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Abstract

Chemicals interact with genes in the process of disease development and treatment.

Although much biomedical research has been performed to understand relationships

among genes, chemicals, and diseases, which have been reported in biomedical articles

in Medline, there are few studies that extract disease–gene–chemical relationships from

biomedical literature at a PubMed scale. In this study, we propose a deep learning model

based on bidirectional long short-term memory to identify the evidence sentences of rela-

tionships among genes, chemicals, and diseases from Medline abstracts. Then, we develop

the search engine DigChem to enable disease–gene–chemical relationship searches for

35,124 genes, 56,382 chemicals, and 5,675 diseases. We show that the identified relation-

ships are reliable by comparing them with manual curation and existing databases. Dig-

Chem is available at http://gcancer.org/digchem.

Author summary

For understanding the role of chemicals in the molecular process of disease development

and treatment, it is important to extract disease–gene–chemical relationships from the lit-

erature, that is, which gene and which chemical interact with each other for the develop-

ment and treatment of which disease. Previous works extract binary relationships such as

gene–chemical and disease–gene relationships from the literature and employ statistical

measurements for deducing the triple relationship of disease–gene–chemical. Since the

statistical measurements for inference often fail, we develop a deep learning model to

identify the evidence sentences of disease–gene–chemical relationships from Medline

abstracts. We show that the identified relationships are reliable, by comparing them with

manually curated databases. We also provide a search engine called DigChem over the

identified evidence sentences.

Introduction

Much biomedical research has been performed to understand relationships among genes,

chemicals, and diseases. These studies have been undertaken to reveal the molecular
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mechanisms underlying the activities of drugs, as the targets of many drugs remain unknown,

despite the fact that they are known to be effective against diseases. Thus, extensive examina-

tions of the mechanisms by which chemicals interact with genes in the development of diseases

have been undertaken. Although these research results have rapidly accumulated in biomedi-

cal articles, databases or services providing disease–gene–chemical relationships directly

extracted from articles at a PubMed scale are not available. Several existing databases such as

DrugBank [1], the Comparative Toxicogenomics Database (CTD) [2] and the Therapeutic

Target Database [3] provide manually-curated binary relationships, such as gene–chemical

and chemical–disease associations. However, triplet relationships provided in these databases

are indirectly generated based on inference over binary relationships.

Because manual curation is labor-intensive and costly, especially when considering the

rapid growth of biomedical literature, several natural language processing methods have been

proposed to automatically recognize relationships between entities. Text mining tools, includ-

ing RELigator [4] and UET-CAM [5], have been developed to extract chemical–disease rela-

tionships. These systems participated in the BioCreative V Chemical Disease Relation (CDR)

Task [6], achieving F-scores of 0.526 and 0.516, respectively. Xu and Wang [7] developed a pat-

tern learning approach to extract drug–disease pairs from biomedical abstracts, achieving a

precision of 0.904 and a recall of 0.131 when testing it with an in-house data set. Recently, sev-

eral deep learning methods have been proposed to identify relationships among biomedical

entities, showing better performance than previous machine learning approaches. DRMDA

[8] proposed a microRNA-disease association prediction model using an auto-encoder that

represents disease semantic similarity and miRNA functional similarity. Sahu et al. [9] devel-

oped a framework based on a convolutional neural network (CNN) for extracting relations

among biomedical entities, achieving an F-score of 71.16% when applied to evaluation data

provided by Informatics for Integrating Biology and the Bedside (i2b2) in 2010 as part of the

i2b2/VA challenge [10]. Xu et al. [11] proposed a bidirectional long short-term memory (bi–

LSTM) network-based method for extracting drug–drug interaction from biomedical litera-

ture, achieving an F-score of 71.15% on SemEval 2013 task 9.2 data set [12]. Li et al. [13] devel-

oped a bi–LSTM-based framework using a dynamic extended tree for extracting biomedical

events among biotope and bacteria from biomedical literature, which achieved 57.14% of F-

score in the BioNLP’16 Shared Task on Bacteria Biotope task [14]. However, these tools identi-

fied relationships between two entities only, not triplet relationships.

