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Big data and comparative effectiveness research methodologies can be applied within 
the framework of a rapid-learning health-care system (RLHCS) to accelerate discovery 
and to help turn the dream of fully personalized medicine into a reality. We synthesize 
recent advances in genomics with trends in big data to provide a forward-looking per-
spective on the potential of new advances to usher in an era of personalized radiation 
therapy, with emphases on the power of RLHCS to accelerate discovery and the future 
of individualized radiation treatment planning.
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cOMPArAtive eFFectiveNess reseArcH (cer)  
AND BiG DAtA

The Committee on CER Prioritization was created by the Institute of Medicine in 2009. They defined 
CER as “a strategy that focuses on the practical comparison of two or more health intervention to 
discern what works best for which patients and populations” (1). In essence, the goal of CER is to 
help answer the question “which treatment will work best, in which patient, under what circum-
stances?” (2). Big Data refers to data sets that are so large that they cannot be analyzed directly by 
individuals or traditional processing software. Big Data Analytics (BDA) is a growing field with a 
multitude of methods that is being utilized in various sectors from business to medicine (3). The 
advent of the Electronic Medical Record (EMR) has resulted in the digitalization of massive data 
sets of medical information including: clinic encounters, laboratory values, imaging data sets and 
reports, pathology reports, patient outcomes, family history, genomic, and biological data, etc.

To help with the analysis of Big Data, the NIH has created the Big Data to Knowledge (BD2K) 
program which has invested over $200 million in grant awards to foster the development of methods 
and tools to analyze Big Data in biomedical research (4). Additionally, the BD2K program will move 
to make sure that biomedical Big Data is “Findable, Accessible, Interoperable, and Reusable” (4). 
Over the past decade, CER methodologies have become increasingly prevalent in radiation oncology 
research and there is much enthusiasm surrounding BDA.

rAPiD-LeArNiNG HeALtH cAre sYsteM (rLHcs)  
AND PersONALiZeD MeDiciNe

The number of articles on Big Data in health care has increased exponentially from under 500 
articles in 2005 to over 2500 articles in 2015 (5). As the amount of biomedical Big Data and our 
ability to analyze these data continues to advance, so will the implications and utilizations of the 
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information we are able to extract. One of the most important 
steps toward advancing our ability to analyze these Big Data 
for biomedical discovery is the creation of RLHCS, which will 
allow for the sharing of patient data between EMRs, ideally in 
real-time (6). An ideal RLHCS would take patient data that was 
routinely generated as part of standard patient care and compile 
that data into a large data system (6–8). This aggregate data 
would then be available for both BDA to accelerate identifica-
tion of new hypotheses and CER to rapidly generate evidence 
through hypothesis-testing studies. Clinical data from patient 
records can be used readily to identify novel relationships among 
clinical factors and patient outcomes, or to evaluate treatment 
effectiveness in specific subgroups, that cannot be studied 
adequately in randomized, controlled trials. The extreme power 
of RLCHS, though, is even more exciting when one considers 
the possibility of adding biospecimens to accelerate discovery in 
genomics and proteomics. As RLHCS are created and their data 
sets are expanded, we will continue to identify specific genomic 
and proteomic data to help define cohorts and stratify patients 
into risk groups, treatment response groups, and potentially to 
help design highly tailored therapy regimens (9). In this sense, 
RLCHS would usher in a more fertile era for improving bio-
medical research than ever before. BDA and CER provide the 
research methodologies needed to rapidly generate evidence 
using RLHCS. It should be noted, however, that there are sub-
stantial practical obstacles that must be addressed to achieve 
the vision of RLHSC. These include patient concerns regarding 
privacy and security of sensitive information, interconnectivity 
among different health records, and regulatory barriers to the 
exchange of health information.

iNteGrAtiNG A rLHcs WitH 
ONcOLOGY

The integration of CER, Big Data, and BDA is especially impor-
tant in the field of Oncology where multiple groups are investing 
significant time and resources in efforts to expand the availability 
of data and advance the methods used to extract meaningful 
information from that data (4, 10–14). The American Society 
of Clinical Oncology started their own RLHCS, CancerLinQ, 
to overcome the lack of interoperability between EMRs and 
accomplish their goal of being able to “analyze and share data on 
every patient with cancer” (15). While the vision of RLCHS has 
not yet been fully achieved, the potential impact on society has 
stimulated enthusiasm toward this effort.

