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a b s t r a c t

Microbes propagate and thrive in complex communities, and there are many benefits to studying and
engineering microbial communities instead of single strains. Microbial communities are being increas-
ingly leveraged in biotechnological applications, as they present significant advantages such as the divi-
sion of labour and improved substrate utilisation. Nevertheless, they also present some interesting
challenges to surmount for the design of efficient biotechnological processes. In this review, we discuss
key principles of microbial interactions, followed by a deep dive into genome-scale metabolic models,
focussing on a vast repertoire of constraint-based modelling methods that enable us to characterise
and understand the metabolic capabilities of microbial communities. Complementary approaches to
model microbial communities, such as those based on graph theory, are also briefly discussed. Taken
together, these methods provide rich insights into the interactions between microbes and how they influ-
ence microbial community productivity. We finally overview approaches that allow us to generate and
test numerous synthetic community compositions, followed by tools and methodologies that can predict
effective genetic interventions to further improve the productivity of communities. With impending
advancements in high-throughput omics of microbial communities, the stage is set for the rapid expan-
sion of microbial community engineering, with a significant impact on biotechnological processes.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The production of high-value industrial chemicals from renew-
able resources such as non-food biomass using microorganisms is
an important pillar of sustainable biotechnology. Biotechnological
processes involving microbial fermentations have become increas-
ingly popular, replacing many chemical syntheses [1]. The choice
of microbial host for the production of bio-based chemicals
depends on whether: (i) the microbe naturally overproduces the
target chemical, or (ii) the microbe produces the chemical but with
low efficiency, or (iii) the microbe does not natively produce the
chemical at all [2]. Each microbial host is then subjected to varied
metabolic engineering strategies, depending on the three cases.
Microbial ‘‘cell factories” of species belonging to diverse genera,
such as Escherichia, Clostridia, Saccharomyces, Corynebacterium,
Bacillus, and the fungi Aspergillus have been exploited owing to
their better substrate utilisation and greater production capabili-
ties [3–6]. Compounds that are routinely synthesised by such
microbes include 1,3-propanediol, ethanol, butanediol, succinate,
malate, acetate, polyhydroxyalkanoates, fatty acid derivatives,
amino acids such as L-lysine, citrate, and terpenoids [2].

Although engineered single microbial species have shown phe-
nomenal success in the efficient production of chemicals, the meta-
bolic capacity of single strains is still limited. In some cases, the
yield and productivity are not high enough for expanding it to
the industrial scale [7]. This is mainly due to the limitation in the
number of genetic manipulations that can be implemented. Each
intervention increases metabolic stress, which reduces the growth
rate of the organism [8]. Hence, the incorporation of complex
biosynthetic pathways is challenging. Similarly, in the case of sub-
strates such as lignocellulosic biomass, which comprise an array of
carbon sources, all the constituents cannot be utilised by a single
organism [9]. Engineering monocultures to utilise multiple carbon
sources results in a significant drop in efficiency [10].

Many of the challenges encountered when using monocultures
can be circumvented by employing microbial communities. Com-
munities possess beneficial attributes such as modularity, robust-
ness to perturbation, and efficient task allocation [11]. The total
metabolic capability of a community is often greater than the
sum of the metabolic capabilities of its constituent members
[12,13]. This increased biosynthetic capability occurs in communi-
ties where the members are phylogenetically neither too close nor
too distant and can be observed under two conditions: first, when
the two organisms are initially introduced, and second, when the
nutrients in the medium are exhausted [14]. Given the ability of
microbial consortia to adapt to changing environments and
robustly perform various tasks, their potential can be harnessed
for metabolic engineering.

In this review, we discuss the key features that render microbial
communities appealing for biotechnological applications. Begin-
ning with the rules underlying community assembly, we catalogue
some examples of successful exploitation of microbial communi-
ties for bioprocesses. We provide a broad overview of the existing
computational tools and algorithms that equip us to build, study
and analyse microbial communities. Finally, we cover the methods
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available to efficiently design and engineer microbial communities
to produce any chosen metabolite of interest. We conclude our
review by discussing key challenges in this field and the immense
promise it holds for the future.
2. Microbial communities: rules of engagement

Microbial communities have intrinsic properties that can help
us design better bioprocesses and also produce specific products
that are otherwise very difficult to produce using monocultures
[15]. Natural microbial consortia digest several carbon sources
and are robust to environmental perturbations [16], making them
viable candidates for processes that require the utilisation of mul-
tiple substrates [17]. Communities have been successfully adopted
for the consolidated bioprocessing of lignocellulose, where the var-
ious components of the lignocellulosic biomass are broken down
by different organisms [18]. Communities can also be chosen such
that one or more members are the sole producers of the desired
product molecule, while the others support them by breaking
down multiple carbon sources and supplying the degraded sub-
strates [19].

In communities, heterologous biosynthetic pathways are split
into modules, and these sections are divided amongst the mem-
bers. This reduces the metabolic stress the organism has to endure
and distributes the workload [15]. This ‘division of labour’ is a
quintessential feature of communities [20]. The synthesis of prod-
ucts is metabolically and spatially localised into modules in micro-
bial communities [21]. This modularity improves the robustness of
the system and can be helpful in cases where metabolic or spatial
separation is required [22]. While organisms can share many sim-
ple metabolites and proteins [23], some non-native metabolites are
accumulated within the cell, where the cell membrane of the
organisms acts as a physical barrier for the upstream and down-
stream modules [24]. In such cases, the transfer of intermediate
products from the upstream to the downstream module can be
achieved by engineering transporters [25].

The organisms in a community share various metabolites that
improve the growth and production capabilities of the community
[26]. The excess metabolites produced by one organism are shared
with the others [27]. This metabolite exchange reduces the accu-
mulation of toxic metabolites and enhances the stress tolerance
of the entire community [28]. It has been shown that the sharing
of many metabolites does not have an associated fitness cost, i.e.
they do not adversely affect the growth rate of the producer [29].
Organisms can also share electrons [30] and other molecules across
longer distances through direct interspecies electron transfer
(DIET) and nanotubes [31]. Metabolite exchange can also occur
under nutritional stress [32], thereby promoting survival under
environmental stress. This ‘network of support’ also stabilises the
community and makes it robust to environmental perturbations.

2.1. Ecological interactions in microbial communities

There are various ecological interactions that occur in a com-
munity [33,34]. These interactions can be broadly categorised as



Fig. 1. Types of interactions among two-member species of a community. (+)
indicates a beneficial effect, while (�) indicates a detrimental effect, and (0)
indicates a neutral, i.e. no effect.
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positive, negative, or neutral. They can also be termed as unidirec-
tional or bidirectional interactions [35]. Mutualism or cooperative
interactions, competition, and parasitic interactions are bidirec-
tional, where both species under consideration are affected
(Fig. 1). Commensalism and amensalism are unidirectional interac-
tions, where only one partner is benefitted and negatively affected,
respectively [35]. Kong et al. [36] have designed two-strain micro-
bial consortia using Lactococcus lactis NZ9000 as host for each of
the six types of social interactions. Using both experimental and
modelling methods they showed that the consortia follow distinct
population dynamics and that models derived from two-strain
consortia can be used to design three or four-strain communities
and predict their behaviour. Such social-interaction programming
can be used to develop stability in the population and will improve
the yield of chemical production during fermentation [36].

2.2. Classification of communities for the production of bio-based
chemicals

Microbial communities can be broadly classified based on the
nature of their assembly. They can be isolated from natural envi-
ronments (‘natural consortia’) or assembled artificially (‘artificial
consortia’). The members of a community can also be engineered
to improve their performance (‘synthetic consortia’). The commu-
nity of interest can be chosen based on the needs of the bioprocess.
These different types of communities are illustrated (Fig. 2) and
discussed further in this section.

2.2.1. Natural consortia
Microbial communities have co-evolved for ages to thrive in the

environment surrounding them. They are well-adapted to share
resources with their partners. These natural communities or con-
sortia can be exploited to produce valuable metabolites. They can
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be isolated from various environments like soil, water, sludge, or
compost according to the needs of the bioprocess. The members
of such a community are usually not characterised and are called
‘undefined consortium’ [37]. In one study, an undefined mixed cul-
ture was isolated from cattle manure, cornfield soil, and rotten
wood by selecting for its cellulolytic and butyrate-producing capa-
bility [38].

However, the identification of the members of the community
can give us a better understanding and control of the metabolic
interactions and community dynamics. The community can be
characterised using metagenome sequencing, and the significant
members can be cultured together to form a ‘defined consortium’
(Fig. 2a) [37]. Nevertheless, reduction of the number of members
of the community has to be dealt with caution as the abundance
of a member may not always be proportional to its significance
in the community, and the loss of such significant members may
cause loss of functionality or community instability [37]. A defined
bacterial consortium (EMSD5) with high xylanase activity has been
isolated from compost and used for consolidated bioprocessing of
lignocellulose to produce isopropanol [39].

2.2.2. Artificial consortia
Microbes can also be paired purely based on the process

requirements — for their ability to breakdown specific substrates
or to produce certain metabolites. These organisms may not coex-
ist in the natural environment, but they are not metabolically engi-
neered either. Such communities are termed ‘artificial consortia’
(Fig. 2b).

A thermophilic anaerobic co-culture of Clostridium thermocel-
lum and Clostridium thermolaticum has been shown to exhibit up
to a two-fold increase in ethanol yield when compared to either
of the monocultures. This is attributed to better production of cel-
lulases and xylanase by C. thermocellum and better utilisation of
the degraded substrates by C. thermolaticum though both the
strains can produce cellulolytic and xylanolytic enzymes [40].
Some organisms are chosen based on their ability to support the
community by cross-feeding [41]. S. cerevisiae can produce large
amounts of amino acids and secrete heat-shock proteins under
environmental stress. These amino acids also enhance the alcohol
tolerance of some anaerobic bacteria. Therefore, a co-culture of
butanol-resistant Clostridium beijerinckii F-6 and S. cerevisiae was
designed to improve butanol production [42]. The high oxygen
sensitivity of Clostridium beijerinckii is a significant drawback of
ABE (Acetone-Butanol-Ethanol) fermentation and this has been
overcome by designing a co-culture of C. beijerinckii and Bacillus
cereus which can grow under non-anaerobic conditions. The amy-
lase activity of B. cereus further expands the range of substrate util-
isation [28]. Communities also have an expanded metabolic space
which is greater than the sum of the metabolic capabilities of the
individuals [12]. A C. acetobutylicum–C. ljungdahlii co-culture has
been shown to produce metabolites that are not produced by
either of the monocultures [13]. This co-culture produces iso-
propanol as a result of the repurposing of a secondary alcohol
dehydrogenase and the differential upregulation of the acetone
pathway, which is in turn triggered by the direct cell-to-cell inter-
action and interspecies crosstalk. Competition in a co-culture of
Aspergillus fumigatus–Streptomyces peucetius induces production
of various alkaloids that are not produced by the monocultures
[43]. Multiple homo- and hetero- cultures have been widely stud-
ied for their varied biosynthetic capabilities [5,44]. Computational
approaches have aided the study of complex artificial communities
constituting as high as 25 microbes [45].

2.2.3. Synthetic consortia
Microbes evolve in such a way that they can achieve maximum

growth in the given environmental conditions. However, the goal



Fig. 2. Types of microbial communities according to the nature of their assembly. (a) Natural consortia are isolated from nature for their collective metabolite production
capability (b) Artificial consortia are assembled according to the favourable traits of their members (c) Synthetic consortia are engineered to improve the yield or to produce a
metabolite that is not intrinsic to the community.
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of some bioprocesses may be to produce metabolites that are not
growth-associated or even those that compete with growth. There-
fore, it would be more desirable to synthetically engineer the
microbes according to the specific needs of the bioprocess. This
can increase the yield and efficiency of the process. Such engi-
neered microbes form ‘synthetic consortia’ (Fig. 2c).