In this study, we propose a deep learning method to identify pairs of sentences that explic-

itly express the disease–gene–chemical relationships based on bi–LSTM. Here, we assume two

sentences together represent a triplet relationship: one sentence representing gene–chemical

relationship and another sentence representing a disease related to the gene–chemical relation-

ship. If the three elements appear in the same sentence, the sentence is duplicated into two

identical sentences. Then, we apply the proposed method to sentence pairs from Medline

abstracts, and build a disease–gene–chemical relationship search engine (DigChem) to retrieve

the triplet relationships extracted from PubMed.

Materials and methods

Relationship classification model

We develop a relationship classification model to recognize a chemical-gene-disease relation-

ship based on sentences extracted from literature. For this task, we generate a gold standard

data set containing positive and negative sentences, and then develop a deep learning model to

classify positive and negative sentences.

DigChem: Disease-gene-chemical relationships
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Gold standard evidence sentences. We define ‘positive evidence sentences’ as those

describing the direct or indirect interaction of a chemical with a gene, and subsequently claim-

ing that the chemical and the gene are related to a disease. On the other hand, we define ‘nega-

tive evidence sentences’ as those that do not describe triplet relationship, despite the fact that

they contain chemical, gene, and disease names. Because sentences with three entities are

infrequently found in Medline abstracts, we collect evidence consisting of two sentences: a

gene–chemical sentence and a disease sentence. A chemical term and a gene term appear in

the gene–chemical sentence, and a disease term appears either in the same sentence or in

another sentence describing a disease. If the disease term appears in the gene-chemical sen-

tence, the disease sentence is the same as the gene–chemical sentence. Examples of positive

and negative sentence pairs are shown below.

• Positive sentence pairs for gene BNP, chemical SUN, and disease renal cell carcinoma
(PMID: 24984876).

• Sentence 1: “At the protein level, Western blot analysis showed that SUN increased BNP
and b-MHC, while it inhibited a-MHC protein levels in a concentration-dependent

manner.”

• Sentence 2: “Sunitinib (SUN) is a multi-targeted tyrosine kinase inhibitor used for the

treatment of gastrointestinal stromal tumors and renal cell carcinoma.”

• Negative sentence pairs for gene ACE, chemical hydralazine, and disease glomerulosclerosis
(PMID: 25143333).

• Sentence 1: “CONCLUSION: The results show following an abrupt decline in podocyte

number, the initiation of ACE-inhibition but not hydralazine, was accompanied by higher

podocyte number in the absence of proliferation.”

• Sentence 2: “OBJECTIVE: The objective of this article is to test the effects of angiotensin-

converting enzyme (ACE)-inhibition on glomerular epithelial cell number in an inducible

experimental model of focal segmental glomerulosclerosis (FSGS).”

To construct gold standard sentences, we randomly select sentence pairs from those

Medline abstracts that contain chemical, gene, and disease mentions, and then manually

evaluate them as positive or negative sentences, resulting in 1000 positive and 1000

negative triplets from 1,984 gene–chemical sentences and 1,900 disease sentences. For 500

positive and 500 negative triplets out of the 2,000 triplets, their gene–chemical sentences

and disease sentences are identical, which means that the three mentions of each of those

triples are from the same sentence. Also, if a sentence has multiple mentions of gene and

of chemical, each pair of gene and chemical is extracted to form either positive or negative

triplet with a disease mention. In fact, six gene–chemical sentences in the corpus have multi-

ple gene–chemical pairs, and 35 disease sentences are related to the multiple gene–chemical

pairs.

In addition, we consider two other configurations of two sentences as well: a gene–disease

sentence and a chemical sentence, and a chemical–disease sentence and a gene sentence. We

examine frequencies of triplets with the three combinations in randomly selected 100 abstracts,

and observe 1,058 gene–chemical and disease pairs, 694 chemical–disease and gene pairs, and

515 gene–disease and chemical pairs. Furthermore, we compare the three configurations by

evaluating our approach with the 500 positive and 500 negative triplets whose gene, chemical,

and disease mentions are from the same sentence, and found that they do not show any signifi-

cant difference in performance (see the Results section for details). As such, because triplets

DigChem: Disease-gene-chemical relationships

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007022 May 15, 2019 3 / 16

https://doi.org/10.1371/journal.pcbi.1007022


from a gene–chemical sentence and a disease sentence are most frequently observed, we use

this configuration in this study.

