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Abstract
Identifying the genes involved in venous thromboembolism (VTE) recurrence is important

not only for understanding the pathogenesis but also for discovering the therapeutic targets.

We proposed a novel prioritization method called Function-Interaction-Pearson (FIP) by

creating gene-disease similarity scores to prioritize candidate genes underling VTE. The

scores were calculated by integrating and optimizing three types of resources including

gene expression, gene ontology and protein-protein interaction. As a result, 124 out of top

200 prioritized candidate genes had been confirmed in literature, among which there were

34 antithrombotic drug targets. Compared with two well-known gene prioritization tools

Endeavour and ToppNet, FIP was shown to have better performance. The approach pro-

vides a valuable alternative for drug targets discovery and disease therapy.

Introduction
Venous thromboembolism (VTE) is the third most common cardiovascular disease with a
high risk of recurrence and mortality [1–5]. It was reported that around one-third of patients
suffering from a first episode of deep venous thrombosis (DVT) or pulmonary embolism (PE)
developed a VTE recurrence within 10 years [6]. Even during warfarin anticoagulant therapy,
VTE-experienced patients still face risks of recurrent VTE [7–9]. In clinical practice, it is help-
ful to identify biomarkers that aid the early diagnosis of patients at a high or low risk of primary
and recurrent VTE, and assess therapy [10].

In the past, efforts had been exerted on seeking these biomarker [11]. Through whole blood
gene expression analysis, the D-dimer [12], the soluble p-selectin [13], and the thrombin [14]
were found to be strongly associated with an increased risk of recurrent VTE and thus were
accepted as biomarkers of recurrent VTE [15,16]. However, there were limitations in
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determining biomarkers of recurrent VTE through whole blood gene expression analysis. At
first, the VTE patient population was a heterogeneous mixture of patients with provoked and
non-provoked VTEs. Secondly, the two groups of VTE patients differed in the duration of time
since their last VTE as well as duration of warfarin therapy. At last, some patients with a single
VTE would likely be vulnerable to a recurrent event if anticoagulant therapy discontinued,
resulting in reclassification of any affected individual [16]. Differential expression analysis
might not determine which genes were more important or could neglect some potential dis-
ease-related genes [17].

Alternately, the computational methods such as prioritization methods, including ToppNet
(https://toppgene.cchmc.org/network.jsp) [18] and Endeavour (http://homes.esat.kuleuven.
be/~biouser/endeavour/tool/endeavourweb.php) [19], were deployed to investigate potential
disease genes [20–22]. These methods assume that both the potential disease-related genes and
the known genes share functions, interact with each other, and are involved in similar pheno-
types. The studied genes were assigned similarity or confidence scores with disease followed by
the ranking based on the descending order of the scores. In general, these prioritization meth-
ods rely on functional annotations [23,24], network properties [25–28] and gene expression
data [29–31]. ToppNet ranks or prioritizes genes based on topological features in the protein-
protein interaction network (PPIN). ToppNet has been applied with good performances in a
few studies [32–34]. For example, Lascorz et al. applied ToppNet tool in identifying markers of
colorectal cancer. The three overrepresenting genes was found to be closely related to the mito-
gen-activated protein kinase (MAPK) signaling pathways, which is well-known to increase the
risk of colorectal cancer [35]. In another study by using ToppNet, the OPRM1 gene was shown
to be significantly differently expressed between different HIV groups [36]. The weakness of
ToppNet is only one data source used for ranking genes which affects its robustness for candi-
date gene identification.