Co-cultures of phototrophic and fermentative bacteria have
been shown to be promising for hydrogen production from ligno-
cellulosic waste [46]. Such communities can be further optimised
using metabolic engineering. In a co-culture of phototrophic
Rhodopseudomonas palustris and fermentative E. coli, the mutant
R. palustris NxDAmtB can secrete more than three-times NH4

+ than
its wildtype strain. This enhances the growth of E. coli and thereby
increases the rate of production of organic acids and their contribu-
tion to hydrogen production [47]. In another study, the biosyn-
thetic pathway of resveratrol glucosides was split into two
modules and expressed in two E. coli strains to reduce the meta-
bolic burden. The first strain converted p-coumaric acid into
resveratrol while the other converted it into its glucosides, poly-
datin, and resveratroloside [48].

The synthesis of heterologous products using microbial systems
is gaining traction. However, the expression of complete pathways
can cause a substantial metabolic burden to the organism. Flavo-
noids are high-value products that require pathway-engineering
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to be adapted to microbial systems. Upstream and downstream
sections of the pathway have been successfully engineered in
E. coli, but the incorporation of the complete pathway results in a
remarkable decrease in overall yield. This has been circumvented
by developing a co-culture of two E. coli strains, each containing
the upstream and downstream modules separately. The process
was further improved by optimising the temperature, carbon
source, inoculation ratio, and induction point [15].

Competition for resources and natural selection can easily dis-
rupt the community dynamics. Corynebacterium glutamicum has
been widely used to produce various chemicals, but it cannot grow
on starch. However, it can be co-cultured with an amylase-
producing organism such as E. coli to utilise starch as a carbon
source effectively. To prevent the outgrowth of E. coli, it can be
engineered to be dependent on C. glutamicum for its survival. The
E. coli has been engineered to be auxotrophic for L-lysine in this
co-culture and has been optimised for cadaverine production
[49]. Table 1 lists some microbial communities that have been
exploited for biotechnological applications in recent years.

3. Modelling microbial communities

Metabolic interactions are the key drivers of many microbial
communities [69]; therefore, modelling and understanding micro-



Table 1
Examples of products that have been successfully produced using microbial communities.

Natural community

Undefined community

Composition Source Product Substrate Ref

1 Mesophilic microbes Rumen fluid, Swamp and
compost material

Carboxylic acids Municipal solid waste,
Sewage sludge

[50]

2 Anaerobic microbes Activated sludge Biogas Food waste, cattle manure [51]
3 Yeasts and bacteria Activated sludge Biopolymers Crude glycerol [52]
4 Hydrogen-producing bacteria Anaerobic digested sludge Hydrogen Glucose [53]
5 Anaerobic bacteria and fungi Cow Manure Hydrogen Cellulose [46]

Defined community

Predominant organisms Source Product Substrate Ref
1 Clostridia, Actinobaculum, Pseudomonas, Azotobacter and Bacillus Marine sediment Carboxylic acids Sorghum [54]
2 Bacteroidetes, Firmicutes, Proteobacteria, Methanoculleus and

Methanomassiliicoccus
Pig manure Biogas Corn stover [55]

3 Clostridium, Escherichia, Bacillus, Lysinibacillus, and Firmicutes Compost soil Isopropanol Corncob [38]
4 Clostridium, Pseudomonas, Desulfovibrio, Bacteroides, Petrimonas,

Escherichia, Shigella and Alistipes
Goat or sheep faeces Caproic acid Ethanol and acetic acid [56]

5 Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, and
Verrucomicrobia and Firmicutes

Soil Butyrate, Hexanoate,
Octanoate

Acetate and ethanol [57]

Artificial community

Organism 1 Organism 2 Other microbes Role in the community Product Substrate Ref

1 Lactobacillus
kefiranofaciens

Saccharomyces
cerevisiae

NA Lk – produces kefiran; Sc – lactic acid
consumption thereby improving tolerance

Kefiran MRS medium [58]

2 Aspergillus
fumigatus

Streptomyces
peucetius

NA Not clearly understood N-Formyl
Alkaloids

International
Streptomyces
Project Medium 2
(ISP2)

[43]

3 Bacillus cereus Clostridium
beijerinckii

NA Bc – utilises starch; Cb – produces butanol Butanol Corn mash [28]

4 Penicillium
fuscum

Penicillium
camembertii/
clavigerum

NA Not clearly understood Berkeleylactones,
Antibiotic
macrolides

Potato dextrose
broth

[59]

5 Trichoderma
reesei

Rhizopus
delemar

NA Tr – breakdown cellulose; Rd – produces
fumaric acid

Fumaric acid Corn stover [44]

6 Trichoderma
reesei

Rhizopus
oryzae

NA Tr – breakdown cellulose; Ro – produces
lactic acid

Lactic acid Microcrystalline
cellulose

[44]

7 Ralstonia
eutropha

Bacillus subtilis NA Re – produces PHA; Bs – sucrose utilisation P(3HB-co-3HV)
polymer

M9 minimal
medium with
sucrose

[19]

8 Clostridium
beijerinckii

Saccharomyces
cerevisiae

NA Cb – produces butanol; Sc – produces
amino acids for Cb and improves alcohol
tolerance

Butanol Glucose [42]

9 Clostridium
beijerinckii

Yokenella
regensburgei

NA Cb – produces hydrogen; Yr – produces
lactate which boosts growth and hydrogen
production by Cb

Hydrogen Food waste [60]

10 Schizophyllum
commune

Bjerkandera
adusta

Fomitopsis palustris Sc – ethanol production; Ba – lignin
degradation; Fp – cellulose degradation (all
three microbes produces ethanol)

Ethanol Japanese cedar
wood chips

[61]

11 Bacteroides
vulgatus

Desulfovibrio
piger

Bifidobacterium longum,
Eubacterium rectale, Roseburia
intestinalis + 20 microbes

Not clearly understood N-Formyl
Alkaloids

DM38 medium [45]

Synthetic community

Organism 1 Organism 2 Role in the community Significant mutations Product Substrate Ref

1 Escherichia coli Escherichia coli Ec1 – produces p-coumaric acid; Ec2
– converts p-coumaric acid to caffeyl
alcohol and coniferyl alcohol

E. coli ATCC 31884 with pheA and tyrA
disrupted, cloning of various plasmids
with genes that encode for p-coumaric
acid production

p-coumaryl
alcohol, caffeyl
alcohol and
coniferyl alcohol

Modified
M9 (M9Y)
medium

[62]

2 Synechococcus
elongatus

Halomonas
boliviensis

Se – photosynthetically fixes carbon
and exports as sucrose; Hb –
produces PHB

Se – cloning of cscB gene, a sucrose
transporter

Polyhyroxy-
butyrate

Carbon
dioxide

[63]

3 Escherichia coli Corynebacterium
glutamicum

Ec – utilisation of starch; Cg –
production of L-lysine

Ec – deletion of lysA to make it a lysine-
auxotroph and cloning of EcLys1 (a-
amylase) from S. griseus to utilise
starch; Cg – multiple deletions (Dpta-
ackA Dcat DaceAB DldhA DnanR) to get
strain CgLys4 for better production of
L-lysine

L-lysine, L-
pipecolic acid,
cadaverine

Starch and
sucrose

[49]

4 Escherichia coli Escherichia coli Ec1 – converts p-coumaric acid into
resveratrol; Ec2 – converts the
resveratrol into polydatin and

Ec1 – E. coli BL21 (DE3) containing
pAC-4CL-STS (Cm); Ec2 – E. coli BL21
(DE3)/Dpgi/Dzwf containing pET28a-

Resveratrol M9
minimal
medium

[48]
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Table 1 (continued)

Synthetic community

Organism 1 Organism 2 Role in the community Significant mutations Product Substrate Ref

resveratroloside hasC (Km) and pQE30-PaGT3 (Amp) with
glucose

5 Escherichia coli Saccharomyces
cerevisiae

Ec – produces ethanol from xylose;
Sc – produces ethanol from glucose

Ec – deletion of ptsG, pgi and zwf genes
to construct glucose negative strain of
E. coli strain SL100

Ethanol Sugar cane
bagasse

[64]

6 Pichia pastoris Pichia pastoris Pp1 – converts to dihydromonacolin
L (DML); Pp2 – converts DML to
monacolin and lovastatin

Pp1 – cloning of lovB, lovC, lovG, npgA
genes; Pp2 – cloning of slovA, cpr genes

Monacolin and
lovastatin

Methanol [65]

7 Escherichia coli Rhodopseudomonas
palustris

Ec – produce organic acids; Rp –
convert organic acids to hydrogen

Rp – deletion of nifA, amtB1, amtB2
genes for NH4+ excretion, deletion of
hupS to prevent H2 oxidation and uppE
to prevent biofilm formation

Hydrogen M9-derived
coculture
(MDC)
medium

[47]

8 Escherichia coli Streptomyces
venezuelae

Ec – produces phenylpropanoids like
pterostilbene, naringenin, and
apigenin; Sv – expresses a
methyltransferase that catalyses
mono-, di-, and tri-methylation of
phenylpropanoids

Ec – cloning multiple genes
responsible for phenylpropanoid
synthesis (Os4CL, VvSTS, VvROMT,
PeCHS, PcFNS and MtCHI); Sv –
deletion of pikromycin polyketide
synthase and cloning of a
methyltransferase from Streptomyces
avermitilis (SaOMT2)

O-methylated
phenylpropanoids

LB medium
and R2YE
medium

[66]

9 Klebsiella
pneumonia

Shewanella
oneidensis

Kp – converts glucose and xylose into
lactate; So – electron donor

Kp – deletion of adhE, pta genes and
cloning of ldhD, lldP genes to improve
lactate production; So – deletion of 1S1
and cloning of ribA, ribD, ribE and ribH
genes to improve direct-contact
extracellular electron transfer

Electricity Corn stalk
hydrolysate

[67]

10 Clostridium
beijerinckii

Clostridium
cellulovorans

Cb – produces butanol; Cc –
breakdown lignocellulose

Cc – deletion of cell wall lyases genes
(Clocel_0798 and Clocel_2169) and
overexpression of agmatine deiminase
genes (augA, encoded by Cbei_1922)
from C. beijerinckii to improve pH
tolerance, cloning of gene adhE1 from
Clostridium acetobutylicum for butanol
production

Butanol Glucose [68]
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bial metabolism can provide significant insights into howmicrobes
assemble into communities, how they interact, and how they can
be leveraged for biotechnological processes. Over the last few dec-
ades, several methods have been developed to model microbial
metabolism [70,71], and some of these have also been extended
to model microbial communities [37,72,73]. While a variety of
approaches exist, the most popular strategies for modelling micro-
bial metabolism are based on the paradigm of constraint-based
modelling (Fig. 3).

Constraint-based modelling is an approach that can be applied
to any biological system at the level of either single organisms or
multi-species consortia [74]. The modelling begins with gene
annotation of genomic data that aids in the reconstruction of a
draft genome-scale metabolic model (GEM). This is followed by
several stages of model refinement, including ‘‘gap-filling” [75],
which aims to fully connect the metabolic network and result in
a more complete model, ready for analyses. Experimental data
can be integrated into such models to further enhance their predic-
tive power [76].

One of the earliest attempts at modelling microbial communi-
ties was adopted by Stolyar and co-workers, who investigated
the co-culture of Desulfovibrio vulgaris and Methanococcus mari-
paludis [77]. They demonstrated the use of genome-scale metabolic
models (GEMs) to capture community growth parameters. Ye et al.
designed an artificial community of Ketogulonicigenium vulgare and
Bacillus megaterium to produce vitamin C [78]. They utilised GEMs
to understand the inter-species interactions in the co-culture.
Below, we discuss some of the key methods, starting with the
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reconstruction of these GEMs, methods for their simulation, and
most importantly, how these methods are extended for modelling
microbial communities. We also briefly discuss other methods that
have been broadly used to model microbial communities but have
not yet found significant application in metabolic engineering.
3.1. Genome-scale metabolic models (GEMs) and constraint-based
modelling approaches

Genome-scale Metabolic models (GEMs) computationally and
mathematically represent the metabolism of a species. Several
such GEMs have been reconstructed for thousands of organisms
over the last two decades [79]. These metabolic reconstructions
capture all known reactions in a cell through stoichiometric matri-
ces. Gene–Protein–Reaction (GPR) associations in these recon-
structions further describe how enzymes in the organism
catalyse the various reactions, capturing the many-to-many rela-
tionship between genes, proteins and reactions in the cell [80].
GEMs are typically used to predict various phenotypes through
the optimisation of an objective function, and have a variety of
applications [81].