Word embedding features. In our proposed model, we represent each word in a sentence

using word embeddings. Word embeddings can be used to express semantics of words and

information about sentences, such as parts of speech, phrases, and entity types. Here, we use

two embedding features: word representation vectors and entity type representation vectors

(Fig 1). Word representation vectors are usually pre-trained using a huge, unannotated data

set in which words with similar semantics have high vector similarities. We use word vectors

with a vector size of 200 that are pre-trained by applying Word2Vec [15] to MEDLINE data,

which provides word vectors specialized for biomedical articles. Entity type representation

vectors represent the entity types of words obtained from NER tools. Because we have three

entity types (chemicals, genes, and diseases) in sentences, the entities are tagged with a BIO

format (7 tags in total), where B, I, and O represent beginning, inside, and outside of an entity,

respectively. The representation vector for each of the 7 tags is randomly initialized with a vec-

tor size of 20. By concatenating the two vectors, the size of a vector for a word becomes 220.

Bi–LSTM. Among several neural network models, recurrent neural networks (RNNs)

may be most suitable for modeling sequential data, because the previous hidden state together

with the current input is used to represent the current hidden state. One drawback of the RNN

model is gradient vanishing. In the training step of RNN, back-propagated gradients either

grow or shrink. Therefore, after many steps or in sequences which are too long, gradients

explode or vanish. Long short-term memory (LSTM) was first proposed by Hochreiter and

Schmidhuber [16] to overcome the gradient vanishing problem of RNNs. They present a

mechanism called adaptive gating, which decides the degree to which an LSTM unit keeps the

previous state and memorizes the features extracted from the current data input. An LSTM

unit has three multiplicative gates that control the proportions of information to be forgotten

or passed on to the next time step.

Furthermore, a sequence modeling task may benefit from access to both past and future

context. Schuster and Paliwal [17] proposed bi-LSTM, which extends unidirectional LSTM by

introducing a second hidden unit, where the hidden-to-hidden connections inside the two

units flow in reverse orders. Thus, the two hidden states of bi-LSTM can capture both past and

Fig 1. Architecture of the relationship classification model.

https://doi.org/10.1371/journal.pcbi.1007022.g001
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future information. The two hidden states are then concatenated to form the final output. We

use bi-LSTM in the relationship classification model to consider the past and future context

for identifying the relationships. Fig 1 illustrates the architecture of the proposed relationship

classification model.

Our goal is to collect pairs of two sentences, one with gene-chemical relationship and another

with a disease related to the gene-chemical relationship. While conventional bi-LSTMs take a

single sequence (e.g. a sentence) as an input, our method takes as input a pair of two sentences,

one with both a gene name and a chemical name and another with a disease name, and identifies

if the former sentence expresses the supposed relation between the gene and the chemical and

the latter sentence the relationship between the disease and the gene-chemical relationship. We

thus propose to concatenate the two sentences in parallel, aligned at the positions of the gene

and disease mentions. Words in the sentences are represented as the embedding vector as

described in ‘Word embedding features’ section. As a result, the input data of our proposed

model is a 2-dimensional array, where the number of rows is twice the vector size of word

embeddings and that of columns is the maximum length of two aligned candidate sentences.

Our model has two parts: a bi-LSTM layer and a fully-connected layer. It concatenates the

hidden states of the two LSTMs of the bi-LSTM for each word and passes the sequence of the

concatenated hidden states as the input of the fully-connected layer which generates softmax

output. The output layer consists of positive and negative classes with probabilities that are

used to rank sentences during the search engine’s searching process.

Extracting relationships from Medline abstracts

To extract disease–gene–chemical relationships at a PubMed scale, we perform three tasks.

First, we annotate gene, chemical, and disease names by applying named entity recognition

(NER) tools to Medline abstracts. Next, we apply the proposed bi-LSTM model to extract the

triplet relationship. Finally, we employ a post-processing step to remove false positives from

the predicted relationships.

Named entity recognition. To extract mentions of gene, chemical, and disease from Med-

line abstracts, three NER tools are used: GNormPlus [18] for gene names, tmChem [19] for

chemical names, and DNorm [20] for disease names. We obtain the NER results from PubTa-

tor [21], which is freely accessible at https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/

PubTator/.

GNormPlus analysis consists of two steps: mention recognition and concept normalization.

A conditional random fields (CRF) model is used to recognize gene mention, and a statistical

inference network model with two matching strategies is used to map gene mentions to

specific concepts. The recognized gene mentions are normalized to Entrez gene concepts.

