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Background: PARP inhibitors are active in various tumour types beyond BRCA-mutant cancers, but their
activity and molecular correlates in colorectal cancer (CRC) are not well studied.
Methods: Mutations and genome-wide mutational patterns associated with homologous recombination
deficiency (HRD) were investigated in 255 primary CRCs with whole-exome sequencing and/or DNA copy
number data. Efficacy of five PARP inhibitors and their molecular correlates were evaluated in 93 CRC cell
lines partly annotated with mutational-, DNA copy number-, and/or gene expression profiles. Post-treatment
gene expression profiling and specific protein expression analyses were performed in two pairs of PARP
inhibitor sensitive and resistant cell lines.
Findings: A subset of microsatellite stable (MSS) CRCs had truncating mutations in homologous recombination-
related genes, but these were not associated with genomic signatures of HRD. Eight CRC cell lines (9%) were
sensitive to PARP inhibition, but sensitivity was not predicted by HRD-related genomic and transcriptomic
signatures. In contrast, drug sensitivity in MSS cell lines was strongly associated with TP53 wild-type status
(odds ratio 15.7, p = 0.023) and TP53-related expression signatures. Increased downstream TP53 activity was
among the primary response mechanisms, and TP53 inhibition antagonized the effect of PARP inhibitors. Wild-
type TP53-mediated suppression of RAD51 was identified as a possible mechanism of action for sensitivity to
PARP inhibition.
Interpretation: PARP inhibitors are active in a subset of CRC cell lines and preserved TP53 function may
increase the likelihood of response.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

enzymes are key components in repair of single-stranded DNA breaks
and replication fork damage [7]. PARP inhibition causes accumulation
of such lesions through catalytic inhibition and trapping of PARP,
eventually resulting in double-stranded DNA breaks (DSBs). Homolo-

Colorectal cancer (CRC) is the third most common malignancy and
the second leading cause of cancer-related deaths [1]. The therapeu-
tic repertoire for CRC remains limited, with few targeted agents and
companion diagnostics recommended for clinical use [2]. PARP inhib-
itors have shown clinical efficacy in molecular subgroups of diverse
cancer histologies [3—6]. The poly(ADP-ribose) polymerase (PARP)
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gous recombination is the optimal pathway for accurate repair of
DSBs and restarting of replication forks [7]. Accordingly, PARP inhibi-
tors were found to be selectively active in cells with homologous
recombination deficiency (HRD) due to BRCA1 or BRCA2 mutations
[8,9]. The demonstration of synthetic lethality between PARP inhibi-
tion and BRCA mutations led to clinical testing and eventually
approval of olaparib as monotherapy in patients with germline BRCA-
mutated metastatic ovarian or breast cancers [4, 10].
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Research in context

Evidence before this study

There are few targeted agents and companion diagnostics
recommended for clinical use against colorectal cancers (CRCs),
despite comprehensive molecular knowledge of this cancer
type. PARP inhibitors have shown clinical efficacy in various
tumour types, in particular for cancers with homologous
recombination deficiency (HRD), but their activity and potential
molecular correlates in CRC are not well studied.

Added value of this study

We show that PARP inhibitors are effective in a subset of
CRC cell lines. Existing HRD-related biomarkers with proven
predictive value of PARP inhibition in other cancer types was
identified in a proportion of both primary CRCs and the cancer
cell cultures, but did not predict in vitro sensitivity. In contrast,
pharmacogenomic analyses showed a clear association between
wild-type TP53 function and PARP inhibitor sensitivity. This was
consistent at different molecular levels, and both prior to treat-
ment exposure and in response to treatment. Wild-type TP53-
mediated suppression of RAD51 was identified as a possible
mechanism by which PARP inhibitors exhibit their activity in
pre-clinical models of CRC.

Implications of all the available evidence

Emerging evidence suggests that the molecular underpin-
nings for efficacy of PARP inhibitors are context-dependent,
and there is a need for disease-specific predictive biomarkers.
We propose that wild-type TP53 activity can be involved with
suppression of homologous recombination in CRC, and that
TP53 wild-type CRCs represent a relevant stratum for clinical
testing of PARP inhibitors.