iMPLicAtiONs FOr rADiAtiON 
ONcOLOGY

Patient reported Outcomes (PrOs)
Patient reported outcomes and quality-of-life (QoL) have become 
a major area of focus in health care overall, particularly in  
oncology. The availability of PROs within EMRs provides the 
foundation for a RLHCS that can be leveraged to expand insights 
into how cancer treatments impact patient QoL. By incorporat-
ing the PROs for massive numbers of patients, RLHCS will be 

able to identify small variations and subgroups of patients that 
might be missed in the smaller number of patients included in 
traditional randomized controlled trials. These PROs and QoL 
domains can then be incorporated into clinical decision-making 
to help guide both providers and patients (16). In doing this, 
PROs can act as a link between the objective clinical data and 
the subjective patient outcomes and experiences to help improve 
the overall care of the patient (17). One may also conceive of 
potential genomics-based determinants of QoL that could be 
identified using BDA if RLHCS include biospecimens linked to 
clinical data and PROs. Finally, surveillance of a RLHCS may also 
be performed to identify temporal trends in PROs to estimate 
outcomes after implementation of new technologies.

Dose selection and radiosensitivity
The use of tumor-specific genes and radiosensitivity to guided 
treatment decisions has already been established in human 
papilloma virus-associated squamous-cell carcinoma of the 
oropharynx (18). Numerous studies have looked at identifying 
genes that may have implications on tumor radiosensitivity or 
patient toxicity (19–22). The identification of these genes and 
their potential implications has led to the creation of the fields of 
radiogenetics and radiogenomics. Efforts are currently under-
way to generate meaningful gene assays that will help predict 
tumor response to radiation. Eschrich et al. created a 10-gene 
model to calculate a radiosensitivity index and applied this to 
patients with head-and-neck, rectal, and esophageal cancer to 
help stratify patients into either responders or non-responders 
with 80% sensitivity and 82% specificity (22). Similarly, Zhao 
et  al. retrospectively created a 24-gene assay and applied this 
to risk matched patients who either received postoperative 
radiation or no radiation following prostatectomy. Patients 
with a high score on the gene index who received postoperative 
radiation were less likely to have distant metastasis at 10 years 
(23). As efforts to identify genes and gene assays that may be 
predictors of radiosensitivity continue to be validated, we will 
potentially be able to integrate these findings in dose selection 
and toxicity prediction for individual patients based on their 
native and tumor genetics. Scott and colleagues have recently 
described a genomics-based strategy for personalizing radia-
tion therapy dose, which would support dose de-escalation for 
radiosensitive tumors (24). While the clinical implication of 
radiosensitivity assays are still developing, big data will be key 
to developing future assays rapidly, as well as incorporating 
the genomics tools into clinical decision-making. Big data 
provides opportunity to refine molecular signatures based 
upon real-world data and to merge genomic assay results with 
other clinical data elements to optimize predictive analytics.  
A RLHCS would provide the ideal substrate for levering big 
data and CER to accelerate genomics-based discovery to make 
precision radiation oncology a reality.

Personalized treatment 
recommendations
Radiation oncology is unique in that treatment plans for patients 
are often already technically and physically personalized due 
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to patient-specific variations in anatomy, tumor characteristics, 
and stage. Since a patient’s treatment plan is usually based upon 
a CT scan in treatment position, radiation can be considered an 
inherently personalized form of medicine. However, treatment 
planning approaches and radiation doses are generally selected 
based upon class solution, with technical details such as beam 
arrangements and dose–volume constraints adherent to genera-
lized rules. Multiple studies have already begun to look at how 
BDA methods such as machine learning and neural networks 
can be used to aid in dose optimization and toxicity predic-
tion modeling in radiation oncology (17, 25–27), which could 
provide more optimal treatment plan alternatives for individual 
patients. As the data and technology behind RLHCS continues 
to progress, we will likely be able to utilize a full spectrum of 
patient-specific clinical factors, PROs, genomics, patient prefer-
ence, and priorities, and a menu of treatment plan alternatives 
in order to optimize an individual patient’s radiation therapy. 
In order to deliver high-quality, high impact insights into 
radiation oncology, it is important that large datasets include 
detailed technical.

cONcLUsiON

Much of the excitement regarding big data has centered on poten-
tial for genomic discovery, high-level radiation treatment plan-
ning, and leveraging EMRs to identify associations among factors 
that may provide new insights into potential causal relationships 
that can be further studied to accelerate progress in cancer care. 
Although these are certainly promising areas for discovery, we 
most eagerly anticipate the power of big data to connect a broad 
range of characteristics to accelerate evidence generation and 
inform personalized decision-making. We envision the use of 
big data and CER methods to inform the individual decisions of 
patients and providers by synthesizing clinical and genomic data 
and querying a RLHCS for the latest data on effectiveness of treat-
ment options in relevant subgroups of patients.
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