GNormPlus [18] achieved a precision of 87.3%, a recall of 86.4%, and an F-measure of 86.7%

on the BioCreative II gene normalization test set.

Chemical names and their identifiers are identified in the biomedical literature using

tmChem [19]. It participated in the CHEMDNER task [22], and achieved a precision of 89.1%,

a recall of 85.8%, and an F-measure of 87.4%, which was the highest F-measure in the chemical

entity mention recognition subtask of CHEMDNER [22]. tmChem uses the CRF model and

maps chemical entities to Medical Subject Headings (MeSH) and Chemical Entities of Biologi-

cal Interest (ChEBI) identifiers.

Disease mentions are identified and normalized using DNorm [20], which achieved a preci-

sion of 80.3%, a recall of 76.3%, and an F-measure of 78.2% using the NCBI disease corpus.

DNorm recognizes disease mentions with BANNER [23], and normalizes them to MEDIC

concepts using a pairwise learning model.

DigChem: Disease-gene-chemical relationships
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Post-processing step. Because predicted positive relationships may contain false positive

sentence pairs, we apply a post-processing step to screen the false positive sentence pairs. We

observed that there were four majority false positive cases: i) incorrectly recognized gene,

chemical, and disease mentions from NER tools, ii) an experimental procedure or purpose of

research, iii) a sentence pair that explicitly expresses no relation among gene, chemical, and

protein, and iv) diseases in the disease sentence being unrelated to genes and chemicals in the

gene–chemical sentences. Examples of these four cases are shown in S1 Table.

Based on these observations, we construct five rules to filter false positive sentences: i) a sen-

tence pair is filtered out when recognized mentions are not contained in synonyms of entities

in dictionaries after the recognized mentions are normalized into entity names, ii) a sentence

pair is filtered out if any mention is recognized as more than one entity type. For example, if

one mention is recognized as a gene and a chemical by the gene NER tool and the chemical

NER tool, respectively, at the same time, iii) a sentence pair is filtered out if it contains hypo-

nyms of ‘study’ from WordNet, because it may express a purpose of research, iv) a sentence

pair is filtered out if it contains negation keywords such as ‘not’ and ‘never’, and v) when gene

name and chemical name are connected by a conjunction in the dependency parse tree, this

sentence is filtered out because genes and chemicals do not interact with each other in most of

these cases.

Indexing and searching. We construct a search engine to retrieve disease–gene–chemical

relationships extracted from Medline abstracts. The DigChem search engine consists of index-

ing and searching processes. In the indexing process, an inverted index is built to efficiently

access the positive sentences that are obtained by the proposed model followed by the post-

processing step. The inverted index contains information about a gene, a chemical, and a dis-

ease type in each sentence pair.

In the searching process, indexed evidence sentence pairs are searched for an input query.

The input query consists of gene, chemical, and/or disease, and the inverted index is used to

return sentence pairs that express the relationship among them. The query does not necessarily

require gene term and chemical term information. When the query does not contain a gene

term or a chemical term, the system returns all genes or all chemicals related to the given dis-

ease type. Retrieved evidence sentence pairs are sorted by scores obtained from the relation-

ship classification model. The Apache Lucene search engine library was used to build the

indexing and searching processes.

Results and discussion

Performance of the relationship classification model

Performance of the proposed bi-LSTM model was measured by 10-fold cross-validation using

the gold standard data. We tested several values for the following four hyperparameters: the

number of hidden units of LSTM, the learning rate, the size of the fully connected layer, and

the size of mini-batches. Fig 2A and S2 Table show the performance of the model with the fol-

lowing best hyperparameters; the number of hidden units of LSTM units: 100, the learning

rate: 0.80, the size of the fully connected layer: 1,000, and the size of mini-batches: 200. The

results with other hyperparameters are shown in S3 Table. We also compared the performance

of the proposed model with other neural network-based models including CNN, gated recur-

rent unit (GRU), LSTM, and bi-directional GRU with the same hyperparameters as the bi-

LSTM model. Note that the architectures of other neural networks are similar to the proposed

model, with only the neural network layer changed, as seen in Fig 1. As shown in Fig 2A, the

bi-LSTM model achieved an F-measure of 76.6%, outperforming the other neural network

models.