The first GEM was developed for Haemophilus influenzae [82].
Since then, the number of metabolic reconstructions and the tools
to develop and analyse such models has significantly increased
[79]. GEMs have been applied for strain development of microbes
to produce high-value chemicals, prediction of enzyme functions,
and modelling of microbial communities [83–86].



Fig. 3. A Design–Build–Test–Learn cycle for metabolic modelling of microbial
communities. The figure gives an overview of the topics discussed in this review.
The ‘design’ stage includes the selection of the target chemical of interest and the
microbial species that can produce the chemical. GEMs are reconstructed for the
selected microbial species. In the ‘build’ stage, community models are generated
using GEMs of single species. Both steady-state and dynamic based methods are
available. The ‘test’ phase allows improvements in the metabolic capabilities of the
microbial community through in silico gene knock-out or overexpression. The
computational predictions are then tested experimentally, helping us to ‘learn’
about the community interaction behaviour, identify efficient pathways and the
maximum product yield achievable by the chosen community.
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GEMs can be easily reconstructed using the genome sequences
and the metabolic reaction information from knowledgebases such
as KEGG [87] and MetaCyc [88]. Studies such as Path2Models [89],
AGORA [90], and CarveMe [91] have made more than 6000 meta-
bolic models available. These models span various domains,
including Archaea, Eukarya, and Bacteria. Some representative
GEM databases are BiGG Models [92] (http://bigg.ucsd.edu), which
contains over 100 manually reconstructed high-quality GEMs, and
BioModels [93] (https://www.ebi.ac.uk/biomodels/), which is a
repository of both curated, non-curated models.

To keep pace with the surge in genome sequencing, numerous
approaches have also been developed to automate the reconstruc-
tion of GEMs [76,94]. ModelSEED [95] (http://modelseed.org) was
the first web-based reconstruction tool to enable automated recon-
struction of GEMs. KBase [96] (http://kbase.us) is another open-
source software and data platform that hosts a suite of tools that
facilitates RNAseq read alignment and genome annotation, includ-
ing the reconstruction and analysis of microbes and their commu-
nities. Recent tools include RAVEN [97] and AutoKEGGRec [98],
both of which use KEGG database for reconstruction. AuReMe
[99] is an adaptable workspace with enhanced traceability that
uses a template-based algorithm and can incorporate information
from multiple databases.

In some cases, the reconstructed models primarily represent
reactions from the central metabolic pathways. Incorrect or miss-
ing functional annotation of genes in databases can lead to the
reconstruction of metabolic models that have gaps in pathways
and do not capture accurate strain-specific metabolic capabilities
[100]. Gapseq is a recently published automated pipeline that
attempts to address this by using a novel gap-filling method to
decrease the effects of arbitrary growth medium measurements
[101]. The tool also includes phenotypic data from non-model
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organisms to validate the metabolic reconstructions, thus making
this a robust approach with a greater true positive rate for enzy-
matic activity, carbon source utilisation and fermentation
products.

All the above approaches, to some extent, depend on manual
curation to guarantee the quality and accuracy of the model. Man-
ual curation tasks include detection of futile cycles, removal of
blocked reactions and checking the directionality of reactions in
the model [80].

GEMs can also be generated for metagenome-assembled gen-
omes (MAGs) with new automated methods such as metaGEM
[102]. Such ‘‘draft” reconstructions are very helpful in making a
first-cut prediction of the metabolic capabilities of an organism/-
community. Nevertheless, it is crucial to further accurately curate
the model, to improve its quality and reliability. Helpful in this
regard are tools such as MEMOTE, which is a suite of tests for
the metabolic model used to assess its quality and ensure repro-
ducibility of results [103]. This is especially important for microbial
community simulations as insights derived from these analyses
can be biased with sub-standard GEMs.

Other inherent challenges specific to metagenomic data include
pre-processing of abundance data which can arise due to differ-
ences in sequencing methodologies. Also, there is a lack of a ‘gold
standard’ where information of community interactions and
sequencing data are known [104]. Nevertheless, imminent
advances in this area can not only improve the pace of reconstruc-
tion and analysis, but also ensure reproducibility through consis-
tent protocols.
3.1.1. Stoichiometric matrices – single-species GEMs and community
GEMs

A defining mathematical object of every GEM is the stoichio-
metric matrix Sm�n, where the rows represent the m metabolites,
and the columns correspond to the n reactions. Each entry in the
matrix represents the stoichiometric coefficient of a particular
metabolite in a reaction. This mathematical representation of
metabolic reactions is one of the first steps in FBA. The flux through
all the reactions is given by the vector vn�1, and the concentrations
of the metabolites are represented by vector xm�1. At steady state,
S � m ¼ 0, giving rise to a system of linear equations, which is typi-
cally under-determined. Thus, to pick a biologically relevant solu-
tion, an objective function is employed. Linear objective functions
are most widely used, given as, Z ¼ cTv , where c is a vector of
weights specifying the contribution of each reaction to the objec-
tive function [105].

A community GEM is considered as a multi-compartment
model where a community compartment typically denoted as ‘
[u]’ allows for the exchange of metabolites between the species.
The stoichiometric matrix of a microbial community model con-
sisting of two species can be represented as SM�N . The columns
represent the total number of reactions N (n1 + n2 + ne) from spe-
cies 1 (n1), species 2 (n2), and the community exchange reactions
(ne). The rows represent the total metabolites M (m1 + m2 + me)
from species 1 (m1), species 2 (m2), and the metabolites that are
part of the community exchange reactions (me).

Constraint-based modelling has been used to assess and inter-
pret GEMs. Fluxes of the metabolic network are subjected to vari-
ous physicochemical constraints that are driven by culture
conditions, thermodynamics, and steady-state assumptions. FBA
calculates metabolic fluxes of all reactions in a GEM through a lin-
ear programming-based optimisation of a biologically relevant
objective function (Fig. 4). The objective functions could be max-
imising the biomass formation rate or the target product formation
rate [105,106].

http://bigg.ucsd.edu
https://www.ebi.ac.uk/biomodels/
http://modelseed.org
http://kbase.us


Fig. 4. A schematic of constraint-based modelling using flux balance analysis (FBA). The allowable solution space, which contains all possible flux distributions, is constrained
by mass balance, thermodynamics, and capacity constraints. The red dot on the edge of the solution space represents an optimal flux solution for the specific objective
function Z. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Constraint-based computational tools for modelling microbial communities.

Computational
Methods

Input data Community
Size

Objective Function Predictions

Steady-state modelling
cFBA GEMs Small Maximisation of community growth rate Predicts species abundances and

identifies cross-feeding metabolites
OptCom GEMs Small Multi-objective optimisation, where the inner

problem is maximisation of species-level growth and
the outer problem is maximisation of community
growth

Predicts inter-species metabolite
transfers

MMinte Operational Taxonomic units
(OTUs) & FASTA file with 16S
rDNA sequences

Large Maximisation of community growth rate Reconstructs metabolic models and
predicts growth rate
Generates interaction networks

SteadyCom GEMs Large Maximisation of community growth rate Predict composition (species
abundances) of microbial community
in a given environment

RedCom Elementary Flux Vectors (EFVs) Large Maximisation of community growth rate Predicts feasible ranges for metabolite
exchange rates and product yields

Microbiome
Modelling
Toolbox
(MMT)

GEMs and microbial
Metagenomic data

Large Maximisation of community growth rate Predicts metabolic profiles in pairwise
as well as larger microbial
communities

CarveMe Genome FASTA files Large Maximisation of community growth rate Reconstruction and gap-filling of
single-species metabolic models.
Generate microbial community
models from single species

Dynamic modelling
BacArena GEMs Greater than

2 species
Individual-based modelling with FBA where Biomass
maximisation is objective

Predict cross-feeding interactions
Metabolic turn over using metabolite
concentrations as constraints

COMETS GEMs, media and spatial
structure simulation parameters
such as mutRate that represent
mutations

Greater than
2 species

Population based-modelling where maximisation of
biomass is the objective

Outputs can be from all or selected
time steps. Predicts biomass spatial
distribution for each simulation grid
cell.
Tracks specific metabolites on the
spatial grid

mbialSim GEMs Large Dynamic FBA, both batch and chemostat operations
are simulated

Simulation of microbiomes, where
metabolite exchange is the primary
means of interaction

FLYCOP GEMs Small Multiple objectives such as maximise growth, yield,
metabolite production, minimise time to reach
stationary phase etc

Predict ideal consortium configuration
depending on the optimisation goal
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Even for a given objective function, FBA may predict multiple
alternative optimal solutions. This limitation of FBA can be some-
what overcomeby Flux Variability Analysis (FVA) and parsimonious
FBA (pFBA) methods. FVA identifies the flux range (minimum and
maximum) of all the reactions in themetabolic network [107]. pFBA
computes a flux distribution that minimises the sum of all fluxes in
the model while satisfying a particular objective [108].
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3.2. Computational tools to build constraint-based community models

Many computational tools based on constraint-based modelling
have been developed to design microbial communities [109,110].
These methods vary in their assumptions of steady-state growth,
the choice of the objective function, and also in their treatment
of spatial distributions of the communities. Table 2 contains a sum-
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mary of the widely used constraint-based computational methods
for modelling.

cFBA [111] models the metabolic behaviour of communities at
steady-state. To maintain the steady-state, all the members of the
community should have the same specific growth rate while the
changes in the exchange rates should be proportional to that of
biomass, or the species abundance must remain constant with null
net growth rate. This method is limited to communities with bal-
anced growth and is computationally very expensive for large
communities. These drawbacks have been overcome to some
extent by the tools developed later.

OptCom [112] employs a multi-objective formulation to under-
stand trade-offs between individual vs community-level fitness.
The community-level objective function is the total community
biomass, and an individual biomass maximisation problem is
defined for each species as an inner problem. OptCom can also
be customised for each type of interaction, such as mutualism, par-
asitism, and competition, by altering the inter-organism flow con-
straints. This algorithm was used to predict acetate and CO2

production rates in a community comprised of Clostridium cellu-
lolyticum, D. vulgaris, and G. sulfurreducens. OptCom can be used
to identify minimal number of knock-outs required to result in
higher production of a desired compound by setting the objective
function of the outer problem as production of the compound of
interest [112].

MMinte [113] is a pipeline that allows the comparison of
growth rates between pairs of members in a community. It uses
16S rDNA sequence data to identify reference genomes and recon-
structs GEMs. The application consists of seven widgets with dif-
ferent functionalities that can be tested individually or
sequentially. A colour-coded interaction network based on the
community interactions can also be visualised. MMinte assigns
functional interactions between members of a community instead
of only computing correlations based on microbial abundance.
MMinte has been used to observe the influence of diet on the type
of microbial interactions. It has also been used to understand the
growth patterns of Desulfovibrio piger in an eight-member gut com-
munity of gnotobiotic mice. Limitations of MMinte are related to
the accuracy of the metabolic models generated, which uses reac-
tions from ModelSEED. The method also does not account for the
effect that other species in a community may have on the strength
and type of interactions in a two-member community.

SteadyCom [114] is a constraint-based computational mod-
elling framework for the generation and steady-state FBA of micro-
bial communities. It identifies the relative abundance of each
species with the objective function of maximisation of community
growth. SteadyCom guarantees that in a growing community, the
organism can have non-zero fluxes if and only if both the total bio-
mass and the biomass production rate are non-zero. The algorithm
is also compatible with FVA and is scalable to many organisms in a
community. The computational time required by SteadyCom has
been shown to be far less when compared to that of cFBA as the
number of LPs required to solve SteadyCom is dependent only on
the desired precision of the maximum growth rate. SteadyCom
has been used to model a gut microbiota community consisting
of nine species with dietary constraints to predict their relative
abundance [114].

