2.7%) 7.8 (3.3%) 7.3 (4.2%) 5.9 (2.1%) 5.1 (3.4%)

N rate (rota-
tion) (kg N 
ha−1)

Base 210 8.8 (12.0%) 8.5 (13.7%) 8.2 (16.0%) 6.5 (12.0%) 5.9 (19.8%)

Planting date 
(day of year) Baseline/future 133/143 8.4 (7.2%) 8.5 (13.8%) 7.9 (12.8%) 6.8 (16.7%) 6.1 (24.0%)

Cultivar 
parameters 
(°C.d.)

P1 325–375 8.0 (2.5%) 7.7 (3.2%) 7.5 (6.6%) 6.4 (10.6%) 5.2 (5.6%)

P5 980 8.6 (10.3%) 8.6 (14.0%) 8.2 (15.8%) 6.8 (16.4%) 5.7 (16.3%)

JL

Default – – 10.7 9.4 8.4 8.2 7.1

N rate (mono-
culture) Base 240 10.8 (1.0%) 9.6 (2.3%) 8.8 (4.0%) 8.5 (3.0%) 7.1 (0.7%)

(kg N ha−1) Base and side-
dress

210 (1/3 and 
2/3) 10.8 (0.9%) 9.5 (1.7%) 8.8 (4.6%) 8.5 (4.0%) 7.1 (0.5%)

N rate (rota-
tion) (kg N 
ha−1)

Base 210 11.1 (3.1%) 10.2 (9.0%) 9.2 (9.2%) 9.0 (9.3%) 7.7 (8.9%)

Planting date 
(day of year) Baseline/future 113/143 10.7 (0.1%) 9.5 (1.5%) 9.2 (9.2%) 8.9 (7.9%) 8.0 (12.3%)

Cultivar 
parameters 
(°C.d.)

P1 260–290 10.7 (0%) 9.7 (3.7%) 9.1 (7.8%) 8.8 (6.9%) 7.4 (4.4%)

P5 920 11.6 (8.3%) 11.1 (18.5%) 10.0 (19.0%) 9.8 (19.3%) 8.4 (18.2%)

HLJ

Default – – 8.5 7.9 7.7 7.1 6.5

N rate (mono-
culture) Base 210 8.6 (1.2%) 8.0 (0.4%) 7.8 (0.3%) 7.2 (1.4%) 6.7 (2.2%)

(kg N ha−1) Base and side-
dress

180 (1/3 and 
2/3) 8.5 (1.1%) 8.0 (1.0%) 7.8 (1.0%) 7.2 (1.7%) 6.7 (3.2%)

N rate (rota-
tion) (kg N 
ha−1)

Base 180 9.2 (9.4%) 8.5 (7.3%) 8.3 (7.5%) 7.8 (10.1%) 7.1 (8.2%)

Planting date 
(day of year) Baseline/future 138/148 8.9 (5.5%) 9.5 (19.6%) 9.1 (18.3%) 8.6 (21.2%) 7.8 (19.1%)

Cultivar 
parameters 
(°C.d.)

P1 210–235 8.5 (0%) 8.4 (5.2%) 8.2 (5.8%) 7.7 (7.9%) 7.1 (8.4%)

P5 856 9.4 (11.1%) 10.0 (25.3%) 9.9 (27.5%) 8.9 (24.9%) 8.3 (27.5%)
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growing season under the RCP8.5 scenarios (Table S2) showed significant negative impacts on maize yields due 
to the increased heat stress compared to the RCP4.5 scenarios across all sites, especially at LN sites, where the 
temperature reached 30 °C at the flowering stage. This stage can be shortened by heat stress as it is most sensitive 
to high temperature, resulting in reduced crop yield30. In our study, maize yields were also affected by water stress, 

Figure 3.   Responses of maize yields to planting date under climate change scenarios BC1 (a1, b1, c1) and BC2 
(a2, b2, c2) at Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces in Northeast China.