HRD also occurs in certain BRCA wild-type cancers, and further
studies have identified BRCA wild-type tumours with sensitivity to
PARP inhibitors based on three main approaches [11]. First, several
DNA-based assays and signatures have been developed based on the
assumption that HRD causes distinct genome-wide mutational pat-
terns involving copy number aberrations, base substitutions and
chromosomal rearrangements [12—17]. Clinical relevance of this
approach was shown by the ability of a composite HRD score [12]
incorporating three different genomic instability signatures [15—-17],
to predict PARP inhibitor responses in ovarian and triple-negative
breast cancer (TNBC) [3,12]. Second, inactivating mutations in addi-
tional genes involved in homologous recombination, such as ATM,
ATR, CHEK1/2 and RAD51 have also been shown to confer sensitivity
to PARP inhibitors [11]. Third, gene expression-based signatures
indicative of HRD and PARP inhibitor sensitivity have been developed
in patient-derived material and cell lines from different cancer types,
but their predictive value have not been prospectively validated in
clinical material [18—20].

The role of HRD and the efficacy of PARP inhibitors have been less
studied in CRC. In one phase II trial including 33 patients with meta-
static CRC refractory to standard therapies, olaparib did not demon-
strate any meaningful anti-tumour activity as a single-agent, but the
small sample size and lack of HRD-related molecular stratification of
the patients prohibit any conclusions regarding the efficacy of PARP
inhibitors in CRC [21]. Notably, ATM-deficient CRC cell lines have
been shown to be sensitive to PARP inhibition [22]. ATM and other
genes critical for homologous recombination, including BRCAT and
BRCA2, are somatically mutated in more than 20% of CRCs [11,23],
and germline mutations in these genes have been detected in 3% of
CRCs [24]. Furthermore, pan-cancer analyses of the HRD score identi-
fied a subset of CRCs with genomic scars associated with HRD [25],
while a recent study discovered elevated HRD mutational signatures
in brain metastases from CRC [26]. This suggests that a significant

subset of CRCs harbour genetic alterations potentially conferring
sensitivity to PARP inhibitors. Furthermore, PARP1 is the main
molecular target of PARP inhibitors [7] and has been shown to be
overexpressed and associated with disease progression in primary
CRCs and transgenic mouse models [27].

Here, we investigated mutations and genome-wide mutational
patterns associated with HRD in primary CRCs, including their clini-
copathological and prognostic associations. We also evaluated the
activity of PARP inhibitors in a panel of 93 CRC cell lines, followed
by functional analyses to identify the molecular underpinnings of
sensitivity to PARP inhibition in CRC.

2. Materials and Methods
2.1. Patient material

A total of 255 primary tumour samples from patients operated for
CRC stages I-IV at Oslo University Hospital, Norway between 2005
and 2014 were analysed. Patients in this observational study were
included from a larger population-based consecutive series based on
availability of whole-exome sequencing (n = 176) and/or DNA copy
number data (n = 199; Supplementary Table S1). The patients were
treated with standard therapies in an adjuvant or palliative setting
and no patients were treated with PARP inhibitors. All participants
provided informed written consent. The research conformed to the
Helsinki Declaration and was approved by the Regional Committee
for Medical and Health Research Ethics (REC number 1.2005.1629).
The research biobanks have been registered according to national
legislation.

2.2. Exome sequencing and DNA copy number analysis in primary CRCs

Determination of MSI status and TP53 mutation analysis has pre-
viously been performed [28,29]. Matched tumour and normal colonic
mucosa samples from 176 patients were subject to paired-end exome
sequencing using the Agilent SureSelectXT Human All Exon V5 kit
(Agilent, Santa Clara, CA, USA) and the Illumina HiSeq 2500 system
(Illumina, San Diego, CA, USA) at the Oslo University Hospital Geno-
mics Core Facility. Processing of raw sequencing reads (100 base-
pairs), as well as mutation calling, annotation and filtering were
performed as previously described [30]. These data have partially
been previously published (n = 33 MSI tumours) [30] or will be pub-
lished elsewhere. In this study, whole-exome sequencing data were
used to analyse mutations among 141 genes previously implicated in
HRD [11], as described below.

DNA copy number profiles have been generated from 199 primary
CRCs using Affymetrix SNP6.0 arrays (Affymetrix Inc., Santa Clara, CA,
USA), and CEL files were pre-processed with PennCNV-Affy and
ASCAT as previously described [31]. The fraction of the genome with
aberrant copy number or loss of heterozygosity (LOH) was calculated
as the percentage of aberrant bases out of the total number of bases
with copy number/LOH estimates available. LOH was defined for seg-
ments in which either the A allele or B allele were zero and the
remaining allele was non-zero. Complete losses were reported only
for segments covered by at least 10 SNP or copy number probes.