DigChem: Disease-gene-chemical relationships
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In the proposed classification model, we aligned the position of the gene mention in the

gene-chemical sentence with that of the disease mention in the associated disease sentence. In

fact, we compared different ways of combining the two sentences of input, including sequen-

tial concatenation (the number of rows is identical to the vector size of word embeddings) and

concatenation in parallel (or horizontal alignment) at different anchor positions (e.g. the first

words of the two sentences, chemical and disease mentions), with the proposed way of hori-

zontal alignment at the positions of the gene and disease mentions. We compared these

combination ways by evaluating them with the neural network models. Fig 2A and S2 Table

summarize the evaluation results. The proposed alignment shows the best performance, possi-

bly because the explicit alignment of two potentially related entities may guide the bi-LSTM to

focus on their relation. In particular, the proposed alignment improves the performance of the

bi-LSTM from 0.740 to 0.766 of F-score.

For 500 positive and 500 negative triplets in the gold-standard data, gene, chemical, and dis-

ease are in the same sentence. Thus, using these 1000 triplets, we compared the performance

of the three configurations, gene–chemical and disease pairs, chemical–disease and gene pairs,

and gene–disease and chemical pairs, and obtained F-measures of 0.736, 0.733, and 0.735,

respectively. These results do not show any significant difference in performance among the

three configurations.

At the PubMed scale, the number of negative sentence pairs might be considerably larger

than that of positive sentence pairs. Thus, to examine the effect of different ratios of positive

and negatives samples for training the proposed method, we measured the performance of the

proposed model using the several different sets of positive and negative gold standard samples

(Fig 2B and S4 Table). In the results, training with 500 positive and 500 negative sentence pairs

achieved an F-measure of 0.738, while training with 500 positive and 1,000 negative sentence

pairs achieved an F-measure of 0.596. It shows that the proposed model may be well trained

with the similar amount of positive and negative sentence pairs.

Post-processing

After we applied the proposed bi-LSTM model to all Medline abstracts, we randomly selected

and analyzed 400 positive sentence pairs to measure the performance of predicted

Fig 2. Performances of relationship classification models. (A) Performances of relationship classification models for different neural networks and

different ways of combining the two sentences of input. (B) Performances of the proposed model for different amounts of positive and negative

samples.

https://doi.org/10.1371/journal.pcbi.1007022.g002

DigChem: Disease-gene-chemical relationships
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relationships. As shown in Table 1, 35.8% of the sentence pairs were false positives. Incorrect

gene-chemical relationship (19% of the positive sentence pairs) was the most frequent case, fol-

lowed by NER errors (9.5%). This precision was lower than the precision measured using the

gold standard evidence sentences in Fig 2A, because the NER errors were combined with the

relationship classification error.

For filtering the false positive sentence pairs, we constructed a rule-based post-processing

step described in the Methods section, and filtered 101 sentence pairs. While the post-process-

ing step was useful for filtering incorrect relationships, it was less effective in case of NER

errors. Out of the 38 NER errors, 29 NER errors still remained after post-processing. The

breakdown of the NER errors according to entity types (gene, chemical, and disease) is shown

in S5 Table. The post-processing rules were most effective to reduce disease NER errors and

thus filtered out more sentences with disease NER errors than those with gene and chemical

NER errors, while they were not so effective for gene NER errors.

To show the effect of the post-processing step, we compared the final results of the pro-

posed method with those that are filtered, thus discarded, by the post-processing step as fol-

lows: we randomly selected 99 sentence pairs that are filtered by the rules and 101 sentence

pairs that are not filtered by the rules. While 67.3% (68 / 101) of the non-filtered sentences are

true positive, only 27.3% (27 / 99) of the filtered sentences are true positive (Table 1). This

result suggests that the post-processing rules are effective to filter negative sentences although

some positive sentences are incorrectly filtered together.

Statistics of classification results

From Medline abstracts, 11,648,261 sentence pairs were retrieved which contained gene,

chemical, and disease names. After applying the proposed model and the post-processing step

to these sentence pairs, 2,136,416 were recognized as positive evidence sentence pairs, and

5,675 diseases, 35,124 genes, and 56,382 chemicals were indexed. Unique gene–chemical–dis-

ease relationships were found in 943,985 triplets. Table 2 shows the ten most frequently identi-

fied relationships. The relationship of insulin, glucose, and diabetes mellitus appeared most

frequently. The evidence sentence pairs of the ten most frequently identified relationships are

shown in S6 Table. One hundred and sixty seven relationships were recognized in more than

100 sentence pairs, while 525,705 relationships, approximately half of the unique positive rela-

tionships, were retrieved only once.