Figure 4.   Responses of maize yields to cultivar parameters P1 (a1, b1, c1) and P5 (a2, b2, c2) under climate 
change scenarios at Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces in Northeast China.
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thus the increased frequency of dry years in future scenarios would have significant negative impacts on rainfed 
maize production. Guo et al.8 reported that maize yield reduced by a range from 1.6 to 2.7% in Northeast China 
under RCP4.5 scenarios due to drought during the sensitive phases of the crop, mainly at the milky-mature and 
sowing-jointing. Although the increased solar radiation was found under the future scenarios (Table S2), the 
abundant solar and thermal resources after silking were not efficiently utilized for maize yield due to heat stress 
for spring maize31. Liu et al.32 showed that an increase in maximum temperature could reduce maize yield dur-
ing 1981–2010 in the same region when the APSIM model was used. Additionally, a previous study indicated 
the elevated CO2 concentration resulted in a slight increase in maize production which was partially offset by 
the opposite impacts of increased temperature33. The smaller positive effect from elevated CO2 concentration 
was simulated partially due to the fact that maize is a C4 crop with minor impacts of CO2 fertilization on C 
assimilation34. Hatfield et al.35 indicated that the increased CO2 concentration showed less than 10% positive 
effects on C4 crop.

It has been reported that the negative impacts of climate change on crop productivity could be mitigated by 
effective agronomic adaptation techniques and seed genetic improvement9,14,15,19. Previous modelling studies 
demonstrated that adjustment of fertilizer over time should be considered in climate change assessment, espe-
cially when climatic factors have obvious influence on crop production13–15. Our simulation showed that the 
appropriate fertilizer application rate and timing could result in higher maize yields and PFPN for both baseline 
and future climate scenarios, but excessive nitrogen application with low nutrient use efficiency (Table S1) led to 
resources waste and environmental pollution (e.g., greenhouse gas emission and nitrate leaching)36. N fertilizer 
with splitting application could improve the temporal synchronicity between crop N demand and soil N avail-
ability, thereby increasing crop yield and reducing residual soil nitrogen and environment risk37,38. The optimal 
N application rates were reduced under the RCP8.5 scenarios at LN and JL sties because water and temperature 
stresses were the dominant factors on maize growth compared to N stress under climate change. The accuracy 
of adjustment of fertilizer rate should be based on changing soil organic carbon (SOC) mineralization and crop 
needs15. Crop rotation diversity is an important management practice to increase crop yield and reduce environ-
ment pollution by modifying the soil environment across a wide range of soil types and climatic conditions16–18. 
Smith et al.15 predicted that yields increased for rotational maize under climate change due to higher SOC and 
reduced crop water stress in Canada, meanwhile, the lower simulated N runoff loss was found in rotational maize 
and higher nitrous oxide (N2O) emissions, but the lower annual N2O emissions were observed during the entire 
rotation. Our simulation showed that the negative impacts of future climate change on maize yields could be 
mitigated under the maize-soybean rotation system mainly due to the improved soil fertility, soil water utilization 
and nutrient use efficiency39–41. Previous study indicated that maize yield had stronger responses with legume 
rotation than other cereal crops (e.g., millet and sorghum)39.

Changing planting date is considered an effective adaptive strategy to mitigate the negative impacts of climate 
change on crop yields on a global scale, such as in Northeast China for maize10, in Burkina Faso for maize11, in 
the west and northwest Iran for wheat12 and in Canada for spring wheat and maize14. These adverse impacts of 
climate change could be partially offset by optimal planting date, mainly due to the ability to match crop growth 
with changed temperature and rainfall distribution. Our results indicated that delaying planting date would be 
beneficial for maize yield under future climate change across all sites (Fig. 3). This is mainly being attributed 
to the increased precipitation during late July to early August, which resulted in higher pollination rates and 
kernel numbers without water stress31. Suitable increase in temperature and abundant solar radiation would be 
beneficial to germination of maize seeds42–44. Additionally, thermal time from seedling emergence to the end 
of the juvenile phase (P1) and thermal time from silking to physiological maturity (P5) are the most sensitive 
periods for maize yields21. In the CSM-CERES-Maize model, the cumulative thermal time from emergence to 
tassel initiation and daily development rate of maize from silking to maturity could be calculated based on P1 
and P5 parameters21,45. Reasonable increase of the values of the parameters P1 and P5 would mitigate the negative 
impacts of future climate change on maize yields based on the DSSAT simulation, implying that longer grow-
ing season cultivars should be developed in order to benefit the maize crop from longer growing seasons under 
warmer future climates and to cope with heat stress. Our study was in agreement with He et al.14 who indicated 
that breeding longer growing season cultivars with high thermal degree days could result in higher maize yield 
under future climate scenarios based on modelling using the DSSAT model.