RedCom [115] is another method that proposes reduced com-
munity models where the metabolic reactions are represented as
net conversions taken from elementary flux vectors of the various
single-species networks. The predictive potential of such reduced
communities is greater as they eliminate spurious solutions where
one species produces a large number of compounds required by
another species instead of synthesising its own biomass compo-
nents. The drawbacks of this approach are that the internal flux
distributions are not observed as the primary focus is on the
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exchange fluxes. RedCom has been used to model a nine-member
community that is involved in anaerobic digestion in biogas plants.
Metaproteomic data has also been used to constrain the solution
space for the community models, which has helped identify aceto-
clastic methanogens from Methanosarcinales to be abundant in the
community.

Microbiome Modelling Toolbox [116] is a MATLAB-based tool-
box that can be used to construct and analyse microbial communi-
ties and host-microbe interactions. Personalised community
models and pan-models can be created with functions that are part
of the toolbox. To merge models, a uniform nomenclature of
metabolites and reaction abbreviations is necessary. It has a pipe-
line known asmgPipe,which integrates microbial abundances from
metagenomic data and metabolic reconstructions. It also contains
built-in functions to determine the pairwise interactions for a com-
munity. The differences between uptake and secretion fluxes of
each community model can also be analysed with multidimen-
sional scaling methods.

CarveMe [91] is a Python package that can be used to construct
both single-species and community models. It uses a top-down
approach to construct the metabolic network of an organism from
a universal model. This process can thus be easily parallelised. The
universal model consists of a universal biomass equation,
exchange reactions and does not have any blocked reactions. Mul-
tiple single-species models are merged to form a community
model where each organism has its extracellular compartment
connected to a shared resource pool. CarveMe relies on the BiGG
database to build the universal model, and hence while primary
metabolism pathways are essentially complete other secondary
pathways will contain gaps and require further curation of the
model.

It is often challenging to employ FBA methods to analyse the
complex dynamics of microbial consortia. Therefore, to overcome
the limitations posed by FBA, methods that model the temporal
and spatial aspects of microbial systems have been developed,
e.g., dynamic FBA (dFBA). dFBA is an extension of FBA that inte-
grates the rate of change of flux constraints. Kinetic substrate
uptake parameter values are also incorporated in dFBA analysis.
dFBA applies to batch and fed-batch culture processes [117]. S.
cerevisiae and E. coli co-cultures that can consume both glucose
and xylose efficiently have been studied using dFBA to develop a
community model that can account for the community growth
conditions and interactions between the organisms [118]. Well-
known modelling methods using principles of dFBA are discussed
below.

BacArena [119] is an individual-based modelling approach.
BacArena models communities as aggregates of individuals that
have their distinct metabolism and interact with one another
through spatial and temporal means that follow biological rules,
i.e. through lysis, and chemotaxis. This can be used to hypothesize
cross-feeding mechanisms between the species. BacArena has been
applied to gain insights into the biofilm formation by Pseudomonas
aeruginosa, and it has been identified that spatial gradients of
mucus glycans were necessary for niche formations for a seven
species community of the human gut.

COMETS (Computation of Microbial Ecosystems in Time and
Space) [120] is another dynamic modelling method that differs
from BacArena in the representation of the spatial scale. In
COMETS a population of multiple cells are represented per grid
position. COMETS can predict the growth rates according to the
spatial concentration gradients. It has been used to study two
and three-strain synthetic communities of Salmonella enterica,
Methylobacterium extorquens, and E. coli. A recent version named
COMETS 2 (https://www.runcomets.org/) includes new biological
modules that encompass evolutionary dynamics and extracellular
enzyme activity. It is compatible with both MATLAB and Python

https://www.runcomets.org/
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interfaces and COBRA models. Some limitations of COMETS arise
from the complexity of numerical integration of the convection–
diffusion equations, which requires the users to choose a small
enough time step to prevent numerical errors. It is also not recom-
mended to study phenotypic cell-to-cell variability in a population.

mbialSim [121] is a dFBA-based numerical simulator that can
predict the time-course in terms of the composition and activity
of microbiomes that contain numerous species either in batch or
chemostat mode. Each species has access to a shared pool of
metabolites that can be exchanged between the species. FBA sim-
ulations in mbialSim can utilise functions from either COBRA Tool-
box or CellNetAnalyzer. mbialSim has been applied to a syntrophic
methanogenic co-culture as well as a 773-species human gut
microbiome [121]. This method can be used to explore microbial
ecology principles such as substrate competition.

FLYCOP (FLexible sYnthetic Consortium OPtimisation) [122] is
a framework that analyses multiple microbial community configu-
rations in an automated manner and selects the best configuration
for a specific objective. GEMs of the microbial strains are given as
input. This method utilises COMETS parameters for dynamic simu-
lations. Different configurable consortium parameters include
strain ratio, medium composition, cross-feeding rates, pathway
fragmentation, and consortia partner selection. There is a limita-
tion with respect to the computational time as it is dependent on
the number of parameters to be configured. For the same reasons,
FLYCOP simulations are restricted to a small number of species in
the community.

Each of the computational modelling tools discussed above
(also see Table 2) comes with its own pros and cons. Further, the
number of microbial species that can be modelled using these
methods can vary from a minimum of two microbial species (pair-
wise analysis) to large communities. Hence, a tool should be
selected for use depending on the objective of the study and the
size of the microbial community being analysed.
3.3. Alternate metabolic modelling approaches

Although constraint-based models are most popular, other
models have also been developed, which provide complementary
insights. In this section, we discuss alternate modelling
approaches, such as those based on graph theory or on population
modelling and agent-based modelling. For a more detailed account
of these methods, see ref. [73,123].
3.3.1. Macromolecular expression (ME) models
Genome-scale models of metabolism and Macromolecular

Expression or ME-models widen the scope of metabolic (M) mod-
els by incorporation of macromolecular biosynthesis pathways of
transcription and translation. In ME-models, the metabolic reac-
tions include substrate-enzyme binding and product-enzyme dis-
sociation reactions. These models are also constrained by
coupling constraints. Reactions catalysed by macromolecules are
dependent on the synthesis of the macromolecule for the reactions
to proceed. ME-models have greater accuracy than M�models as
the flux solutions obtained are parsimonious [124]. COBRAme is
a software framework built on COBRApy that can be used for build-
ing and simulating ME-models [125].

Probabilistic Regulation of Metabolism (PROM) computes prob-
abilities retrieved from expression data to represent the gene
states and transcription factor-gene interactions and constrain
the fluxes through the network. ME-models can be expanded with
such gene regulation data. Protein allocation may also be necessary
for identifying the metabolic capabilities of microbial communi-
ties, and this gap can be filled by ME-models [124]. Recent progress
has enabled the use of microbial community ME-models to study
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co-cultures growing in an adaptive laboratory evolution (ALE)-
optimised experiment [126].

3.3.2. Graph-based modelling of microbial communities
In graph-based modelling methods, GEMs are represented as

graphs. Every graph G(V, E) is described by a set of nodes (or ver-
tices, V), having connections to one another by means of the edges
(E). ‘Substrate graphs’ connect metabolites with edges directed
from substrates to products. The metabolites are denoted as nodes
with edges representing the reactions to form substrate graphs.
Alternatively, both metabolites and reactions can be represented
as nodes, and the two types of nodes can be connected via edges
to form a ‘bipartite graph’ [127]. Specific metabolites are defined
as ‘seed’ sets, and these are consumed but not produced by the net-
work. The seed metabolites are provided exogenously to the net-
work, and the metabolic pathways are inferred using various
pathfinding approaches [128,129]. Such graph-based approaches
help understand the evolutionary dynamics of competition or
cooperation between species in a community [72]. MetQuest is
another graph-theoretic algorithm that uses a guided breadth-
first search to identify all feasible reactions based on the seed
metabolite set [130]. These reactions are then assembled into path-
ways of different sizes that produce the target from the seed
source. MetQuest has been employed to study all possible meta-
bolic exchanges between S. cerevisiae and Pichia stipitis and under-
stand how the two organisms benefit from each other in a co-
culture. The findings concurred with observations seen in the co-
culture experiments of the two species [131].

3.3.3. Population-based modelling of microbial communities
Population models capture the population dynamics and the

spatial distribution of the community [132]. Each community
member is studied at the population level, and the system is mod-
elled using ODE or PDE-based modelling. It also includes game-
theoretic models where the pay-off depends on the strategies
adopted by each member of the community and the cumulative
action of all the members. The suitability of communities for
biotechnological applications has been studied using such game-
theoretic models. The population dynamics and extracellular
enzyme synthesis are modelled, which is then used to predict
the nature of the community—competition, cooperation, and co-
existence [133].

3.3.4. Agent-based or individual-based modelling of microbial
communities

Microbial communities can also be modelled at the ‘individual
level’. The growth rate and the specific substrate uptake rate of
each individual organism are used to develop agent-based or
individual-based models [73]. The properties of the community
are defined as the collection of the properties of the individuals
in the community, unlike in population-based models, where they
are considered to be the cumulative properties of the distinct pop-
ulations. This approach also addresses the heterogeneity of popula-
tions. BacSim and iDynoMics are some tools that can be used to
simulate individual-based models of communities [134,135].
4. Designing communities: getting community composition
right

The environmental conditions required for a given bioprocess
may not always exist in nature, demanding the design of an artifi-
cial community based on a defined end goal. The members of the
community can be chosen based on their ability to utilise multiple
carbon sources or based on their ability to produce specific prod-
ucts with a good yield.
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Different design approaches for artificial communities include
enrichment, community reduction, combinatorial evaluation, and
computational model-based design [37]. Enrichment involves
modifications to the environmental conditions that would enhance
the growth of a species that is capable of executing a desired func-
tion. Community reduction includes a screening process to retain
desirable species and excludes undesirable members. Combinato-
rial evaluation involves evaluating all possible combinations of a
set of candidate species for their performance of a desired function
and selection of the best communities. Mechanistic models have
also been used to evaluate potential community compositions in
silico, which can be validated further through experiments [37].

Borenstein et al. have developed CoMiDA, a method that identi-
fies minimal sets of microbes that can together provide the enzy-
matic capability to synthesise a set of desired target metabolites
from a predefined set of substrates [136]. The method incorporates
a graph-theoretic approach and an integer linear programming
framework to map out metabolic paths from the substrates to
products while simultaneously minimising the number of micro-
bial species required for catalysing these metabolic reactions. Mul-
tiPus is another method that minimises the number of reactions
and inter-microbial transfers instead of the number of species
[137]. MultiPus has been applied to analyse the theoretical produc-
tion of cephalosporin C and 1,3-propanediol by diverse synthetic
microbial communities. NetCooperate [138] is a web-based tool
that provides host-microbe and microbe-microbe cooperative
potential. It accepts a pair of metabolic networks as input and cal-
culates the ‘Metabolic Complementarity Index’ – a measure of the
biosynthetic complementarity of the two organisms. It also pro-
vides a list of potential syntrophic metabolites.

Currently, most of the experimental studies deal with artificial
communities that are designed based on prior knowledge. Experi-
mental verification of multiple communities is very laborious and
time-consuming. A study by Wilken et al. has tried to identify the
best partners for anaerobic fungi [139]. A limitation of this study is
that anaerobic fungi are a fixed member of the community, and
only the partner species is identified computationally, and the size
of the community is restricted to two. However, if we were to
expand the size of the community and the number of organisms
to choose from, the problem becomes computationally expensive.
As yet, there are only a very few methods to design the community
composition. The existing methods often identify the minimal set
of microbes but not the most efficient set that is required to
achieve a goal, as described above. This asserts the need for
better-automated algorithms to analyse all possible communities
better and identify the best community for a given purpose.
5. Improving community performance: model-driven rational
strain design

Once we have a functional microbial community for a process,
we can explore further optimisation of the community via strain
improvement of the constituent microbes. As discussed earlier,
the microbes may not always have sufficient yield and productivity
in their native state. Therefore, metabolically engineering these
strains to remove genes responsible for the production of
unwanted by-products, or over-expressing the genes responsible
for the synthesis of the product, can increase the yield significantly.