Inspirited by the fact that that integrative strategy in combining distinct resources showed a
better performance in discovery of disease-related genes [37–46], Endeavour was developed
[47]. Endeavour integrates 19 distinct data sources, including annotation (Gene Ontology,
Swissprot, Interpro, Kegg, EnsemblEst), Interaction (Bind, String, BioGrid, Hprd, InNetDb,
Intact, Mint), Expression (SonEtAl, SuEtAl), Precalculated (Ouzounis, Prospectr), Motif, Blast,
and Text mining. The rankings of the candidates derived from each source were further com-
bined into one global ranking. Robert et al. ranked the differentially expressed genes through
Endeavour and identified P2rx7 (the 2nd ranked) and P2rx4 (the 3rd ranked) responsible for
impaired blood pressure control in rat. The result was confirmed by Western analysis which
was consistent with the previous congenic studies [48]. In Kamron et al.’s study, candidate
genes of congenital cataract were prioritized using Endeavour and the three top-ranked genes
were confirmed to be associated with the disease by literature [49]. The limitation of Endeavour
was that it did not take disease samples into account [50]. In fact, the accuracy of prioritization
methods is directly correlated with the quality of data [51]. Moreover, Endeavour solely
depends on the protein interactions defined in the databases for gene prioritization. However,
many protein-protein links in the databases are very loose since structural or chemical proper-
ties and functionalities were not taken into consideration, leading to reduced protein interac-
tion reliabilities.

In this study, we present FIP (Function-Interaction-Pearson), a novel prioritization method
designed for identifying Recurrent Venous Thromboembolism-related Genes. FIP addressed
the limitations of the current commonly used methods in prioritizing genes. Potential VTE
recurrence related genes were identified as the top-ranked genes. Our study would provide a
valuable alternative for enhancing our understanding of the complex molecular mechanism of
VTE recurrence at a system level.
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Materials and Methods

Data Source
A gene expression profile of whole blood was downloaded from the publicly available Gene
Expression Omnibus (GEO, http://www.ncbi.nml.nih.gov/geo/) [52]. The profile GSE19151 in
the platform GPL571 was selected for downstream analysis in this study. GSE19151 contains
13785 genes derived from the 133 samples in different groups, including normal subjects (63),
single event VTE patients (32), and recurrent VTE patients (38) who are on warfarin therapy.
The differentially expressed genes were identified by using the Significance Analysis of Micro-
arrays (SAM) between normal and recurrent samples. The 119 thrombosis disease-related
genes were obtained from Online Mendelian Inheritance in Man (OMIM, http://omim.org/)
[53], Genetic Association Database (GAD, http://geneticassociationdb.nih.gov/) [54] and Dis-
ease Ontology (DO, http://disease-ontology.org/) [55]. The interaction network used in this
study was downloaded from STRING (http://string-db.org/) [56]. In the network, gene associa-
tion datasets were either directly derived from physical interactions or functional links from
experimental evidence and computational methods [57,58]. The network composes of 5260
nodes (disease-related genes and differential genes in the interaction network) and 42087
edges, which represent genes and interactions between them, respectively. In our study, 108
disease-related genes (excluded 11 genes not in the STRING database and the profile
GSE19151) were selected as seed genes and other genes as candidate genes.

The FIP method
A novel prioritization method FIP was developed to prioritize VTE candidate genes by calcu-
lating gene-disease similarity scores, also called disease relevance score q. Briefly, the disease
relevance score for each gene was measured by considering the overall similarity with its neigh-
boring genes in the disease-related network based on the separated data sources: gene ontology,
protein-protein interaction, and gene expression. The workflow of the method and its valida-
tions were described below (Fig 1).

The score vector Q (n×1; n—the total number of genes) represented disease relevance scores
for all genes in the disease-related network, which was formulated as follows:

Q ¼ ð1� dÞe
I � dWTD�1

ð1Þ

where qi (qi2Q) is the ranking score of gene i, I denotes an identity matrix of n×n, e is the
expression score vector of n×1 where ei is defined as the absolute value of the difference
between the sum of expression values of gene i in normal and recurrent samples, d denotes a
control parameter in the range of [0,1] which is to adjust the weight of disease-related network
in calculating ranking scores (here we chose d = 0.9 [59]), and D corresponds to a diagonal
matrix of n×n where dii is the sum of weights of interactions between gene i and its neighboring
genes in the network. The weights are contained in the matrix W (n×n), where wij is used to
measure the overall similarity between gene i and its neighbor gene j from the aspects of inter-
action, expression and function. Thus, W was characterized as:

W ¼ a � Sði; jÞ þ b � Pði; jÞ þ g � Fði; jÞ ð2Þ

Here S(i,j),P(i,j) and F(i,j) denote the interaction credibility score, Pearson correlation coef-
ficient, and shared functional significance score between gene i and gene j, respectively. Three
coefficients α, β, and γ in the range of [0,1] were used to assess the importance of S(i,j), P(i,j),
and F(i,j) in formula, respectively.
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Fig 1. The workflow of FIP method and its validations. A: measurement of the overall similarity between genes. B: calculation of ranking scores of
candidate genes. C: verification of the performance of the results.

doi:10.1371/journal.pone.0153006.g001
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The interaction credibility scores S(i,j) for each pair of gene i and j was calculated as follows
[58]:

Sði; jÞ ¼ Ct
ijð
CijC��
Ci�C�j

Þ1�t ð3Þ

where Ci• and C•j are the sums over all pairs involving i or j and another entity, C•• is the sum
over all pairs of entities, Cij represents the sums over all pairs involving both i and j, and t = 0.6
[58]. The parameters were optimized on the KEGG benchmark set [58]. The co-occurrence
score Cij was defined as:

Cij ¼
Xb

k¼1

ðddijkvd þ dpijkvp þ dsijkvsÞ ð4Þ

where vd = 1, vp = 2, and vs = 0.2 are the weights for co-occurrence genes within the same docu-
ment, paragraph, and sentence based on literature mining, respectively. The delta functions
δdijk, δpijk, and δsijk are 1 if the genes i and j are both mentioned in the document k, a paragraph
of k or a sentence of k, otherwise they are 0 [58].

The Pearson correlation coefficient P(i,j), which is used to represent the co-expression rela-
tionship between gene i and gene j, was defined as follows:

Pði; jÞ ¼ 1

h� 1

Xh

y¼1

ðiy �
�i

si
Þðjy �

�j

sj
Þ ð5Þ

where h is the number of normal samples adding recurrent samples in the expression profile,�i,
�j, si, sj, iy and jy represent the average expression value of normal and recurrent samples, stan-
dard deviation and observed values of i and j, respectively.

For the shared functional significance score F(i,j) between gene i and gene j, one function
was represented by one GO term fm. F(i,j) is defined as the total sum of the significance of the
functions shared:

Fði; jÞ ¼
Xx

m¼1

sigðfmÞ ð6Þ

where x is the number of common GO terms annotated by genes i and j, and sig(fm) denotes
the significance of a function fm, which was defined as follows:

sigðfmÞ ¼
1

jGeneðfmÞj
ð7Þ

here Gene(fm) is genes annotated on GO term fm, |Gene(fm)| is the number of genes annotated
to fm. We calculated the ranking score q for each gene in the disease-related network and
ranked these genes in the descending order of q.

In the formula (1) and (2), all the combinations of α, β, γ, and d were used to rank candidate
genes. The best α, β, γ combination was determined according to the seed genes identified in
the top 50 and 100 ranking list. The best d value was selected based on the α, β, and γ combina-
tion which showed the best performance in ranking candidate genes.

Validation
The comparison of FIP with ToppNet/Endeavour was carried out using the same data. The
performance of them was assessed using the Leave-One-Out Cross Validation (LOOCV). For

A Novel Prioritization Method in Identifying Recurrent VTE-Related Genes

PLOS ONE | DOI:10.1371/journal.pone.0153006 April 6, 2016 5 / 21



all the seed genes, one seed gene was removed as a test gene each time, and then added to can-
didate genes. All the candidate genes were ranked by our method to determine the ranking of
the test gene. This procedure was repeated until all the seed genes were used up as test genes.
Receiver Operating Characteristic (ROC) curves were then plotted and the area under ROC
curve (AUC) values were used to compare the performances of the three methods.