Overall, changes in simulated maize yield under future scenarios could be explained based on crop-climate-
soil interactions. However, the uncertainties in projections of climate change impacts on crop growth in agro-
ecosystems are large and unavoidable as they inherited from uncertainties in climate and crop models, accuracy 
in model calibration and evaluation, and change in socio-economic emission scenarios46,47. In this study, the 
dynamic measurements of soil inorganic N (NO3

−–N and NH4
+–N) were not available to calibrate and evalu-

ate soil N simulations during the field experimental periods, which may cause uncertainty in long-term C & 
N feedback under climate change scenarios. In the model simulation, soil parameters were assumed to remain 
constant in the future, but certain soil physical properties (e.g., hydraulic conductivity, water holding capacity) 
may change under different management practices (e.g., fertilizer, tillage, rotation) which could further affect 
maize yield and soil process14,25. Basso et al.48 and Smith et al.15 indicated that soil C & N dynamics and water 
status could be affected if soil physical properties were re-initialized in a long-term simulation. In addition, most 
crop models including the DSSAT model do not incorporate the explicit simulation of the heat impacts on male 
and female flowering, fertilization of female flowers, and kernel abortion which may lead to more uncertainties in 
predicting crop production under future climate scenarios49. Furthermore, although the DSSAT model performed 
well in simulating crop yield and nutrient cycling under various soil and crop management practices, the model 
does not simulate the direct impacts of pests and/or diseases, extreme weather (e.g., flooding, hails and damag-
ing winds) and complex nutrient transfer processes50, which could lead to the uncertainties in the simulation.
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Conclusions
The well calibrated DSSAT model was proven a capable tool for assessing climate change impacts on maize yield 
and NUE and exploring adaptation strategies under RCP 4.5 and RCP 8.5 scenarios in Northeast China. Our 
study indicated that maize yields and NUE would significantly decrease under future climate scenarios at LN, JL 
and HLJ provinces compared to the baseline scenario if no adaptation measures were taken in the simulations. 
Optimized fertilization rate at 180–210 kg ha−1 with two time-splitting at LN and JL and at 150–180 kg ha−1 at HLJ 
would result in high maize yields and NUE under future climate scenarios. Maize-soybean rotation with lower 
fertilizer application rates could be beneficial to obtaining higher maize yields compared to maize monoculture 
for both baseline and future climate scenarios. Late planting could mitigate the negative impacts of climate 
change on maize partially due to the increased precipitation in July and August in the future. Developing longer 
growing-season cultivars should be recommended to obtain stable and high maize yield under future climate 
change conditions. Optimized agronomic crop management practices could be considered as effective adaptation 
strategies to climate change for maize production in Northeast China.