2.3. Molecular profiles of CRC cell lines

Cell lines were obtained from American Type Culture Collection
(ATCC), Cell Lines Service (CLS), DSMZ-German Collection of Microor-
ganisms and Cell Cultures, NCI DCTD Tumour Repository, European
Collection of Authenticated Cell Cultures (ECACC), JCRB Cell Bank,
Korean Cell Line Bank (KCLB) and collaborators as indicated in Sup-
plementary Table S2. Mutation data were available for 59 cell lines,
either from in-house “kinome” sequencing [32] or publicly available
datasets [33—35]. TP53 mutation status was retrieved from various
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publications for 14 additional cell lines (Supplementary Table S2).
DNA copy number (n = 43 cell lines) and gene expression profiles
(n =75 cell lines) were taken from in-house data [32] (Gene Expres-
sion Omnibus accession number GSE97023) or publicly available
datasets [34] (GSE59857 [36] and GSE57083) (Supplementary Table
S2). MSI status and CMS classification of cell lines was determined as
previously described [37]. Cell line authenticity has been verified by
short tandem repeat profiling according to the AmpF/STR Identifiler
PCR Amplification Kit (Thermo Fisher Scientific).

2.4. Drug sensitivity screening of CRC cell lines

Sensitivity to five PARP inhibitors (olaparib, niraparib, rucaparib,
talazoparib and veliparib) was investigated in 93 unique CRC cell
lines (Supplementary Table S2) as part of an in vitro drug screen using
a high-throughput platform including 459—-529 investigational or
clinically approved drugs. These data have partially been published
[37] and the rest will be published elsewhere. Drug sensitivity scores
(DSS) were calculated for each drug in each cell line relative to nega-
tive (mean of twelve tests with 0.1% DMSO) and positive controls
(mean of twelve tests with 100 ©M benzethonium chloride) based
on cell viability after 72 h drug treatment at five different concentrations
over a 10,000-fold concentration range (Talazoparib 0.1-1000 nM,
remaining 4 PARP inhibitors at 1-10,000 nM). All dose response models
were visually inspected and for spurious curves, DSS was imputed
by assessing the other PARP inhibitors in the same sample (n = 7 out
465 values including 6 NA's). The overall PARP inhibitor sensitivity
index for each cell line was defined as the sum of the standardized
DSS (z-score) for four highly correlated PARP-inhibitors (see
Results). Cell viability was determined using the CellTiter-Glo
luminescent assay (Promega, USA).

2.5. Genomic and transcriptomic profiles associated with HRD and PARP
inhibitor sensitivity

Mutations were analysed in 141 genes implicated in homologous
recombination and/or PARP inhibitor sensitivity (Supplementary Table
S3) [11]. Due to varying coverage in the different sources of DNA
sequencing data, not all cell lines had mutation data for all relevant
genes (Supplementary Table S2). A total HRD score based on DNA copy
numbers was calculated using an algorithm [25] that combines three
genomic scar signatures associated with HRD; number of telomeric
allelic imbalances (NtAI) [17], large scale transitions (LST) [16] and
HRD score (HRD-LOH) [15]. The total HRD score was calculated as the
unweighted numeric sum of the three individual signatures [12].

COSMIC base substitution signatures (https://cancer.sanger.ac.uk/
cosmic/signatures_v2) were calculated from filtered somatic single
nucleotide variants in the primary CRCs tumour sample using the
R package SomaticSignatures (Supplementary Methods). A gene
expression signature (PARP inhibitor sensitivity score) predictive of
response to PARP inhibition in preclinical models of breast and ovar-
ian cancer [20] were calculated for the CRC cell lines (Supplementary
Methods). Gene set expression enrichment analyses comparing PARP
inhibitor sensitive and resistant cell lines were performed using the R
package GSA and gene sets from BioCarta (collected from MSigDB:
https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp).

2.6. Drug treatment with Talazoparib, Niraparib and Pifithrin-
Hydrobromide

The two microsatellite stable (MSS) cell lines with strongest sensi-
tivity to PARP inhibition in the high-throughput drug screen (SKCO1
and LS513) and two resistant cell lines (SW1222 and SNU61),
matched based on potentially relevant molecular features (MSS, ATM
mutation status, consensus molecular subtype [CMS]), were selected
for additional analyses. Among the PARP inhibitors talazoparib was

chosen because it showed the greatest potency in the drug screen,
but selected experiments were also performed with niraparib for val-
idation. 2.5-4 x 10° cells were seeded in 60 mm dishes (Falcon,
#353002) 24 h prior to incubation with 100 and 1000 nM talazoparib,
10000 nM niraparib (MedChemExpress, #HY-16106), or 0.005%
DMSO for control (Sigma, #D5879) for 48 h. After the drug incuba-
tion, cells were washed twice with 1xPBS (Gibco, #20010019) and
collected after trypsinization.