Fig 3A shows the numbers of evidence sentence pairs and retrieved genes, chemicals, and

gene-chemical pairs for the 26 most general disease categories in MeSH. Gene–chemical rela-

tionships were most frequently identified in neoplasms, followed by pathological conditions,

signs and symptoms. Interestingly, the endocrine system diseases and chemically-induced dis-

orders categories contain a relatively larger number of evidence sentence pairs (ranked 8th

and 9th, respectively, among 26 disease categories) when compared to the number of articles

Table 1. Results of post-processing.

True positive

sentences

NER

error

Purpose or process of

research

Incorrect gene-chemical

relationship

Incorrect disease

relationship

Total

For generating post-

processing rules

Before 257 38 14 76 15 400

After 239 29 2 22 7 299

For testing Filtered

sentences

27 26 4 27 15 99

Non-filtered

sentences

68 8 0 13 12 101

https://doi.org/10.1371/journal.pcbi.1007022.t001
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related to these diseases, which are ranked 16th and 20th, respectively. We investigated which

genes, chemicals, and gene–chemical pairs were involved in multiple disease types across the

26 disease categories (Fig 3B). About 65% of the gene–chemical pairs are related to only one or

two disease categories, while 20 gene–chemical pairs, such as the TNF–hydrocortisone and

TF–iron pairs, are related to more than 19 disease categories. Fig 3C illustrates the spectrum of

related disease categories for the 20 gene–chemical pairs.

Comparison with existing databases

To assess the reliability of DigChem, we collected triplet relationships from DrugBank (version

4.0) [1] and CTD [2], and compared them with triplets retrieved by DigChem. DrugBank is a

well-known database containing biochemical and pharmacological drug information. Drug-

Bank services the mechanisms of drugs and manually-curated drug’s target genes. Disease–

drug relationships are described in pharmacological information related to drugs in Drug-

Bank. Because disease and pharmacological information is described in unstructured text, we

use a disease NER tool, DNorm, to find disease terms. We then construct triplet relationships

with serviced drug–gene relationships, resulting in 14,377 triplets. CTD provides manually-

curated interactions of chemical–gene, chemical–disease, and gene–disease pairs from the lit-

erature. These curated relationships were computationally integrated to generate candidate

gene–chemical–disease associations by inferring genes commonly linked to chemicals and dis-

eases. As a result, CTD provides a total of 4,758,144 indirect triplet relationships.

Considering DrugBank as a widely-accepted dataset, we compared its triplet overlap with

triplets from DigChem and CTD. Of 943,985 unique triplet relationships identified by Dig-

Chem, 496 relationships (3% of DrugBank) were shared with DrugBank (Fig 4A). Although

this overlap was small, the overlap between DrugBank and CTD was even smaller, as 4,758,144

relationships in CTD covered only 2.4% of those found in DrugBank. In addition, we checked

the literature references of the drug targets described in DrugBank, but not identified by Dig-

Chem. In some cases, these reference articles did not contain gene, chemical, and disease

names in abstracts. In other cases, although triplets were described in abstracts, gene and

chemical names were written in separate sentences, and in these cases, DigChem could not

identify their relationship. Among 4,758,144 relationships in CTD, 19,368 relationships (0.4%

of CTD) were shared with DigChem (Fig 4A).

In addition, we verified statistical significance of overlapping triplets between DigChem

and other databases, CTD and DrugBank. S1 Fig shows the binomial distribution of overlap-

ping probabilities of randomly generated triplets. Because the number of triplets in DigChem

Table 2. The ten most frequently recognized relationships.

Gene ID Gene symbol Chemical ID Chemical identifier Disease ID Disease identifier

3630 INS D005947 Glucose D003920 Diabetes Mellitus

25 ABL1 C097613 imatinib D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive

3091 HIF1A D010100 Oxygen D000860 Hypoxia

367 AR CHEBI:50113 androgen D011471 Prostatic Neoplasms

2475 MTOR D020123 Sirolimus D009369 Neoplasms

1956 EGFR C419708 gefitinib D009369 Neoplasms

3630 INS D005947 Glucose D007333 Insulin Resistance

2099 ESR1 D004967 Estrogens D001943 Breast Neoplasms

3064 HTT C097188 polyglutamine D006816 Huntington Disease

673 BRAF C551177 vemurafenib D008545 Melanoma

https://doi.org/10.1371/journal.pcbi.1007022.t002
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is 943,985, we generated the distribution of the number of overlapping triplets between 4 bil-

lion and 943,985 out of all possible triplets for CTD, and that between 14,377 and 943,985

out of all possible triplets for DrugBank. The binomial test achieved p-values < 2.2e-16.