Materials and methods
Experimental sites.  Field experiments were conducted from 2011 to 2016 in Northeast China, where is the 
main maize production region comprising of Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces. There 
were nine experimental sites including Chaoyang (LNCY) and Changtu (LNCT) in LN; Liufangzi (JLLFZ), Tao-
jia (JLTJ) and Chaoyang (JLCY) in JL; and Qiangan (HLJQA), Shuangcheng (HLJSC), Binxian (HLJBX) and 
Harbin (HLJHRB) in HLJ (Table 3 and Fig. 5). In this study, the experimental sites under rainfed conditions are 
from the main maize planting counties in each province which accounted for 13.6%, 19.1% and 22.5% of the 
total maize area for LN, JL and HLJ provinces, respectively based on the average values from 2011 to 201651–53. 
The typical maize cultivars at these sites were selected to represent regional differences of the climatic condi-
tions. These experimental sites were initially established to optimize fertilization management with high quality 
datasets including maize yield, biomass, nutrient uptake and soil properties which provided detailed inputs to 
run the DSSAT model. Thus, using modelling approach in major maize planting areas with typical cultivars is 
feasible to explore potential adaptation management practices under future climate change in Northeast China. 
Detailed field experimental practices for each site are shown in Table 3. The average air temperature and pre-
cipitation during the maize growing season (May to September) were 21.4 °C and 462 mm for LN, 20.5 °C and 
527 mm for JL, and 19.5 °C and 503 mm for HLJ (Supplementary Table S3). The basal soil physical and chemical 
properties at the beginning of the experiments are listed in Table 3. 

Two treatments were set for each experiment consisting of optimum nutrient application (OPT) from Nutrient 
Expert system and farmers’ practice (FP)54. For the OPT treatment, the N fertilizer (urea) application rate ranged 
from 150 to 211 kg N ha-1 at the experimental sites. 1/3 and 2/3 of the total rate was applied as basal fertilizer and 
side-dressing respectively at the jointing stage at LN and JL sites, whereas 40% and 60% of the total fertilizer was 
applied as basal and side-dressing respectively at HLJ site. Additionally, the ratio was changed to 1/4, 2/4 and 
1/4 at the sowing, jointing and tasselling stages from 2015 to 2016 at JL sites. For the FP treatment, N fertilizer 
application rate varied from 153 to 280 kg N ha-1 at the experimental sites which was 100% applied as basal fer-
tilizer. More detailed management practices for each experiment site are shown in Table 3. The maize grain yield, 
biomass and N update were measured annually (located within the part of middle four-ridge) at maturity in each 
treatment which were used for model evaluation. The partial factor productivity of N (PFPN, kg N kg−1) was 
calculated based on grain yield/fertilizer N rate. Detailed measurement information can be referred to Xu et al.54.

DSSAT model.  The Decision Support System for Agrotechnology Transfer (DSSAT v4.7, http://dssat​.net/) 
is a mechanistic dynamic model combined with the Crop System Model (CSM), two soil C & N models (the 
CERES-based and the CENTURY-based soil models) and a soil water balance model (Ritchie method), which 
simulate crop growth, soil water balance and soil C & N cycling with daily time-step under different crop-
ping systems, management practices and climate conditions21,45. The CENTURY-based module was employed 
to simulate soil C and N processes because it was more suitable for long-term sequence simulations55. The CSM-
CERES-Maize module was used to simulate maize growth in the experiment years and predict the impacts of cli-
mate change scenarios on maize growth. Additionally, the CSM-CROPGRO-Soybean module was used to simu-
late soybean growth (maize-soybean rotation) under climate change scenarios for management adjustments23.

Model calibration and validation.  The DSSAT model requires the following input information: (a) the 
local daily climate data (e.g., maximum and minimum temperature, precipitation and solar radiation); (b) initial 
soil condition (e.g., field capacity, wilting point and saturation, soil texture, pH, bulk density and organic car-
bon content); (c) field management practices (e.g., planting and harvest dates, plant density, tillage, fertilization 
application rates and times); (d) crop cultivars. The weather data was obtained from the local weather station 
at the each experimental site. The annual and seasonal mean climate variables from 2011 to 2016 are shown in 
Supplementary Table S3. The basic soil properties (0–0.20 m soil layer), field management practices and maize 
cultivar information at each experimental site can be referred to in Table 3.