Results

Optimization of ranking coefficient parameters
As described in method, score vector Q for all the genes was calculated based on the rankings
from the separated data sources such as gene ontology, protein-protein interaction, and gene
expression in their corresponding coefficients α, β, and γ, respectively. Candidate genes, which
were the common genes in the disease-related network and the differentially expressed genes
identified using SAM, were then ranked in the descending order of Q value. For the top 50 and
100 genes in the ranking list, we calculated the number of matched seeds against single, two and
three these parameter combination, respectively. There was a significant difference between single
and multiple parameter combinations both in top 50 and 100, as well as between two and three
parameter combination in top 50 of ranking gene list (t-test, p<0.05) (Fig 2).

Fig 2. Violin plots of the number of matched seeds identified in top 50 and 100 of the ranking list. The number 1, 2 and 3 represent the number of
parameter(s) in the parameter combinations, respectively. The asterisks and white circles present our results and the medians of each combination.

doi:10.1371/journal.pone.0153006.g002
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The LOOCV has been further applied for all parameter combinations and four parameter
combinations (α = 0.8, β = 0.5, γ = 0.9 (AUC = 0. 0.9107); α = 0.7, β = 0.5, γ = 0.8
(AUC = 0.9187); α = 0.9, β = 0.5, γ = 0.8 (AUC = 0.8955); α = 0.9, β = 0.6, γ = 0.8
(AUC = 0.8763)) were shown to be better than the rest. Since no other independent dataset of
VTE could be obtained, 10-fold cross-validation was carried out to further select the optimized
parameter values in Formulas 1 and 2 from these four parameter combinations (α = 0.8, β =
0.5, γ = 0.9 (AUC = 0. 0.9013); α = 0.7, β = 0.5, γ = 0.8 (AUC = 0.8948); α = 0.9, β = 0.5, γ = 0.8
(AUC = 0.8527); α = 0.9, β = 0.6, γ = 0.8 (AUC = 0.8416)).

The optimal parameter combination of α = 0.8, β = 0.5, and γ = 0.9, was achieved (Fig 3).
For all parameter combinations, genes were also ranked according to the calculated q scores

with five different d values (d = 0.1, 0.3, 0.5, 0.7, and 0.9). The matching numbers of genes were
applied to assess the effectiveness of FIP (Fig 4). The number of matched seeds among top 500
in the ranking list of d = 0.9 was higher than those of other d-values.

Finally, the parameter combination of α = 0.8, β = 0.5, γ = 0.9, and d = 0.9 was selected to
calculate vector Q so as to obtain the ranking results.

Prioritization of candidate genes and validation by literature review
In the disease-related network, all the genes were prioritized by FIP according to vector Q in
the optimal ranking coefficient parameter combination. As a result, a total 200 of top candidate
genes were generated (S1 Table). We manually searched these top 200 candidate genes for drug
targets in literature of PubMed (http://www.ncbi.nlm.nih.gov/pubmed). There were 34 antith-
rombotic drug targets among the top 200 candidates, including thrombin -activated factor 2
receptor (F2R; rank 5), SELPLG (rank 6), APOA1 (rank 10), SCARB1 (rank 17), TTR (rank
30), and F10 (rank 37) (S1 Table). Thrombin-activated factor 2 receptor (F2R) was reported to
link thrombosis to inflammation modulating interleukin 6 (IL6) synthesis [60,61]. Treatment
of rats with APOA1 Milano (the mutant form of human APOA1) was shown to markedly
delay thrombus formation, inhibit platelet aggregation, and to reduce weight of the thrombus
[62]. FX protein was encoded by gene F10, and its mutations gave rise to severe Factor X (FX)
deficiency. Anti-FX inhibitor had been approval by FDA for the prevention of venous throm-
boembolism surgical intervention and as an initial treatment for deep venous thrombosis and
pulmonary embolism [63–65].