Combination treatment with talazoparib and pifithrin-8 hydro-
bromide (PFT-B) was performed for SKCO1 and LS513 in 384-well
plates. Talazoparib and PFT-8 as single agents or in combination
were incubated for 48h and 72 h before measuring luminescence
using the CellTiter-Glo luminescent assay. The effect of PFT-$ on tala-
zoparib activity was analysed with the response additivity method
(additive combination drug effect predicted as the sum of the effects
of single drugs), as well as combination indices using the CompuSyn
1.0 software.

2.7. Post-treatment gene expression profiling

Nucleic acids were isolated from cell pellets after treatment with
talazoparib (100 nM and 1000 nM) or DMSO using the Allprep DNA/
RNA/miRNA Universal Kit (Qiagen). Gene expression was analysed
using the GeneChip Human Transcriptome Array 2.0 according to the
manufacturer's instructions (Thermo Fisher Scientific, Waltham, MA,
USA). Raw intensity data stored in CEL files were background cor-
rected, quantile normalized and summarized at the gene-level
according to the robust multi-array average (RMA) approach with
modified Signal Space Transformation implemented in the Affyme-
trix Expression Console 1.1 software. The data (total n = 12 samples)
have been deposited to GEO and can be accessed from GSE140258.

Differential gene expression analyses comparing treatment and
control cultures of the two drug sensitive cell lines (SKCO1 and
LS513) was performed using the R package limma (paired mode).
Gene set enrichment analysis of the top differentially expressed
genes (p < 0.001) was performed with the R package topGO (parame-
ters: algorithm = classic; statistic = “fisher”), based on the Gene Ontol-
ogy data base and the “biological process” category. A response
signature was generated based on the top 5 differentially expressed
genes from limma (upregulated), and sample-wise signature scores
were calculated by single-sample gene set enrichment analysis
(ssGSEA function in the R package GSVA).

2.8. Western blot analysis

Expression of TP53, P21, RAD51, B-actin; cleavage of PARP and
phosphorylation of yH2A.X were analysed forty-eight hours after
treatment with talazoparib, niraparib, idasanutlin or DMSO (Supple-
mentary Methods).

2.9. Immunofluorescence and confocal microscopy

TP53 and RAD51 nuclear expression in cell lines was analysed
after 48 h treatment with talazoparib and PFT-g as described in Sup-
plementary Methods.

2.10. Statistical analyses

Statistical tests were performed with R (v 3.6.1) and SPSS 25.0
(SPSS Inc.) software packages. Survival curves were generated by the
Kaplan-Meier method, while univariable and multivariable survival
analyses were conducted according to the Cox proportional hazards
model. In multivariable survival analyses all specified variables were
entered into the models. The fraction of the genome with aberrant
copy number or LOH, an indirect marker of chromosomal instability,
was included as a continuous variable, while the remaining variables
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were categorical. Fisher's exact test was used to evaluate associations
between categorical variables. The independent samples t-test or
one-way ANOVA test were used, when appropriate, to compare con-
tinuous variables between groups. Correlation of drug sensitivity
scores between PARP inhibitors was tested with the Pearson correla-
tion coefficient (r), while the Spearman correlation coefficient was
used to assess correlation between drug sensitivity and copy number-
and gene expression-based signatures. Two-sided p values < 0.05
were considered significant.

3. Results

3.1. Truncating mutations in homologous recombination-related genes
are mutually exclusive in MSS CRC

Exome sequencing of 176 primary CRCs showed that all MSI
tumours (n = 33) had multiple mutations (range 4—-34) in genes
implicated in homologous recombination and/or PARP inhibitor
sensitivity. However, this was likely related to their hypermu-
tated phenotype, and truncating mutations resulting from the
high frequency of frameshift mutations inherent to MSI accounted
for almost half (46%) of the relevant mutations (Table 1, Supple-
mentary Table S4). BRCA2 and ATM had truncating mutations in
24% and 15% of the tumours, respectively (Table 1), but previ-
ously published data from this cohort showed no signs of base
substitution signatures associated with HRD [30] (signature 3;
more or less equal representation of all base substitutions and
their sequence context; [38]), as all MSI tumours had a base sub-
stitution signature dominated by defective DNA mismatch repair
(signature 6).