Similarly, the organisms of a community can also be engineered
to cooperate better. This is especially important in artificial com-
munities, where one organism can quickly outgrow the other if it
has a greater growth advantage. This scenario can be prevented
if the organisms are engineered such that each organism is aux-
otrophic for a metabolite supplied by its partner. This creates a sys-
tem of checks and balances, ensuring the stability of the
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community. The biosynthetic pathway of salidroside has been
partly engineered in a co-culture of two E. coli strains. The strains
were further engineered such that they utilise various carbon
sources to reduce substrate competition and ensure cooperation.
Also, one strain supports the growth of the other by over-
producing the amino acid for which the partner is auxotrophic
[140,141].

A wide range of in silico strain optimisation algorithms exist;
these utilise individual microbial GEMs as the standard input.
One of the pioneering algorithms widely used to predict gene
and reaction knock-out strategies is OptKnock [142]. OptKnock
computes reaction deletion targets through bi-level mixed-
integer linear programming (MILP), which couples objectives of
biomass formation with target metabolite production. Knock-out
targets predicted by OptKnock have been validated successfully
through experiments. Some recent examples include the predic-
tion of gene knock-outs from the non-model yeast Issatchenkia ori-
entalis SD108 for overproduction of succinic acid [143]. In a co-
culture of Clostridium autoethanogenum and Clostridium kluyveri,
OptKnock has been used to identify gene knock-outs to improve
the production of medium-chain fatty-acids [144]. This study
shows that strain optimisation algorithms have the potential to
be extended to microbial communities.

Other algorithms that have been developed for optimisation of
single strains include Flux Scanning based on Enforced Objective
Flux (FSEOF) [145] and Flux Variability Scanning based on Enforced
Objective Flux (FVSEOF) [146]. These methods identify reactions
that should be up-regulated or down-regulated and that are either
positively or negatively correlated with the target product synthe-
sis. FSEOF was first introduced to identify amplification targets for
increased lycopene production [145]. In a recent study, it was used
to predict non-conventional targets such as nucleoside inosine to
enhance the production of hyaluronan from recombinant Lactococ-
cus lactis [147].

OptGene [148] is an algorithm that uses simulated annealing
and evolutionary algorithms to optimise the set of gene knock-
outs that maximise a given objective function. OptStrain [149]
optimises the organism for non-native functionalities. It identifies
the maximum yield path for biotransformation and minimises the
number of non-native reactions required to achieve the target
yield. EMILiO [150] identifies the optimal flux ranges needed to
maximise the yield of the target product. It uses successive linear
programming to decrease the time necessary for computation.

Some recent algorithms use alternate approaches to the tradi-
tional bilevel optimisation problems. NIHBA [151] is a network
interdiction model which uses a hybrid Bender’s algorithm to
achieve computational strain design. MODCELL2 [152] is an algo-
rithm that aids modular cell engineering, where each parent strain
is converted to a pool of modular cells that can be integrated with
exchange modules to arrive at the desired strain. Once the modular
cells are designed, they can be assembled in multiple ways to
design different strains for different objectives.

OptRAM (Optimisation of Regulatory And Metabolic Networks)
[153] can identify amplification and knock-out targets for both
genes and transcription factors. It uses the Integrated Deduced
Regulation And Metabolism (IDREAM) framework to develop inte-
grated regulatory-metabolic models, which are then optimised for
target product synthesis using the OptRAM algorithm. As discussed
earlier, the problem is underdetermined and can have multiple
solutions for a given objective. All the above algorithms choose
one of the solutions randomly. Looking at the range of flux values
a reaction can take, can present a better picture of the metabolic
capabilities of an organism. OptForce uses FVA to identify the flux
variability for the target reaction and optimises the set of gene
deletions and/or amplifications that can maximise the upper limit
of the flux range for the target reaction.



Table 3
Tools for computational strain design. (HI)–Heterologous insertion; (RD)–Reaction deletion; (RA)–Reaction amplification; (RDR)–Reaction down-regulation; (GD)–Gene deletion;
(GA)–Gene amplification; (GDR)–Gene down-regulation.

Algorithm Description Type of
intervention

Heuristic/
Exact

Ref.

OptKnock It is a bi-level optimisation framework where the inner problem maximises the cellular objective while the outer
problem maximises the bioengineering objective. Most of the future algorithms adopt a similar framework.

RD Exact [142]

OptStrain Identifies the non-native reactions to be cloned into the microbe to achieve heterologous functionality. RD/ HI Exact [149]
OptReg Identifies both reaction deletions and amplifications using OptKnock framework RD/RA Exact [155]
OptORF Uses GPR association rules to identify gene knock-outs and amplifications. (Penalty for each intervention) GD/GA Exact [156]
OptForce Compares the flux ranges for wild type and mutant network using FVA and thereby identifies intervention targets. RD/RA/RDR Exact [157]
FSEOF Scans the changes in the flux distribution of the metabolic network when the product synthesis is pushed. The

reactions that show an increase/decrease in flux, as a result, are chosen as potential over-expression/deletion
targets

RD/RA Exact [145]

EMILiO Uses iterative linear optimisation to identify the optimal flux values for each intervention target. Flux value Exact [150]
CASOP Uses elementary modes to identify deletion and overexpression targets. RD/RA Exact [158]
cMCS Identifies reaction deletions by identifying constrained Minimal Cut-Sets (cMCS), which are MCS that are restricted

to maintain certain functionalities. These constraints are chosen such that the bioengineering objective is met.
RD Exact [159]

CosMos Identifies optimal flux value by continuous modification of flux bounds of a reaction Flux value Exact [160]
NIHBA Uses evolutionary game theory and a hybrid Bender’s algorithm to optimise the strain design RD Exact [151]
OptGene Uses genetic algorithms to identify knock-out targets RD Heuristic [148]
ModCell2 Uses evolutionary algorithms to achieve modular cell engineering. Here, the parent strain is transformed into a

modular cell, and many such exchange modules constitute a strain design
RD Heuristic [152]

OptRAM Uses simulated annealing to identify knock-outs, up-regulation, and down-regulation of genes and transcription
factors from the IDREAM integrated network framework

GD/GA/GDR Heuristic [153]
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MEWpy [154] is an integrated strain optimisation platform that
can utilise metabolic, enzymatic, and regulatory constraint-based
models. This workbench uses the GECKO toolbox and OptRAM
algorithms which integrate proteomic and transcriptional regula-
tion for better predictions. Table 3 presents a comprehensive list
of computational methods that use GEMs to predict novel over-
expression and knock-outs targets to improve the biosynthesis of
products.

Constructing microbial communities of engineered strains can
lead to discovering novel phenotypes and provide improved meta-
bolic capabilities for the biosynthesis of industrially relevant
chemicals. While most of the methods mentioned above have pro-
ven successful in predicting optimisation strategies for single-
species metabolic models, algorithms suitable for microbial com-
munities are few and far between. This is an important area of
future research, particularly owing to the computational complex-
ity of dealing with large microbial community models composed of
a higher number of reactions and metabolites. Thus, there is a need
to simplify and specialise such algorithms for use in communities.
One must also consider parameters such as the total number of
genetic interventions and how many such interventions need to
be implemented in each organism in the community.
6. Summary and outlook

Microbial communities have been long exploited for fermenta-
tion processes such as bread-making and winemaking. Yet, to sys-
tematically study, understand, design, and ultimately manipulate
these microbial consortia, it is imperative to use mathematical
approaches that capture key aspects of microbial metabolism and
interactions. Though graph-based, population-based, and other
ecological models provide useful insight into the behaviour of
microbial communities, constraint-based modelling offers a deeper
understanding of microbial metabolism. Despite the strides made
in constraint-based modelling over the last two decades, many
important challenges need to be surmounted to apply and extend
these modelling methods to large community metabolic networks.
There is a need for better strategies to formulate the community
composition and specialised algorithms for synthetically engineer-
ing microbial communities. Advancements in community mod-
elling and strain design can aid the accurate prediction of
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community phenotypes and thereby establish superior
bioprocesses.

Recent advances in genome sequencing techniques have cre-
ated a massive influx of GEMs. This, in turn, warrants a need for
better curation tools as the availability of high-quality GEMs plays
a vital role in the metabolic modelling of microbial communities. A
major experimental technique that has influenced the develop-
ment of metabolic models, particularly their validation, is 13C-
MFA (metabolic flux analysis) [161]. It uses labelled tracers to
quantify metabolic fluxes, which enables the construction of a flux
map. The application of 13C-MFA to multi-species communities is
difficult as it requires physical separation of the cells. Gebreselassie
and Antoniewicz have proposed a novel approach to perform 13C-
MFA in communities [162]. However, the ready utilisation of this
approach is still challenging as it requires careful selection of the
isotopic tracers. Therefore, there is a pressing need for advanced
techniques that can simplify the use of 13C-MFA to study microbial
communities.

In this review, we have extensively dealt with metabolism and
flux analysis—fluxomics. There are several other omics fields, each
of which shines a light on different microbial interactions in com-
munities. The use and integration of other omic data, from tran-
scriptomics, proteomics, and metabolomics, alongside fluxomics,
can provide a better, holistic picture of microbial community inter-
actions [163,164]. Multi-omic data integration can range from sim-
ple two-layer [165,166] to multi-layer integration [167,168] that
can be more computationally demanding. Assembling integrated
models for microbial communities can be twice as challenging
due to the paucity of multi-omic data and the complexity in data
processing [169,170]. However, it holds tremendous potential to
help us understand the functional role of each member of the com-
munity and the complex forces at work that result in a specific
phenotype. Integrating FBA-based methods with network
science-backed models has also been explored and found to pro-
vide a better understanding of the structure and function of meta-
bolic networks [171]. Advancements in integrating diverse
modelling approaches and omics data can result in accurate and
biologically relevant predictions of microbial metabolism, and
thereby enable better strain design.

In the recent years, Machine Learning (ML) has impacted nearly
every field of science and engineering. ML uses data-driven algo-
rithms that ‘train’ on supervised examples and improve its perfor-
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mance through experience, i.e., learning. ML is relatively nascent in
metabolic engineering, yet it holds immense potential [172]. It can
be used to identify and annotate protein sequences in genomes
[173], promoter design [174], and process control and optimisation
[175]. It is instrumental in the quantitative prediction of metabolic
fluxes. A significant bottleneck in implementing ML techniques
though, is the non-availability of large datasets with high repro-
ducibility. Generation of high-quality high-throughput data for
microbial communities and integration of ML-based approaches
can bolster the use of microbial communities for bioproduction.

Through this review, we have presented a broad overview of
many mathematical methods, especially those based on the para-
digm of constraint-based modelling, which is quite versatile and
has been successfully employed to improve our understanding of
microbial communities. Despite the significant advances docu-
mented in this review, numerous unsolved problems remain, as
the field promises to be a seedbed of active research over the com-
ing years.

7. Author agreement statement

We the undersigned declare that this manuscript is original, has
not been published before and is not currently being considered for
publication elsewhere. We confirm that the manuscript has been
read and approved by all named authors and that there are no
other persons who satisfied the criteria for authorship but are
not listed. We further confirm that the order of authors listed in
the manuscript has been approved by all of us. We understand that
the Corresponding Author is the sole contact for the Editorial pro-
cess. He/she is responsible for communicating with the other
authors about progress, submissions of revisions and final approval
of proofs.

CRediT authorship contribution statement

Maziya Ibrahim: Conceptualization, Writing - original draft.
Lavanya Raajaraam: Conceptualization, Writing - original draft.
Karthik Raman: Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

MI acknowledges the IIT Madras Institute Post-Doctoral Fellow-
ship. LR acknowledges the fellowship from the Ministry of Educa-
tion, Government of India. KR acknowledges support from the
Science and Engineering Board (SERB) MATRICS Grant
MTR/2020/000490.