In this study, the DSSAT model parameters were calibrated using the measurements from OPT treatments 
for all years at each experimental site (Table 3). Cultivar coefficients must be calibrated to control the crop 
growth based on local weather, soil conditions and management practices21, which mainly include parameters 
for determine critical phenology stages (P1, thermal time from seedling emergence to the end of the juvenile 
phase; P2, extent to which development (expressed as days) is delayed for each hour where the photoperiod is 
greater than 12.5 h and P5, thermal time from silking to physiological maturity), grain filling (G2, maximum 
possible number of kernels per plant and G3, kernel filling rate during the linear grain filling stage and under 

http://dssat.net/
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optimum conditions), and phylochron interval between successive leaf tip appearances (PHINT). The cali-
brated cultivar coefficient is listed in Supplementary Table S4. The calibration was conducted by minimizing 
the root mean square error (RMSE) between the simulated and measured values of maize yield, biomass and 
N uptake to determine the optimal parameterization. We used a step-wise process to calibrate parameters, and 
then recalibrate through several steps based on R language until RMSE values were minimized between the 
simulated and measured values. The datasets from FP treatments were used to validate the model performance. 
In addition, the DSSAT Sequence program was used to simulate multi-year soil C & N and water dynamics as 
well as crop growth processes. Initial soil profile data including soil water content and inorganic N (NO3

−–N 
and NH4

+–N) are only required to be setup before the first year simulation, then soil water, C and N flows could 
be continuously transferred from the beginning to the end of the simulation automatically14,23,56. In this study, 
the calibrated DSSAT model was then employed to predict the impacts of climate change on maize yields and 
N use efficiency. The cultivar parameters for soybean were used in the maize-soybean cropping system under 
future climate change based on the calibration from Liu et al.23 In the simulation of maize-soybean rotation, the 
parameterizing information for rotation maize (e.g., daily climate data, initial soil conditions and field manage-
ment practices) was consistent with the monoculture maize simulation. The Sequence Analysis mode was used to 
simulate crop rotations, which could carry-over the soil water and nitrogen processes from one crop to another57. 
Two sequences were created (maize-soybean and soybean-maize rotations) with the same weather conditions to 
ensure that each phase of the rotation presents in each year. Based on the previous study23, on average, soybean 
was planted on May 1 and harvested on September 30 for each year at all sites, and N fertilizer (urea) was applied 
at 20 kg N ha−1 as basal application.

Table 3.   Field management practices and soil properties (0–0.2 m) for maize study sites from 2011 to 
2016 at Liaoning (LN), Jilin (JL) and Heilongjiang (HLJ) provinces in Northeast China. LNCY, Liaoning-
Chaoyang; LNCT, Liaoning-Changtu; JLCY, Jilin-Chaoyang; JLTJ, Jilin-Taojia; JLLFZ, Jilin-Liufangzi; 
HLJQA, Heilongjiang-Qinan; HLJSC, Heilongjiang Shuangcheng; HLJBX, Heilongjiang Binxian; HLJHRB, 
Heilongjiang Harbin. The values without or within the brackets represents fertilizer nitrogen (N) application 
rate for the optimum nutrient application (OPT) or the farmers’ practice (FP).

Site

Liaoning Jilin Heilongjiang

LNCY LNCT JLCY JLTJ JLLFZ HLJQA HLJSC HLJBX HLJHRB

Location

Latitude (°N) 41.28 42.78 43.61 43.66 43.58 46.96 45.43 45.80 45.84

Longitude (°E) 120.05 123.96 124.76 124.64 124.90 127.68 126.37 127.49 126.85

Altitude (m) 317 145 175 239 229 183 178 167 118

Climate type Semi-humid Semi-humid Humid Humid Humid Semi-humid Semi-humid Semi-humid Semi-humid

Field management

Period 2011–2012 2011–2012 2012–2014 2012–2016 2012–2016 2012–2014 2012–2016 2012–2016 2012–2016

Cultivar FY9 TY120 YH33 ZF62 NH101 MJN205 LM33 HN1 GF1

Type of maturity Late Mid-late Late Mid-late Mid-late Mid-late Mid-late Mid-late Late

Planting date 
(day of year) 118–129 106-111 119–121 121–129 119–125 124–139 112–131 117–136 117–138

Harvest date 
(day of year) 273–278 266-271 272–274 271–274 272–273 272–282 270–282 269–277 271–285

Planting density 
(seed m−2) 5.4–6.0 5.0–6.0 5.8–6.0 5.7–6.5 5.0–6.5 5.5–6.5 5.0–7.5 6.0 5.5–7.0