Among the 143 MSS tumours, 74 (52%) harboured one or more
mutations (range 1-5) in homologous recombination-related
genes. A total of 111 mutations were detected, distributed across
59 (42%) of the 141 analysed genes. The large majority were mis-
sense mutations, while truncating (nonsense or frameshift) muta-
tions accounted for 11% (Supplementary Table S4), were mutually
exclusive, and detected in 8% of MSS tumours. ATM was the most
frequently mutated gene (ten tumours, 7%, Table 1) and three
ATM mutations were predicted to be truncating, although not
likely to confer complete loss of function, due to mutant allele
fractions in the range of 0.21 to 0.3. One tumour harboured a
frameshift mutation in BRCA2 (p.Q1782fs), which is expected
to lead to loss of BRCA2 protein function, but with a mutant
allele fraction of only 0.34. None of the MSS tumours with trun-
cating mutations in BRCA2 or ATM displayed base substitution
signature 3.

Table 1

3.2. Various mutational patterns indicative of HRD are non-overlapping
in CRC

Subsequently, we investigated mutational patterns associated
with HRD on a DNA copy number level by calculating a previously
validated HRD score [25] in 199 primary CRCs. MSS tumours had
significantly higher HRD scores than MSI tumours (mean MSS 17.8
versus MSI 5.6, p < 0.001, independent samples t-test, Fig. 1a, Supple-
mentary Table S5a), and the HRD scores were associated with the
fraction of the genome with aberrant copy number (r = 0.66,
p < 0.001, Pearson's correlation). This is in line with previous results
across cancer types [25] and supports that the frequent truncating
mutations in homologous recombination-related genes in MSI
tumours do not have a significant impact on the ongoing mutational
processes.

High HRD scores were further associated with TP53 mutations,
left sided tumour location, and stage III or IV tumours (Supplemen-
tary Table S5a). Univariable survival analysis encompassing all
disease stages in MSS tumours showed that high HRD scores
(above median) were associated with inferior five-year overall sur-
vival (hazard ratio (HR) 2.00; 1.16-3.44; p = 0.013, Supplementary
Fig. 1a). Stage-specific analyses demonstrated negative prognostic
impact of high HRD scores among stage III (HR 5.21; 1.19-22.82;
p = 0.029, Fig. 1b) and IV MSS cancers separately (HR 2.51;
1.02-6.2; p = 0.045, Fig. 1b), while no association with survival
was seen in stages [-II (Supplementary Fig. S1b). Stage-specific
negative prognostic trends were seen also in multivariable analy-
ses incorporating age, gender, primary tumour location, chemo-
therapy, TP53 mutation status and the extent of genomic copy
number aberrations, although statistically significant only in stage
IV (Stage III: HR 2.98; 0.56—-16.02; p = 0.20, Stage IV: HR 3.04;
1.02-9.09; p = 0.046).

Five MSS tumours (2.5%) had HRD scores > 42 (Supplementary
Table S5b), which has been indicative of HRD and PARP inhibitor
sensitivity in other cancer types [3,12]. Two of these five samples
had whole-exome sequencing data available; one sample (HRD
score 43) harboured three individual missense mutations in
RAD23B, while the other (HRD score 46) had missense mutations
in BRCA2 and FANCG. However, none of the two tumours had base
substitution signatures associated with HRD (Fig. 2a). Signature
3 was the largest contributor to underlying mutational processes
in three (2%) of the 143 MSS tumours (Fig. 2b). One of these har-
boured a frameshift mutation in POLQ, with a mutant allele fraction
of 0.30. The other two did not have any truncating mutations in
homologous recombination-related genes. Across all MSS tumours,
there was no difference in HRD scores between tumours with a
detectable contribution of signature 3 (at least 5% relative

Most frequently mutated homologous recombination-related in primary CRCs

MSS tumours (n = 143)

MSI tumours (n = 33)

Gene Frequency' (%)  Truncating” (%)  Gene Frequency (%)  Truncating (%)
ATM 10(7) 3(2) MSH3 20(61) 20(61)
PTEN 7(5) 1(0.7) ATR 16 (48) 13(39)
BRCA2 6(4) 1 BRCA2 11(33) 8(24)
MSH3 4(3) 0 G2E3 11(33) 10 (30)
SMARCA2 3(2) 1 TOP3A 11(33) 5(15)
REV3L 3(2) 1 REV3L 9(27) 8(24)
SLX4 3 1 SMARCA2 9(27) 1(3)
DNMT3A 3 0 BLM 9(27) 7(21)
MUS81 3 0 TOP2B 9(27) 4(12)
POLK 3 0 SHPRH 8(24) 6(18)
Clorf86 3 0 ATM 8(24) 5(15)
DNASE1L2 3 0 TP53BP1 7(21) 1(3)