Fig 3. The 3-D distribution of seed genes in top 50 (left) and top 100 (right) of the ranking gene list
against all parameter combinations. The three sides of the triangle coordinate system represent the three
parameters, respectively. The perpendicular axis of the triangular coordinate system represents the number
of seed genes. The purple five-pointed star and yellow ball present the optimal parameter combination and all
other parameter combinations.

doi:10.1371/journal.pone.0153006.g003
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Non-drug target candidate genes of the top 200 candidates were also reported to be associ-
ated with thrombosis. For instance, SNP could be used in the prediction of recurrent thrombo-
sis such as susceptibility gene ALPL (rank 1) with SNP [66,67]. The coagulation factor III gene
(F3; rank 11) was suggested to produce tissue factor, which could initiate thrombosis on dis-
rupted atherosclerotic plaques [68]. The loss of CYP2C19 (rank 22) function triggered platelet
reactivity, which was a predictor of stent thrombosis [69,70]. Variation of VTN (rank 28) pro-
moter haplotype, causing transcription factor binding activity increased, was proposed to be a
novel genetic marker for deep venous thrombosis [71]. Sex hormone-binding globulin (SHBG;
rank 51), easily measured in routine laboratories, could serve as a marker for the risk of venous
thrombosis [72].

Taken together, of the top 200 candidate genes in the ranking list, 124 candidate genes pre-
dicted by our method had been confirmed to be correlated with thrombosis in PubMed litera-
ture, which have not been recorded in disease databases (OMIM, GAD and DO) (S1 Table).

Fig 4. Comparison of performance of FIP-based gene ranking with different d values for four parameter combinations. The number of matched
genes identified using FIP with five different d values (d = 0.1, 0.3, 0.5, 0.7, and 0.9) for four parameter combinations were counted and plotted ((A)α = 0.8,
β = 0.5, γ = 0.9; (B)α = 0.7, β = 0.5, γ = 0.8; (C)α = 0.9, β = 0.5, γ = 0.8; (D)α = 0.9, β = 0.6, γ = 0.8). Y-axis: the number of matched genes identified using FIP;
X-axis: the number of ranked genes.

doi:10.1371/journal.pone.0153006.g004
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Top-ranked candidates were found to have a high confirmation rate in terms of their associa-
tion with thrombosis, especially top 10 candidates (Table 1).

Validation of FIP through Functional and pathway analysis
We conducted DAVID (http://david.abcc.ncifcrf.gov/) [73] and Gene Ontology (GO, http://
geneontology.org/) (Biological Process and Molecular Function) [74] analysis to assess the
functional enrichment of the identified candidate genes. In this way, the biological features/or
meanings of the candidate genes can be extracted in order to improve the classification of these
genes in terms of their functionalities. The classification was further interpreted in KEGG
(http://www.genome.jp/kegg/) [75] pathways (FDR<0.05). Top 200 candidates were selected
and divided into four groups with 50 genes in each, followed by KEGG and GO analysis in
DAVID. As a result, 10 significant functional categories were identified and associated with
thrombotic disease (Fig 5) [76–83]. For instance, GO: 0007596~blood coagulation was
reported to be the main cause of thrombosis and recurrence. Blood coagulation, causing dam-
age to the vascular endothelium, was suggested to initiate acute venous thrombus generation
[84]. The maximum number of candidate and seed genes were found in GO: 0009611~respond
to wounding functional category. The most common sites of wounding in conflict were
extremities, which were associated with a significant incidence of vascular trauma, and had a
high complication rate (graft thrombosis) [85]. ‘GO: 0030168~platelet activation’, leading to
severe end-organ damage, was shown to increase the risk of thrombosis, implying that platelet
reactivity was an important pathological mechanism of thrombosis [86,87].