N application 
(kg N ha−1)

154–211 
(234–260)

154–195 
(207–240)

150–182 
(240–270)

150–211 
(208–280)

150–203 
(207–280) 154–208 (153) 176–208 

(165–198)
167–194 
(191–238)

176–182 
(170–195)

Soil property

Soil type Cinnamon soil Brown soil Black soil Black soil Black soil Black soil Chernozem Black soil Black soil

pH 8.08 5.30 5.19 5.25 4.92 5.36 5.82 5.32 6.80

Bulk density (g 
cm−3) 1.27 1.32 1.15 1.12 1.18 1.22 1.16 1.21 1.24

Organic carbon 
(%) 0.65 0.68 0.84 1.77 0.93 2.43 1.49 2.05 2.03

Total nitrogen 
(%) 0.08 0.09 0.09 0.17 0.12 0.28 0.16 0.22 0.23

Field capacity 
(m−3 m−3) 0.280 0.282 0.314 0.321 0.316 0.326 0.320 0.352 0.322

Wilting point 
(m−3 m−3) 0.153 0.143 0.152 0.167 0.158 0.166 0.177 0.204 0.180

Saturation 
(m−3 m−3) 0.483 0.473 0.498 0.502 0.499 0.504 0.500 0.513 0.502

Clay content (%) 26.6 24.0 28.2 28.3 28.3 29.6 31.7 36.8 34.3

Silt content (%) 29.7 26.5 46.3 46.4 46.3 42.9 33.1 35.3 34.2
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Model performance statistics.  The model performance statistics can be used to evaluate the difference 
between simulated and measured data, including root mean square error (RMSE), normalized root mean square 
error (nRMSE), normalized average relative error (nARE), and index of agreement (d) value (see Eqs.  1–4 
below)58–60.

where Si is the simulated value, Mi is the measured value, i = 1, …, n is the number of measured values, and M 
is the mean of the measured values.

For nRMSE, an “excellent”, “good”, “fair” and “poor” model performance is claimed when the nRMSE ≤ 10%, 
10 < nRMSE ≤ 20%, 20% < nRMSE ≤ 30% and nRMSE > 30%, respectively59. The model performance was satis-
factory for yield and biomass if nARE < ± 15%60. The value of nARE (%) value indicates underestimation when 
the nARE < 0 or overestimation when the nARE > 0 compared to the measured values. For d value, d ≥ 0.9, 
0.8 ≤ d < 0.9, 0.7 ≤ d < 0.8 and d < 0.7 illustrates “excellent”, “good”, “fair” and “poor” match, respectively23.

Climate change scenarios.  In this study, climate change datasets were generated based on the statistical 
downscaling method61. This method relies on empirical relationships between observed climate data and data 
from global climate models (GCMs). The simulated monthly data by the GCMs were statistically downscaled to 
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Figure 5.   Field experimental sites for maize from 2011 to 2016 at Liaoning (LN), Jilin (JL) and Heilongjiang 
(HLJ) provinces in Northeast China. The map was created using ArcGIS software 10.4.1 (Environmental 
Systems Research Institute Inc., Redlands, USA). The area of maize (a) was obtained from the National Bureau 
of Statistics of China (http://data.stats​.gov.cn) and soil type information (b) was available from the Soil Science 
Database (http://vdb3.soil.csdb.cn).