References

[1] Erickson B, Nelson, Winters P. Perspective on opportunities in industrial
biotechnology in renewable chemicals. Biotechnol J 2012;7(2):176–85.
https://doi.org/10.1002/biot.201100069.

[2] Ko Y-S, Kim JW, Lee JA, Han T, Kim GB, Park JE, et al. Tools and strategies of
systems metabolic engineering for the development of microbial cell factories
for chemical production. Chem Soc Rev 2020;49(14):4615–36. https://doi.
org/10.1039/D0CS00155D.

[3] Wehrs M, Tanjore D, Eng T, Lievense J, Pray TR, Mukhopadhyay A. Engineering
robust production microbes for large-scale cultivation. Trends Microbiol
2019;27(6):524–37. https://doi.org/10.1016/j.tim.2019.01.006.

[4] Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. Clostridia: the
importance of their exceptional substrate and metabolite diversity for biofuel
and biorefinery applications. Curr Opin Biotechnol 2012;23(3):364–81.
https://doi.org/10.1016/j.copbio.2011.10.008.
3904
[5] Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium
organisms as microbial cell-factories: challenges & opportunities. Metab Eng
2018;50:173–91. https://doi.org/10.1016/j.ymben.2018.07.012.

[6] Becker J, Wittmann C. Advanced biotechnology: metabolically engineered
cells for the bio-based production of chemicals and fuels, materials, and
health-care products. Angew Chem Int Ed Engl 2015;54(11):3328–50. https://
doi.org/10.1002/anie.201409033.

[7] Cai X, Bennett GN. Improving the Clostridium acetobutylicum butanol
fermentation by engineering the strain for co-production of riboflavin. J Ind
Microbiol Biotechnol 2011;38(8):1013–25. https://doi.org/10.1007/s10295-
010-0875-6.

[8] Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid
stability in plasmid DNA production by Escherichia coli. Biotechnol Adv
2012;30(3):691–708. https://doi.org/10.1016/j.biotechadv.2011.12.005.

[9] Shahab RL, Luterbacher JS, Brethauer S, Studer MH. Consolidated
bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-
bacterial consortium. Biotechnol Bioeng 2018;115(5):1207–15. https://doi.
org/10.1002/bit.v115.510.1002/bit.26541.

[10] den Haan R, van Rensburg E, Rose SH, Görgens JF, van Zyl WH. Progress and
challenges in the engineering of non-cellulolytic microorganisms for
consolidated bioprocessing. Curr Opin Biotechnol 2015;33:32–8. https://doi.
org/10.1016/j.copbio.2014.10.003.

[11] Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway
among a microbial consortium enhances production of natural products. Nat
Biotechnol 2015;33(4):377–83. https://doi.org/10.1038/nbt.3095.

[12] Zaramela LS, Moyne O, Kumar M, Zuniga C, Tibocha-Bonilla JD, Zengler K. The
sum is greater than the parts: exploiting microbial communities to achieve
complex functions. Curr Opin Biotechnol 2021;67:149–57. https://doi.org/
10.1016/j.copbio.2021.01.013.

[13] Charubin K, Papoutsakis ET. Direct cell-to-cell exchange of matter in a
synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite
yields, and an expanded metabolic space. Metab Eng 2019;52:9–19. https://
doi.org/10.1016/j.ymben.2018.10.006.

[14] Chiu HC, Levy R, Borenstein E. Emergent biosynthetic capacity in simple
microbial communities. PLoS Comput Biol 2014;10(7). https://doi.org/
10.1371/journal.pcbi.1003695.

[15] Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM,
et al. Experimental and computational optimization of an Escherichia coli co-
culture for the efficient production of flavonoids. Metab Eng 2016;35:55–63.
https://doi.org/10.1016/j.ymben.2016.01.006.

[16] Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA. Bacterial diversity
promotes community stability and functional resilience after perturbation.
Environ Microbiol 2005;7(3):301–13. https://doi.org/10.1111/j.1462-
2920.2005.00695.x.

[17] Hanly TJ, Urello M, Henson MA. Dynamic flux balance modeling of S.
cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose
mixtures. Appl Microbiol Biotechnol 2012;93(6):2529–41. https://doi.org/
10.1007/s00253-011-3628-1.

[18] Jiang Y, Lv Y, Wu R, Lu J, Dong W, Zhou J, et al. Consolidated bioprocessing
performance of a two-species microbial consortium for butanol production
from lignocellulosic biomass. Biotechnol Bioeng 2020;117(10):2985–95.
https://doi.org/10.1002/bit.27464.

[19] Bhatia SK, Yoon J-J, Kim H-J, Hong JW, Gi Hong Y, Song H-S, et al. Engineering
of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from
sugarcane sugar without precursor feeding. Bioresour Technol
2018;257:92–101. https://doi.org/10.1016/j.biortech.2018.02.056.

[20] Thommes M, Wang T, Zhao Q, Paschalidis IC, Segrè D. Designing metabolic
division of labor in microbial communities. mSystems 2019;4(2). https://doi.
org/10.1128/mSystems.00263-18.

[21] Centler F, Günnigmann S, Fetzer I, Wendeberg A. Keystone species and
modularity in microbial hydrocarbon degradation uncovered by network
analysis and association rule mining, Microorganisms, 8 (2) Art. no. 2, 2020,
doi: 10.3390/microorganisms8020190.

[22] Holme P, Oresic M. Metabolic robustness and network modularity: a model
study. PLoS ONE 2011;6(2):e16605. https://doi.org/10.1371/journal.
pone.0016605.

[23] Charubin K, Modla S, Caplan JL, Papoutsakis ET. Interspecies microbial fusion
and large-scale exchange of cytoplasmic proteins and RNA in a Syntrophic
Clostridium coculture, mBio, 11 (5), e02030-20, /mbio/11/5/mBio.02030-20.
atom, 2020, doi: 10.1128/mBio.02030-20.

[24] Kang Z, Gao C, Wang Q, Liu H, Qi Q. A novel strategy for succinate and
polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol
2010;101(19):7675–8. https://doi.org/10.1016/j.biortech.2010.04.084.

[25] Zhu Y, Zhou C, Wang Y, Li C. Transporter engineering for microbial
manufacturing. Biotechnol J 2020;15(9):1900494. https://doi.org/10.1002/
biot.201900494.

[26] Cavaliere M, Feng S, Soyer OS, Jiménez JI. Cooperation in microbial
communities and their biotechnological applications. Environ Microbiol
2017;19(8):2949–63. https://doi.org/10.1111/1462-2920.13767.

[27] Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic
dependencies drive species co-occurrence in diverse microbial communities.
PNAS 2015;112(20):6449–54. https://doi.org/10.1073/pnas.1421834112.

[28] Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, et al. Interactions between Bacillus
cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture
for butanol production under nonanaerobic conditions. Biotechnol Appl

https://doi.org/10.1002/biot.201100069
https://doi.org/10.1039/D0CS00155D
https://doi.org/10.1039/D0CS00155D
https://doi.org/10.1016/j.tim.2019.01.006
https://doi.org/10.1016/j.copbio.2011.10.008
https://doi.org/10.1016/j.ymben.2018.07.012
https://doi.org/10.1002/anie.201409033
https://doi.org/10.1002/anie.201409033
https://doi.org/10.1007/s10295-010-0875-6
https://doi.org/10.1007/s10295-010-0875-6
https://doi.org/10.1016/j.biotechadv.2011.12.005
https://doi.org/10.1002/bit.v115.510.1002/bit.26541
https://doi.org/10.1002/bit.v115.510.1002/bit.26541
https://doi.org/10.1016/j.copbio.2014.10.003
https://doi.org/10.1016/j.copbio.2014.10.003
https://doi.org/10.1038/nbt.3095
https://doi.org/10.1016/j.copbio.2021.01.013
https://doi.org/10.1016/j.copbio.2021.01.013
https://doi.org/10.1016/j.ymben.2018.10.006
https://doi.org/10.1016/j.ymben.2018.10.006
https://doi.org/10.1371/journal.pcbi.1003695
https://doi.org/10.1371/journal.pcbi.1003695
https://doi.org/10.1016/j.ymben.2016.01.006
https://doi.org/10.1111/j.1462-2920.2005.00695.x
https://doi.org/10.1111/j.1462-2920.2005.00695.x
https://doi.org/10.1007/s00253-011-3628-1
https://doi.org/10.1007/s00253-011-3628-1
https://doi.org/10.1002/bit.27464
https://doi.org/10.1016/j.biortech.2018.02.056
https://doi.org/10.1128/mSystems.00263-18
https://doi.org/10.1128/mSystems.00263-18
https://doi.org/10.1371/journal.pone.0016605
https://doi.org/10.1371/journal.pone.0016605
https://doi.org/10.1016/j.biortech.2010.04.084
https://doi.org/10.1002/biot.201900494
https://doi.org/10.1002/biot.201900494
https://doi.org/10.1111/1462-2920.13767
https://doi.org/10.1073/pnas.1421834112


M. Ibrahim, L. Raajaraam and K. Raman Computational and Structural Biotechnology Journal 19 (2021) 3892–3907
Biochem 2017;64(5):719–26. https://doi.org/10.1002/bab.2017.64.issue-
510.1002/bab.1522.

[29] Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of
interspecies interactions in microbial ecosystems. Nat Commun 2019;10
(1):103. https://doi.org/10.1038/s41467-018-07946-9.

[30] Lovley DR. Happy together: microbial communities that hook up to swap
electrons. ISME J 2017;11(2):327–36. https://doi.org/10.1038/
ismej.2016.136.

[31] Dubey G, Malli Mohan G, Dubrovsky A, Amen T, Tsipshtein S, Rouvinski A,
et al. Architecture and characteristics of bacterial nanotubes. Dev Cell
2016;36(4):453–61. https://doi.org/10.1016/j.devcel.2016.01.013.

[32] Benomar S, Ranava D, Cárdenas ML, Trably E, Rafrafi Y, Ducret A, et al.
Nutritional stress induces exchange of cell material and energetic coupling
between bacterial species. Nat Commun 2015;6(1). https://doi.org/10.1038/
ncomms7283.

[33] Pacheco AR, Segrè D. A multidimensional perspective on microbial
interactions, FEMS Microbiol Lett, 366 (11), 2019, doi: 10.1093/femsle/
fnz125.

[34] Freilich S, et al., Competitive and cooperative metabolic interactions in
bacterial communities, Nat Commun 2 (1), Art. no. 1, 2011, doi: 10.1038/
ncomms1597.

[35] Gao B, Sabnis R, Costantini T, Jinkerson R, Sun Q. A peek in the micro-sized
world: a review of design principles, engineering tools, and applications of
engineered microbial community. Biochem Soc Trans 2020;48(2):399–409.
https://doi.org/10.1042/BST20190172.

[36] Kong W, Meldgin DR, Collins JJ, Lu T. Designing microbial consortia with
defined social interactions. Nat Chem Biol 2018;14(8):821–9.

[37] Eng A, Borenstein E. Microbial community design: methods, applications, and
opportunities. Curr Opin Biotechnol 2019;58:117–28. https://doi.org/
10.1016/j.copbio.2019.03.002.

[38] Ai B, Chi X, Meng J, Sheng Z, Zheng L, Zheng X, et al. Consolidated
bioprocessing for butyric acid production from rice straw with undefined
mixed culture. Front Microbiol 2016;7. https://doi.org/10.3389/
fmicb.2016.01648.

[39] Liu L, Yang J, Yang Yi, Luo L, Wang R, Zhang Yu, et al. Consolidated
bioprocessing performance of bacterial consortium EMSD5 on hemicellulose
for isopropanol production. Bioresour Technol 2019;292:121965. https://doi.
org/10.1016/j.biortech.2019.121965.

[40] Xu L, Tschirner U. Improved ethanol production from various carbohydrates
through anaerobic thermophilic co-culture. Bioresour Technol 2011;102
(21):10065–71. https://doi.org/10.1016/j.biortech.2011.08.067.