We counted the number of the candidate and seed genes among the 10 functional categories
which each gene was annotated to. Ten candidate genes (95% confidence interval) appeared in
more than 8 functional categories and were confirmed by literature (Fig 6).

Moreover, 6 of these candidates were drug targets, and 3 of them were at top 50 candidate
genes (Table 2).

Furthermore, the known disease-related genes and top 200 candidate genes were obviously
enriched in four common pathways: Hematopoietic cell lineage, cytokine-cytokine receptor
interaction, Cell adhesion molecules (CAMs) and complement and coagulation cascades path-
way (FDR<0.05). The coagulation cascade pathway appeared to be a critical determinant of
atherosclerotic plaque thrombogenicity [88]. Cell adhesion molecules (CAMs), hematopoietic
cell lineage and cytokine-cytokine receptor interaction were also associated with thrombosis
[85,89,90]. We mapped the enriched genes, including the known disease-related genes and can-
didate genes, in the coagulation cascades pathway [91,92] (Fig 7).

Table 1. The confirmation rate of top 200 candidate genes in the ranking list.

Top n Confirmation Number Confirmation Rate

10 10 100.00%

20 16 80.00%

40 30 75.00%

50 35 70.00%

100 66 66.00%

150 100 66.67%

200 124 62.00%

The confirmation rate was calculated by dividing the confirmation number by the corresponding number of

top n. It represented the effectiveness of the confirmation.

doi:10.1371/journal.pone.0153006.t001
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In the map, there are 19 known genes and 9 candidate genes, respectively. Among these 9
candidate genes, each of them was annotated to no less than four functional categories, espe-
cially F2R, SERPINF2, and A2M, which were annotated to more than eight functional catego-
ries (Fig 6). Triggering tissue factor (F3) and F2R (coagulation pathway sensors) have been
shown to influence the vascular microenvironment and angiogenesis respective of clinically
apparent thrombosis [93,94]. The mutations of other two genes, PROC and PROS1, were
shown to increase risk of recurrent thromboembolic events if they were combined with other
genetic or environmental thrombosis factors [95,96]. A2M was reported to inhibit the known

Fig 5. The top 200 candidate genes and known genes involved in the identified 10 functional categories. The genes were analyzed in GO and KEGG
with DAVID and classified into 10 VTE-related functional categories.

doi:10.1371/journal.pone.0153006.g005

Fig 6. The distribution of the top 200 candidates and seeds among different functional categories. X-
axis and y-axis represent the number of the functional categories and enriched genes, respectively.

doi:10.1371/journal.pone.0153006.g006
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genes PROS1 and PROC in the coagulation cascade pathway, which could be associated with
recurrent thrombosis.

Comparison of FIP to ToppNet and Endeavour
To evaluate the performance of the proposed FIP method in predicting novel recurrent throm-
bosis genes by prioritizing candidate genes, we carried out LOOCV on the known disease-

Table 2. The candidate genes in more than eight functional categories.

Gene Frequency Rank Drug PubMedID

TLR4 10 105
p

PMID:24488914

APOA1 9 10
p

PMID:18801202

CX3CL1 9 191 PMID:25795074

F2R 9 5
p

PMID:19404549

THBS1 9 57
p

PMID:25343959

A2M 8 41 PMID:20156641

F2RL1 8 31 PMID:12069753

SERPINF2 8 8 PMID:20696792

SYK 8 143 PMID:24376657

VEGFA 8 45
p

PMID:25006132

doi:10.1371/journal.pone.0153006.t002

Fig 7. Coagulation cascades pathway. The red, green, pink, orange and blue rectangles present known genes in the top 1–50, top 51–100, top 101–150
and top 151–200 candidate genes.

doi:10.1371/journal.pone.0153006.g007
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related genes. In this validation, the same training and testing gene sets were used in the FIP,
ToppNet, and Endeavour methods. The ROC curves were plotted to compare the performance
of the three methods (Fig 8).