http://data.stats.gov.cn
http://vdb3.soil.csdb.cn
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the specific sites using the inverse distance-weighted (IDW) interpolation method. A bias correction procedure 
was applied during this step to correct biases in the site-based monthly GCMs values. And then daily climate 
variables (maximum and minimum temperature, solar radiation and precipitation) were temporally scaled for 
each site from the spatially downscaled monthly data through the WGEN stochastic weather generator. Unlike 
other statistical downscaling methods that require complicated data (e.g., atmospheric circulation or sea surface 
temperature as predictors) and high computational cost (e.g., dynamical downscaling), statistical downscaling 
method is reliable and rapid mainly due to the use of historical observation data to modify the monthly GCMs 
data and low computational cost. These climate data obtained from this method could match with crop models 
in order to explore the future climate impacts on agricultural systems. Due to the complexity of the climate 
system, the future climate data was produced by Climate System Models from Beijing Climate Centre BCC-
CSM1.1 (BC1) and BCC-CSM1.1 (m) (BC2) which were obtained from the Coupled Model Inter-comparison 
Project phase 5 (CMIP5) to drive the DSSAT model in this study. The BC1 model is a fully coupled global 
climate-carbon model with an interactive vegetation and global carbon cycle, which includes the atmospheric 
component BCC Atmospheric General Model version 2.1 (BCC_AGCM2.1) with a horizontal resolution of 
T42 (approximately 2.8125° × 2.8125° transformed grid), 26 levels in a hybrid sigma/pressure vertical coordi-
nate system with the top level at 2.914 hPa, ocean component Modular Ocean Model version 4 (MOM4)-L40, 
land component BCC Atmosphere and Vegetation Interaction Model version 1.0 (BCC_AVIM1.0), and sea ice 
component [sea ice simulator (SIS)]62. The BC2 model is established to increase the horizontal resolution of 
the atmospheric component and land component to T106 (approximately 1.125° × 1.125° transformed grid), 
forming BCC_AGCM2.2 and BCC_AVIM1.1, respectively based on the BC1 version63. Compared to the BC1 
model, the BC2 model with finer horizontal resolution performed better for some climate characteristics. For 
example, the spatial variability of the simulated climatological monthly precipitation is closer to the observations 
and tropical sea surface temperature annual cycles in the tropical ocean are generally more reasonable63. In this 
study, both climate models (BC1 and BC2) were used to explore climate change impacts on maize production 
in Northeast China.

Observed daily meteorological data at all sites during 1980 to 2010 as baseline were obtained from the Chi-
nese Meteorological Data Service Centre (CMDC, http://data.cma.cn/en). Two Representative Concentration 
Pathway scenarios (RCP4.5, intermediate scenario and RCP 8.5, high emissions scenario) based upon radiative 
forcing levels of 4.5 and 8.5 w/m2 at the end of the 21st century, respectively were selected for two future periods 
from the 2050s (2041–2070) and the 2080s (2071–2100). Historical meteorological data from one representative 
experiment in each province is selected to be used for downscaling and bias-correction of the future climate 
data from the GCMs. The calibrated parameters for maize cultivars of FY9, NH101 and GF1 at LN, JL and HLJ 
sites respectively were used in the climate scenario simulations (Supplementary Table S3). The comparison of 
historical and projected climate variables at LN, JL and HLJ sites is shown in Supplementary Table S2.

Adaptation strategies.  Four adaptation strategies were explored to mitigate the negative impacts of cli-
mate change on maize production based on sensitivity analysis under baseline and future climate scenarios in 
Northeast China. The management practice scenarios include the following: (a) fertilizer N application rates 
were simulated from 0 to 300 kg N ha−1 with a 30 kg N ha−1 interval and split fertilizer application was simulated 
as basal (1/3 of the total) and sidedressing (2/3 of the total at the jointing stage)26,37,54; (b) Maize-soybean rotation 
was considered compared to the maize monoculture23; (c) Planting dates were shifted early/late with a 10 day 
interval based on the default (123 day at LN and JL, 128 day at HLJ)26,14; (d) Maize cultivar with longer growing 
seasons were developed based on two thermal time parameters of P1 [thermal time from seedling emergence 
to the end of the juvenile phase (degree days > 8 °C)] ranging from 160 to 425 °C.d. with a 50, 30 and 25 °C.d. 
interval and P5 (thermal time from silking to physiological maturity, (degree days > 8 °C) ranging from 656 to 
980 °C.d. with a 50 °C.d. interval at LN, JL and HLJ, respectively14. For default parameters, planting date (123, 
123 and 128 day) and fertilizer application rate (210, 210 and 180 kg N ha−1) as basal at LN, JL and HLJ sites will 
be used in the future climate scenarios, respectively.
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