Moreover, we checked triplets of DigChem and CTD, which contain chemicals in DrugBank

triplets. We collected 161,306 triplets from DigChem and 913,470 triplets from CTD, where

Fig 3. Statistics of DigChem. (A) Distribution of the number of related genes, chemicals, gene-chemical pairs, and the number of evidence sentence

pairs for general disease categories. (B) The number of related diseases for genes, chemicals, and gene-chemical pairs. (C) For the gene-chemical pairs

related to more than 19 MeSH disease categories, the spectrum of related diseases is shown. C01–C26 represent the disease category identifiers used in

MeSH.

https://doi.org/10.1371/journal.pcbi.1007022.g003
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7,866 triplets overlap between DigChem and CTD (S1 Fig). In this case, p-values were also

less than 0.05.

We also investigated whether relationships predicted with higher scores by CTD and Dig-

Chem are more likely to overlap with those predicted by DrugBank. We calculated the number

of overlaps and overlap ratios for each score range of DigChem (Fig 4B and 4C), and of CTD

(Fig 4D and 4E). The relationships having higher scores in DigChem were more likely to be

described in DrugBank, while the relationships in CTD did not show any correlation between

inference scores by CTD and overlap ratios with DrugBank. This shows that the relationships

with higher scores predicted by the proposed model are more reliable than those with lower

scores.

We further investigated ‘reliable’ triplets from DigChem and from CTD. For this purpose,

we selected 619,885 triplets having scores> 0.9 in DigChem, referred to as high-score Dig-

Chem triplets. Among the 4,758,144 indirectly inferred triplets of CTD, based on common

genes between chemical–gene and gene–disease relationships, we extracted a subset of 373,180

triplets, referred to as curated CTD triplets, by connecting all three gene, chemical, and disease

elements that are common in three binary relationships: gene–chemical, chemical–disease,

and gene–disease relationships (Fig 4F). Though the overlap ratios of these subsets with Drug-

Bank are similar, with curated CTD triplet overlap being 0.064% (240 / 373,180) and high-

score DigChem overlap of 0.063% (390 / 619,885), DigChem provides a higher number of ‘reli-

able’ triplets than CTD. S7 Table presents 50 example evidence sentence pairs, which are iden-

tified by DigChem but missed by the existing databases.

Case studies of four diseases

We analyzed triplet relationships related to four diseases: Alzheimer’s disease, breast cancer,

hypertension, and prostate cancer. The term “breast cancer” was found in 47,580 sentence

pairs, and each of the other three diseases were found in approximately 20,000 sentence pairs.

The number of unique relationships among genes, chemicals, and diseases ranged from 6,872

to 15,488 (Table 3).

To evaluate the retrieved triplet relationships, we randomly selected 50 sentence pairs for

each of five score ranges (from 0.5–0.6 to 0.9–1.0) and manually checked whether they

Fig 4. Comparison results with CTD and DrugBank. (A) The number of common triplet relationships in CTD, DrugBank, and DigChem. (B) The

number of overlapping triplet relationships identified by DigChem and DrugBank. (C) Overlap ratio of triplets identified by DigChem and DrugBank.

(D) The number of overlapping triplet relationships by CTD and DrugBank. (E) Overlap ratio of triplets by CTD and DrugBank. (F) The number of

common triplet relationships in the CTD curated set, DrugBank, and the relationships which scored over 0.9 in DigChem.

https://doi.org/10.1371/journal.pcbi.1007022.g004
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contained positive relationships. Note that pairs with scores lower than 0.5 were classified as

negative sentence pairs. Fig 5A shows that the sentence pairs with higher scores are mostly

more reliable. For the example cases of breast and prostate cancers, more than 90% of relation-

ships with scores larger than 0.9 were correct, while only 70% of those with lower scores (0.5–

0.6) were correctly identified as positive relationships.