The AUC value of FIP method was 0.9107, which was much higher than ToppNet (0.7150)
and Endeavour (0.8127). Thus, FIP method provided a good performance in efficiently identi-
fying known disease-related genes in the prioritization gene list and was more sensitive and
specific in ranking the test genes.

To further verify the top-ranked candidates as novel disease recurrence genes, support vec-
tor machine (SVM) was applied to classify normal and recurrent samples with top-ranked can-
didates as classification characteristics. The outcome of FIP was then compared with those of
ToppNet and Endeavour methods with the top 50 and top 100 candidates as classification
characteristics, respectively. Four performance measurements, false positive rate (FPR), true
positive rate (TPR), best cutoff curve, and AUC, were calculated (Fig 9).

The AUC values of FIP were higher than those of ToppNet and Endeavour methods using
either the top 50 or 100 candidates as classification characteristics. In the meantime, the AUC
values of each method using the top 50 candidates as characteristics were higher than those of
each corresponding method using top 100 candidates as characteristics.

To explore the factors which may affect the performance of FIP, we first assessed the corre-
lation between specific expression profile and outcome of gene prioritization. P(i,j) in formula
(2) were assigned randomly from all correlation coefficients using sampling with and without
replacement, respectively. The disease relevance score Q was recalculated and genes were
ranked according to the q value. The seed numbers in the top 50 and top 100 ranking list were
calculated to evaluate the performance of our method. Each process was repeated 100 times.
The results showed that the performance of our method was better than that of random

Fig 8. The ROC curves of FIP, ToppNet, and Endeavour methods.

doi:10.1371/journal.pone.0153006.g008
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sampling of specific expression data (Fig 10). It suggested that specific expression profile did
affect the performance of gene prioritization methods.

Secondly, we evaluated the importance of protein interaction reliability. We altered the S(i,
j) in formula (2) to 1 (no protein interaction reliability) and recalculated the disease relevance
score Q. Genes were ranked according to the q value. LOOCV was used to assess the perfor-
mance using the new weights. Its AUC (0.6878) was lower than that of the original weights
(AUC = 0.9107) (Fig 11).

To evaluate the robustness of FIP, 10-fold CV was also applied to ToppNet and Endeavour.
There was a statistical significance between FIP and ToppNet (one-side t-test, p-value<0.05)
as well as FIP and Endeavour (one-side t-test, p-value<0.05) (S1 Fig).

We performed literature validation, function annotation and pathway analysis for top 200
candidates of ToppNet and Endeavour (S2–S4 Figs). In general, the performances of FIP were
better than those of ToppNet and Endeavour.

Fig 9. The performance of sample classification with top-ranked candidates of FIP, ToppNet, and Endeavour methods. (A) ROC curves of FIP,
ToppNet, and Endeavour methods with the top 50 candidates as classification characteristics (B) ROC curves of FIP, ToppNet, and Endeavour methods with
the top 100 candidates as classification characteristics.

doi:10.1371/journal.pone.0153006.g009
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Discussion
In this study, we devised and implemented a novel algorithm called FIP to prioritize candidate
genes involved in VTE. This algorism is based on overall similarity with its neighboring genes
by taking into account three aspects: expressions, functions, and interactions. In this way, we
were able to prioritize the genes involved in VTE. For the top 200 candidates, we manually
searched in PubMed literature and 124 genes were confirmed, in which 34 were drug targets.
Furthermore, we conducted KEGG and GO analysis to functionally enrich the identified candi-
date genes. More candidates not confirmed by literature were classified into 10 significant func-
tional categories which were associated with thrombotic disease (Fig 5). Overall FIP had a
better predictive performance and achieved a reliable AUC value.