[41] Borenstein E, Feldman MW. Topological signatures of species interactions in
metabolic networks. J Comput Biol 2009;16(2):191–200. https://doi.org/
10.1089/cmb.2008.06TT.

[42] Wu J, Dong L, Zhou C, Liu B, Feng L, Wu C, et al. Developing a coculture for
enhanced butanol production by Clostridium beijerinckii and Saccharomyces
cerevisiae. Bioresour Technol Rep 2019;6:223–8. https://doi.org/10.1016/j.
biteb.2019.03.006.

[43] Zuck KM, Shipley S, Newman DJ. Induced production of N-formyl alkaloids
from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat
Prod 2011;74(7):1653–7. https://doi.org/10.1021/np200255f.

[44] Scholz SA, Graves I, Minty JJ, Lin XN. Production of cellulosic organic acids via
synthetic fungal consortia. Biotechnol Bioeng 2018;115(4):1096–100.
https://doi.org/10.1002/bit.v115.410.1002/bit.26509.

[45] Clark RL, Connors BM, Stevenson DM, Hromada SE, Hamilton JJ, Amador-
Noguez D, et al. Design of synthetic human gut microbiome assembly and
butyrate production. Nat Commun 2021;12(1). https://doi.org/10.1038/
s41467-021-22938-y.

[46] Hernández C, Alamilla-Ortiz ZL, Escalante AE, Navarro-Díaz M, Carrillo-Reyes
J, Moreno-Andrade I, et al. Heat-shock treatment applied to inocula for H2
production decreases microbial diversities, interspecific interactions and
performance using cellulose as substrate. Int J Hydrogen Energy 2019;44
(26):13126–34. https://doi.org/10.1016/j.ijhydene.2019.03.124.

[47] Sangani AA, McCully AL, LaSarre B, McKinlay JB. Fermentative Escherichia coli
makes a substantial contribution to H2 production in coculture with
phototrophic Rhodopseudomonas palustris. FEMS Microbiol Lett 2019;366
(fnz162):Jul. https://doi.org/10.1093/femsle/fnz162.

[48] Thuan NH, Trung NT, Cuong NX, Van Cuong D, Van Quyen D, Malla S.
Escherichia coli modular coculture system for resveratrol glucosides
production. World J Microbiol Biotechnol 2018;34(6):75. https://doi.org/
10.1007/s11274-018-2458-z.

[49] Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-
Hofmeister ME, et al. Synthetic Escherichia coli-Corynebacterium
glutamicum consortia for l-lysine production from starch and sucrose.
Bioresour Technol 2018;260:302–10. https://doi.org/10.1016/j.
biortech.2018.03.113.

[50] Aiello-Mazzarri C, Agbogbo FK, Holtzapple MT. Conversion of municipal solid
waste to carboxylic acids using a mixed culture of mesophilic
microorganisms. Bioresour Technol 2006;97(1):47–56. https://doi.org/
10.1016/j.biortech.2005.02.020.

[51] Zhang C, Xiao G, Peng L, Su H, Tan T. The anaerobic co-digestion of food waste
and cattle manure. Bioresour Technol 2013;129:170–6. https://doi.org/
10.1016/j.biortech.2012.10.138.

[52] Fra-Vázquez A, Pedrouso A, Palmeiro-Sánchez T, Moralejo-Gárate H,
Mosquera-Corral A. Feasible microbial accumulation of triacylglycerides
from crude glycerol: microbial accumulation of triacylglycerides from
3905
glycerol. J Chem Technol Biotechnol 2018;93(9):2644–51. https://doi.org/
10.1002/jctb.2018.93.issue-910.1002/jctb.5618.

[53] Fatehizadeh A, Amin MM, Bina B, Zare MR, Ghasemian M, Taheri E.
Biohydrogen production as clean fuel from physically pretreated mixed
culture. Adv Biomed Res 2018;7(1):80. https://doi.org/10.4103/2277-
9175.233030.

[54] Hollister EB, Forrest AK, Wilkinson HH, Ebbole DJ, Malfatti SA, Tringe SG, et al.
Structure and dynamics of the microbial communities underlying the
carboxylate platform for biofuel production. Appl Microbiol Biotechnol
2010;88(1):389–99. https://doi.org/10.1007/s00253-010-2789-7.

[55] Liu ChunMei, Wachemo AC, Tong H, Shi SiHui, Zhang L, Yuan HaiRong, et al.
Biogas production and microbial community properties during anaerobic
digestion of corn stover at different temperatures. Bioresour Technol
2018;261:93–103. https://doi.org/10.1016/j.biortech.2017.12.076.

[56] Candry P, Huang S, Carvajal-Arroyo JM, Rabaey K, Ganigue R. Enrichment and
characterisation of ethanol chain elongating communities from natural and
engineered environments. Sci Rep 2020;10(1):3682. https://doi.org/10.1038/
s41598-020-60052-z.

[57] Joshi S, Robles A, Aguiar S, Delgado AG. The occurrence and ecology of
microbial chain elongation of carboxylates in soils, ISME J, pp. 1–12, 2021,
doi: 10.1038/s41396-021-00893-2.

[58] Cheirsilp B, Shimizu H, Shioya S. Enhanced kefiran production by mixed
culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J
Biotechnol 2003;100(1):43–53. https://doi.org/10.1016/S0168-1656(02)
00228-6.

[59] Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, et al. The
berkeleylactones, antibiotic macrolides from fungal coculture. J Nat Prod
2017;80(4):1150–60. https://doi.org/10.1021/acs.jnatprod.7b00133.

[60] Schwalm ND, Mojadedi W, Gerlach ES, Benyamin M, Perisin MA, Akingbade
KL. Developing a microbial consortium for enhanced metabolite production
from simulated food waste, Fermentation, 5 (4), Art. no. 4, 2019, doi: 10.3390/
fermentation5040098.

[61] Horisawa S, Inoue A, Yamanaka Y. Direct ethanol production from
lignocellulosic materials by mixed culture of wood rot fungi Schizophyllum
commune, Bjerkandera adusta, and Fomitopsis palustris, Fermentation, 5 (1),
Art. no. 1, 2019, doi: 10.3390/fermentation5010021.

[62] Chen Z, Sun X, Li Y, Yan Y, Yuan Q. Metabolic engineering of Escherichia coli
for microbial synthesis of monolignols. Metab Eng 2017;39:102–9. https://
doi.org/10.1016/j.ymben.2016.10.021.

[63] Weiss TL, Young EJ, Ducat DC. A synthetic, light-driven consortium of
cyanobacteria and heterotrophic bacteria enables stable
polyhydroxybutyrate production. Metab Eng 2017;44:236–45. https://doi.
org/10.1016/j.ymben.2017.10.009.

[64] Wang L, York SW, Ingram LO, Shanmugam KT. Simultaneous fermentation of
biomass-derived sugars to ethanol by a co-culture of an engineered
Escherichia coli and Saccharomyces cerevisiae. Bioresour Technol
2019;273:269–76. https://doi.org/10.1016/j.biortech.2018.11.016.

[65] Liu Y, Tu X, Xu Q, Bai C, Kong C, Liu Qi, et al. Engineered monoculture and co-
culture of methylotrophic yeast for de novo production of monacolin J and
lovastatin from methanol. Metab Eng 2018;45:189–99. https://doi.org/
10.1016/j.ymben.2017.12.009.

[66] Cui H, Song MC, Ban YH, Jun SY, Kwon AS, Lee JY, et al. High-yield production
of multiple O-methylated phenylpropanoids by the engineered Escherichia
coli–Streptomyces cocultivation system. Microb Cell Fact 2019;18(1). https://
doi.org/10.1186/s12934-019-1118-9.

[67] Li F, An X, Wu D, Xu J, Chen Y, Li W, et al. Engineering microbial consortia for
high-performance cellulosic hydrolyzates-fed microbial fuel cells. Front
Microbiol 2019;10. https://doi.org/10.3389/fmicb.2019.00409.

[68] Wen Z, Ledesma-Amaro R, Lu M, Jiang Yu, Gao S, Jin M, et al. Combined
evolutionary engineering and genetic manipulation improve low pH
tolerance and butanol production in a synthetic microbial Clostridium
community. Biotechnol Bioeng 2020;117(7):2008–22. https://doi.org/
10.1002/bit.27333.

[69] Ponomarova O, Patil KR. Metabolic interactions in microbial communities:
untangling the Gordian knot. Curr Opin Microbiol 2015;27:37–44. https://
doi.org/10.1016/j.mib.2015.06.014.

[70] Heinemann M, Sauer U. Systems biology of microbial metabolism. Curr Opin
Microbiol 2010;13(3):337–43. https://doi.org/10.1016/j.mib.2010.02.005.

[71] Chen J, Gomez JA, Höffner K, Phalak P, Barton PI, Henson MA. Spatiotemporal
modeling of microbial metabolism. BMC Syst Biol 2016;10(1):21. https://doi.
org/10.1186/s12918-016-0259-2.

[72] Bosi E, Bacci G, Mengoni A, Fondi M. Perspectives and challenges in microbial
communities metabolic modeling. Front Genet 2017;8(JUN):1–9. https://doi.
org/10.3389/fgene.2017.00088.

[73] Ravikrishnan A, Raman K. Systems-level modelling of microbial
communities: theory and practice. CRC Press; 2018.

[74] Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ. Reconstruction of
biochemical networks in microorganisms. Nat Rev Microbiol 2009;7
(2):129–43. https://doi.org/10.1038/nrmicro1949.

[75] Pan S, Reed JL. Advances in gap-filling genome-scale metabolic
models and model-driven experiments lead to novel metabolic discoveries.
Curr Opin Biotechnol 2018;51:103–8. https://doi.org/10.1016/
j.copbio.2017.12.012.

[76] Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY. Recent advances in reconstruction
and applications of genome-scale metabolic models. Curr Opin Biotechnol
2012;23(4):617–23. https://doi.org/10.1016/j.copbio.2011.10.007.

https://doi.org/10.1002/bab.2017.64.issue-510.1002/bab.1522
https://doi.org/10.1002/bab.2017.64.issue-510.1002/bab.1522
https://doi.org/10.1038/s41467-018-07946-9
https://doi.org/10.1038/ismej.2016.136
https://doi.org/10.1038/ismej.2016.136
https://doi.org/10.1016/j.devcel.2016.01.013
https://doi.org/10.1038/ncomms7283
https://doi.org/10.1038/ncomms7283
https://doi.org/10.1042/BST20190172
http://refhub.elsevier.com/S2001-0370(21)00286-5/h0180
http://refhub.elsevier.com/S2001-0370(21)00286-5/h0180
https://doi.org/10.1016/j.copbio.2019.03.002
https://doi.org/10.1016/j.copbio.2019.03.002
https://doi.org/10.3389/fmicb.2016.01648
https://doi.org/10.3389/fmicb.2016.01648
https://doi.org/10.1016/j.biortech.2019.121965
https://doi.org/10.1016/j.biortech.2019.121965
https://doi.org/10.1016/j.biortech.2011.08.067
https://doi.org/10.1089/cmb.2008.06TT
https://doi.org/10.1089/cmb.2008.06TT
https://doi.org/10.1016/j.biteb.2019.03.006
https://doi.org/10.1016/j.biteb.2019.03.006
https://doi.org/10.1021/np200255f
https://doi.org/10.1002/bit.v115.410.1002/bit.26509
https://doi.org/10.1038/s41467-021-22938-y
https://doi.org/10.1038/s41467-021-22938-y
https://doi.org/10.1016/j.ijhydene.2019.03.124
https://doi.org/10.1093/femsle/fnz162
https://doi.org/10.1007/s11274-018-2458-z
https://doi.org/10.1007/s11274-018-2458-z
https://doi.org/10.1016/j.biortech.2018.03.113
https://doi.org/10.1016/j.biortech.2018.03.113
https://doi.org/10.1016/j.biortech.2005.02.020
https://doi.org/10.1016/j.biortech.2005.02.020
https://doi.org/10.1016/j.biortech.2012.10.138
https://doi.org/10.1016/j.biortech.2012.10.138
https://doi.org/10.1002/jctb.2018.93.issue-910.1002/jctb.5618
https://doi.org/10.1002/jctb.2018.93.issue-910.1002/jctb.5618
https://doi.org/10.4103/2277-9175.233030
https://doi.org/10.4103/2277-9175.233030
https://doi.org/10.1007/s00253-010-2789-7
https://doi.org/10.1016/j.biortech.2017.12.076
https://doi.org/10.1038/s41598-020-60052-z
https://doi.org/10.1038/s41598-020-60052-z
https://doi.org/10.1016/S0168-1656(02)00228-6
https://doi.org/10.1016/S0168-1656(02)00228-6
https://doi.org/10.1021/acs.jnatprod.7b00133
https://doi.org/10.1016/j.ymben.2016.10.021
https://doi.org/10.1016/j.ymben.2016.10.021
https://doi.org/10.1016/j.ymben.2017.10.009
https://doi.org/10.1016/j.ymben.2017.10.009
https://doi.org/10.1016/j.biortech.2018.11.016
https://doi.org/10.1016/j.ymben.2017.12.009
https://doi.org/10.1016/j.ymben.2017.12.009
https://doi.org/10.1186/s12934-019-1118-9
https://doi.org/10.1186/s12934-019-1118-9
https://doi.org/10.3389/fmicb.2019.00409
https://doi.org/10.1002/bit.27333
https://doi.org/10.1002/bit.27333
https://doi.org/10.1016/j.mib.2015.06.014
https://doi.org/10.1016/j.mib.2015.06.014
https://doi.org/10.1016/j.mib.2010.02.005
https://doi.org/10.1186/s12918-016-0259-2
https://doi.org/10.1186/s12918-016-0259-2
https://doi.org/10.3389/fgene.2017.00088
https://doi.org/10.3389/fgene.2017.00088
http://refhub.elsevier.com/S2001-0370(21)00286-5/h0365
http://refhub.elsevier.com/S2001-0370(21)00286-5/h0365
https://doi.org/10.1038/nrmicro1949
https://doi.org/10.1016/j.copbio.2017.12.012
https://doi.org/10.1016/j.copbio.2017.12.012
https://doi.org/10.1016/j.copbio.2011.10.007