We also compared the retrieved triplet relationships with existing databases: CTD, Drug-

Bank, and IBM Watson for Drug Discovery (WDD). WDD is a machine learning solution

that analyzes drug information to help researchers identify novel drug targets and indications.

WDD services relationships among genes, chemicals, and diseases extracted from literature,

and contains gene–disease, chemical–gene, and chemical–disease relationships. It does not,

however, contain triplet relationships. We therefore generated triplets from WDD by connect-

ing common genes, diseases, and chemicals in three binary relationships. Table 3 shows trip-

lets collected for four diseases from DigChem, CTD, DrugBank, and WDD. Note that in this

comparison we used the curated-CTD triplets detailed in the section describing comparisons

with existing databases.

Fig 5B and 5C show overlapping ratios of DigChem with CTD and WDD, segmented by

the prediction scores of DigChem. In breast and prostate cancers, triplet relationships from

DigChem having higher scores shared a greater degree of overlap with CTD and WDD. In Alz-

heimer’s disease and hypertension, triplets having scores> 0.9 mostly overlapped with CTD

and WDD. Furthermore, when we compared overlapping triplets among the four databases,

overlap ratios of up to 10% were found (Fig 6). These results indicate that currently existing

databases are complementary to each other.

Table 3. The numbers of sentence pairs, genes, chemicals, and relationships for four diseases by DigChem, and the numbers of triple relationships from CTD, Drug-

Bank, and WDD for four diseases.

DigChem Triplets by CTD Triplets by DrugBank Triplets by WDD

Sentence pairs Related genes Related chemicals Unique triplets

Alzheimer’s disease 17,804 1,929 2,440 6,872 21,230 183 45,073

Breast cancer 47,580 3,476 4,307 15,488 73,627 105 78,654

Hypertension 21,021 2,218 2,388 8,324 44,661 389 42,709

Prostate cancer 28,327 2,168 2,618 8,440 72,379 36 67,690

https://doi.org/10.1371/journal.pcbi.1007022.t003

Fig 5. Case studies with four diseases; Alzheimer’s disease, breast cancer, hypertension, and prostate cancer. (A) The fractions of correct positive

relationships according to the prediction scores. (B) The overlapping ratio with CTD according to the prediction scores by DigChem. (C) The

overlapping ratio with WDD according to the prediction scores by DigChem.

https://doi.org/10.1371/journal.pcbi.1007022.g005
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Moreover, to illustrate how the extracted triplets can be used in disease research, we used

an Alzheimer’s disease pathway from KEGG [24] (https://www.genome.jp/kegg-bin/show_

pathway?hsa05010). DigChem retrieved a total of 6,872 unique triplets, and we found that 19

genes in the pathway have relationships in DigChem (S2 Fig). Among these, 15 genes are

related to FDA-approved drugs. DigChem retrieved a total of 6,872 unique triplets, and we

found that 19 genes in the pathway have relationships in DigChem (S2 Fig). Among these, 15

genes are related to FDA-approved drugs. In addition, 10 genes in the pathway have triplet

relationships in CTD, and they are all related to FDA-approved drugs. Among the genes iden-

tified in CTD and DigChem, 6 genes are common. S8 Table presents 62 evidence sentence

pairs for the triplets of the 19 genes. These 19 genes might be good candidates for further

research for the treatment of Alzheimer’s disease.

Web interface of DigChem

We developed a web interface to provide a service which may be used to search for relationships

among genes, chemicals, and diseases. A DigChem query consists of the following three ele-

ments: 1) a list of disease(s), 2) a list of gene(s), and 3) a list of chemical(s). If a query does not

contain any gene name, all genes are considered during relationship search. Similarly, if no

chemical name (or disease description) is given, all chemicals (or all diseases) are considered

during the search. Synonyms of disease terms and chemical names collected from the MeSH

database [25] are searched together with the input terms. Search results consist of a list of trip-

lets and the evidence sentence pairs supporting their relationship. Users can download search

results as a tab-delimited file. Moreover, users can upload manually curated evidence sentences.

Fig 6. Overlapping triple relationships among, DrugBank, CTD, WDD and DigChem. (A) Alzheimer’s disease. (B) Hypertension. (C) Breast cancer.

(D) Prostate cancer.

https://doi.org/10.1371/journal.pcbi.1007022.g006
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