In reality, multiple properties of genes could be associated with each other in disease states
contributing to the formation of disease. Integrating multiple data sources of genes has been
reported to be better than a single data source in terms of sensitivity and accuracy of gene pri-
oritization [97]. In our study, we compared the performance of integrating three data sources
with those of integrating the two. As a result, there was no significant difference of the number
of the matched seed genes between the combinations of integrating two data sources, while the
combinations of integrating three data sources produced the much better performance than

Fig 10. Comparison of the performance of the FIP with and without replacement in random sampling. 50N and 100N were top 50 and top 100 genes in
the ranking list with and without replacement, respectively. 50Y and 100Y were top 50 and top 100 genes in the ranking list with back, respectively. Asterisks
present our results.

doi:10.1371/journal.pone.0153006.g010
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those of integrating two data sources (t-test, p<0.05) in terms of the number of the matched
seed genes (S2 Table). Moreover, coefficients such as α, β, and γ and the control parameter d
were shown to affect the performance of gene prioritization. According to the number of
matched seed genes, LOOCV and 10-fold cross-validation, the best performance of gene priori-
tization was achieved in the parameter combination of α = 0.8, β = 0.5, γ = 0.9, and d = 0.9 in
prioritizing VTE-related genes in this study.

ToppNet and Endeavour are currently commonly used prioritization methods. According
to network properties-based knowledge, ToppNet employs three algorithms (PageRank,
Hyperlink-Induced Topic Search-HITS, and K-step Markov) to prioritize disease-related can-
didate genes by estimating their relative importance in PPIN [98,99]. Thus, ToppNet ranks or
prioritizes genes based on topological features in PPIN with only one data type. As described
above, the performance of integrating more data sources was better than those of integrating
less ones. Thus, it is not surprised that FIP outperformed ToppNet in prioritizing genes
involved in VTE in this study (Fig 8).

Endeavour takes the similar three data types as what we used in this study to rank candidate
genes except its expression data background (high-density gene expression database). As com-
pared to Endeavour, FIP applied disease-specific expression data, including recurrent VTE
sample data, in our study. In theory, whether disease-specific or non disease-specific expression
data through random sampling gene expression data could affect the performance of gene pri-
oritization. This was confirmed by our results that disease-specific gene expression data did
affect the performance of FIP (Fig 10). It was shown that FIP using VTE-specific gene expres-
sion data achieved the better performance than Endeavour using non disease-specific

Fig 11. The ROC of the weight with protein interaction reliability and non-protein interaction reliability.

doi:10.1371/journal.pone.0153006.g011
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expression data since the identified top candidates by FIP through VTE-specific gene express
analysis were more likely to be associated with VTE.

On the other hand, protein interaction databases used by the commonly used prioritization
methods, including Endeavour, don’t provide the details enough to assess whether a protein
binds its interaction partner(s) which share similar structural or chemical properties and func-
tionalities since many protein-protein links are loose because of random or unspecific bindings
of proteins collected in databases. Thus, the reliability of protein-protein interaction is interro-
gated, resulting in low accuracy of ranking genes. In fact, the edge weight in the disease-related
network can provide reasonable and consistent values to quantify the strength of connection of
proteins. In our study, we took this feature into account in prioritizing candidates. As a baseline
for weighted networks, we constructed a non-weighted network with the same protein interac-
tion pairs and assessed the performance of FIPs using a weighted or a non-weighted network.
It was showed FIP using a weighted network achieved a better performance (Fig 11). This result
implied that the improved reliability of protein interaction applied by FIP might enhance its
performance compared to Endeavour in prioritizing candidates related to VTE.

In summary, our FIP method combined experimental data with mathematical modeling
and provided an alternative system biology approach in promising to tackle complex VTE dis-
ease for aiding diagnosis of recurrent VTE. This method could also be applied to other complex
diseases to reveal disease mechanism and provide new perspective for diagnosis and drug
development.
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