M. Ibrahim, L. Raajaraam and K. Raman Computational and Structural Biotechnology Journal 19 (2021) 3892–3907
[77] Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, et al. Metabolic
modeling of a mutualistic microbial community. Mol Syst Biol 2007;3(1):92.
https://doi.org/10.1038/msb4100131.

[78] Ye C, Zou W, Xu N, Liu L. Metabolic model reconstruction and analysis of an
artificial microbial ecosystem for vitamin C production. J Biotechnol
2014;182–183:61–7. https://doi.org/10.1016/j.jbiotec.2014.04.027.

[79] Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. Current status and applications of
genome-scale metabolic models. Genome Biol 2019;20(1):121. https://doi.
org/10.1186/s13059-019-1730-3.

[80] Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nat Protoc 2010;5(1):93–121. https://doi.org/
10.1038/nprot.2009.203.

[81] McCloskey D, Palsson BØ, Feist AM. Basic and applied uses of genome-scale
metabolic network reconstructions of Escherichia coli. Mol Syst Biol 2013;9
(1):661. https://doi.org/10.1038/msb:2013.18.

[82] Edwards JS, Palsson BO. Systems properties of the haemophilus influenzaerd
metabolic genotype. J Biol Chem 1999;274(25):17410–6. https://doi.org/
10.1074/jbc.274.25.17410.

[83] Maia P, Rocha M, Rocha I. In silico constraint-based strain optimization
methods: the quest for optimal cell factories. Microbiol Mol Biol Rev 2016;80
(1):45–67. https://doi.org/10.1128/MMBR.00014-15.

[84] Kristjansdottir T, Bosma EF, Branco dos Santos F, Özdemir E, Herrgård MJ,
França L, et al. A metabolic reconstruction of Lactobacillus reuteri JCM 1112
and analysis of its potential as a cell factory. Microb Cell Fact 2019;18(1).
https://doi.org/10.1186/s12934-019-1229-3.

[85] Kim M, Sang Yi J, Kim J, Kim J-N, Kim MW, Kim B-G. Reconstruction of a high-
quality metabolic model enables the identification of gene overexpression
targets for enhanced antibiotic production in Streptomyces coelicolor A3(2),
Biotechnol J, 9 (9), 1185–1194, 2014, doi: 10.1002/biot.201300539.

[86] Lee N-R, Lee CH, Lee D-Y, Park J-B. Genome-scale metabolic network
reconstruction and in silico analysis of hexanoic acid producing
Megasphaera elsdenii. Microorganisms 2020;8(4):539. https://doi.org/
10.3390/microorganisms8040539.

[87] Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto
encyclopedia of genes and genomes. Nucleic Acids Res 1999;27(1):29–34.
https://doi.org/10.1093/nar/27.1.29.

[88] Krieger CJ et al., MetaCyc: a multiorganism database of metabolic pathways
and enzymes, 32, pp. 438–442, 2004, doi: 10.1093/nar/gkh100.

[89] Büchel F, et al., Path2Models : large-scale generation of computational
models from biochemical pathway maps; 2013.

[90] Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al.
Generation of genome-scale metabolic reconstructions for 773 members of
the human gut microbiota. Nat Biotechnol 2017;35(1):81–9. https://doi.org/
10.1038/nbt.3703.

[91] Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated
reconstruction of genome-scale metabolic models for microbial species and
communities. Nucleic Acids Res 2018;46(15):7542–53. https://doi.org/
10.1093/nar/gky537.

[92] Norsigian CJ, Pusarla N, Mcconn JL, Yurkovich JT, Palsson BO, King Z. BiGG
Models 2020: multi-strain genome-scale models and expansion across the
phylogenetic tree, 48 (November 2019), pp. 402–406, 2020, doi: 10.1093/nar/
gkz1054.

[93] Malik-Sheriff RS, et al., BioModels-15 years of sharing computational models
in life science, Nucleic Acids Res, 48 (D1), D407–D415, 2020, doi:
10.1093/nar/gkz1055.

[94] Mendoza SN, Olivier BG, Molenaar D, Teusink B. A systematic assessment of
current genome-scale metabolic reconstruction tools. Genome Biol 2019;20
(1):158. https://doi.org/10.1186/s13059-019-1769-1.

[95] Seaver SMD, et al., The ModelSEED Biochemistry Database for the integration
of metabolic annotations and the reconstruction, comparison and analysis of
metabolic models for plants, fungi and microbes, Nucleic Acids Res, 49 (D1),
D575–D588, 2021, doi: 10.1093/nar/gkaa746.

[96] Arkin A, Cottingham R, Henry C, et al. KBase: The United States Department of
Energy Systems Biology Knowledgebase. Nat Biotechnol 2018;36:566–9.
https://doi.org/10.1038/nbt.4163.

[97] Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J, et al. The
RAVEN toolbox and its use for generating a genome-scale metabolic model
for Penicillium chrysogenum. PLoS Comput Biol 2013;9(3):e1002980. https://
doi.org/10.1371/journal.pcbi.1002980.

[98] Karlsen E, Schulz C, Almaas E. Automated generation of genome-scale
metabolic draft reconstructions based on KEGG. BMC Bioinf 2018;19
(1):467. https://doi.org/10.1186/s12859-018-2472-z.

[99] Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortés MP, et al. Traceability,
reproducibility and wiki-exploration for ‘à-la-carte’ reconstructions of
genome-scale metabolic models. PLoS Comput Biol 2018;14(5):e1006146.
https://doi.org/10.1371/journal.pcbi.1006146.

[100] Karp PD, Weaver D, Latendresse M. How accurate is automated gap filling of
metabolic models?. BMC Syst Biol 2018;12(1):73. https://doi.org/10.1186/
s12918-018-0593-7.

[101] Zimmermann J. gapseq: informed prediction of bacterial metabolic pathways
and reconstruction of accurate metabolic models; 2021, p. 35.

[102] Zorrilla F, Patil KR, Zelezniak A, metaGEM: reconstruction of genome scale
metabolic models directly from metagenomes. bioRxiv, p.
2020.12.31.424982; 2021.
3906
[103] Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, et al.
MEMOTE for standardized genome-scale metabolic model testing. Nat
Biotechnol 2020;38(3):272–6. https://doi.org/10.1038/s41587-020-0446-y.

[104] Faust K. Open challenges for microbial network construction and analysis,
ISME J, pp. 1–8, Jun. 2021, doi: 10.1038/s41396-021-01027-4.

[105] Orth JD, Thiele I, Palsson BO. What is flux balance analysis?. Nat Biotechnol
2010;28(3):245–8. https://doi.org/10.1038/nbt.1614.

[106] Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol
2010;13(3):344–9. https://doi.org/10.1016/j.mib.2010.03.003.

[107] Gudmundsson S, Thiele I. Computationally efficient flux variability analysis.
BMC Bioinf 2010;11(2):2–4. https://doi.org/10.1186/1471-2105-11-489.

[108] Lewis NE, et al., Omic data from evolved E. coli are consistent with computed
optimal growth from genome-scale models, Mol Syst Biol, 6 (390), 2010, doi:
10.1038/msb.2010.47.

[109] Gottstein W, Olivier BG, Bruggeman FJ, Teusink B. Constraint-based
stoichiometric modelling from single organisms to microbial communities.
J R Soc Interface 2016;13(124):20160627. https://doi.org/10.1098/
rsif.2016.0627.

[110] Biggs MB, Medlock GL, Kolling GL, Papin JA. Metabolic network modeling of
microbial communities: Metabolic network modeling. WIREs Syst Biol Med
2015;7(5):317–34. https://doi.org/10.1002/wsbm.1308.

[111] Khandelwal RA, Olivier BG, Röling WFM, Teusink B, Bruggeman FJ.
Community Flux Balance Analysis for Microbial Consortia at Balanced
Growth, PLoS One, 8 (5), 2013, doi: 10.1371/journal.pone.0064567.

[112] Zomorrodi AR, Maranas CD, Rao CV. OptCom: a multi-level optimization
framework for the metabolic modeling and analysis of microbial
communities. PLoS Comput Biol 2012;8(2):e1002363. https://doi.org/
10.1371/journal.pcbi.1002363.

[113] Mendes-Soares H, Mundy M, Soares LM, Chia N. MMinte: an application for
predicting metabolic interactions among the microbial species in a
community. BMC Bioinf 2016;17(1):343. https://doi.org/10.1186/s12859-
016-1230-3.

[114] Chan SHJ, Simons MN, Maranas CD, Price ND. SteadyCom: predicting
microbial abundances while ensuring community stability. PLoS
Comput Biol 2017;13(5):e1005539. https://doi.org/10.1371/journal.
pcbi.1005539.

[115] Koch S, Kohrs F, Lahmann P, Bissinger T, Wendschuh S, Benndorf D, et al.
RedCom: a strategy for reduced metabolic modeling of complex microbial
communities and its application for analyzing experimental datasets from
anaerobic digestion. PLoS Comput Biol 2019;15(2):e1006759. https://doi.org/
10.1371/journal.pcbi.1006759.

[116] Baldini F, Heinken A, Heirendt L, Magnusdottir S, Fleming RMT, Thiele I. The
microbiome modeling toolbox: from microbial interactions to personalized
microbial communities, Bioinformatics, 35 (13), 2332–2334, 2019, doi:
10.1093/bioinformatics/bty941.

[117] Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic
growth. Biophys J 2002;83(3):1331–40.

[118] Henson MA, Hanly TJ. Dynamic flux balance analysis for synthetic microbial
communities. IET Syst Biol 2014;8(5):214–29. https://doi.org/10.1049/iet-
syb.2013.0021.

[119] Bauer E, Zimmermann J, Baldini F, Thiele I, Kaleta C, Maranas CD. BacArena:
Individual-based metabolic modeling of heterogeneous microbes in complex
communities. PLoS Comput Biol 2017;13(5):e1005544. https://doi.org/
10.1371/journal.pcbi.1005544.
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