T Number of tumours with any non-silent mutation

2 Nonsense and frameshift mutations
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Fig. 1. HRD scores and their prognostic impact in primary colorectal cancers. a DNA copy number-based HRD scores in 199 primary tumours, split according to MSI status. Dashed
horizontal line marks HRD score > 42 used as threshold for homologous recombination deficiency in previous non-CRC publications. b Kaplan-Meier survival curves showing
five-year overall survival (OS) in patients with MSS tumours with high (above median) and low HRD scores (below median) in stage III (left panel) and stage IV (right panel).

contribution) compared with tumours without contribution from
this signature (p = 0.9, independent samples t-test, Fig. 2¢). In sum-
mary, we identified gene-specific or genome-wide mutational pat-
terns associated with HRD in a small subset of MSS tumours.
However, there was no sample overlap between the features, and
altogether non-consistent evidence of HRD in the genome of these
primary CRCs.

3.3. Asmall subset of CRC cell lines are sensitive to PARP inhibition

The in vitro drug screen of 93 CRC cell lines showed that PARP
inhibition was active in a small subset of samples, based on the stan-
dardized and summed DSS (the PARP inhibitor sensitivity index) of
four different PARP inhibitors (olaparib, niraparib, rucaparib and tala-
zoparib; Fig. 3a). Among the five PARP inhibitors tested, talazoparib
was the most potent in the 8 most sensitive cell lines (Fig. 3b). Veli-
parib was least potent and correlated weakly with the four others

(Pearson's r < 0.3, Supplementary Table S6), possibly due to its previ-
ously reported lacking ability to trap PARP [7], and was therefore
removed from the analyses.

The target PARP1 was highly expressed in most cell lines, and
correlated weakly with sensitivity (Pearson’s r = 0.23; Supple-
mentary Fig. S3a). MSI cell lines had in general a higher PARP
inhibitor sensitivity index than MSS (p < 0.001, Wilcoxon rank
sum test), but the three most sensitive cell lines were MSS. The
cell lines were characterized as sensitive or resistant using a
threshold value for the sensitivity index of 5 (defined by a discon-
tinuity in the distribution of index values), classifying 8 of 93 cell
lines (9%) as sensitive (Fig. 3a, Table 2). These included 4 MSS
and 4 MSI cell lines. Although there was an enrichment with
MSI among the sensitive cell lines (OR = 7.4; 95% confidence inter-
val, 1.59 —34.35, p = 0.017, Fisher's exact test), the positive
predictive value of MSI status for sensitivity to PARP inhibition
was only 29%.
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Fig. 2. Base substitution mutational signatures in primary colorectal cancers. a Relative contribution of the various base substitution mutational signatures (as designated in COSMIC
and described by Alexandrov et al.) in the two samples with HRD scores > 42 and available whole-exome sequencing data. b Relative contribution of mutational signatures in the three
samples where signature 3 was most dominant. One sample harboured a frameshift mutation in POLQ and a missense mutation in XAB2 with mutant allele fractions of 0.30 and 0.66,
respectively. Another sample had a missense mutation in C190rf40 with a mutant allele fraction of 0.21, while no mutations in homologous recombination-related genes were detected
in the last sample. None of these three tumours had DNA copy number data and HRD scores available. The frequency of different types of base substitutions for Fig. 3a and b is shown in
Supplementary Fig. S2a—b. c Comparison of HRD scores in MSS tumours according to relative contribution of signature 3. P value from independent samples t-test.
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Table 2
Molecular characteristics of PARP inhibitor sensitive cell lines

MSIstatus  TP53  CMS HRD score  Biallelic aberration HR gene' No. of mutated HR genes* PARPi sensitivity score®

SKCO1 MSS wt CMS3 50 ATM 1 -0.37

LS513 MSS wt CMS3 9 No 4 0.06

COLO205  MSS mut n.a. 42 No 1 -0.16

HCT116 MSI wt cMS4 17 MSH3 32 0.42

HROC87 MSI n.a. CMS1 n.a. n.a. n.a. n.a.

MDST8 MSS wt cMS4 21 PTEN, REV3L 6 0.1

LS174T MSI wt CMS3 22 No 23 0.06

SW48 MSI wt na. 7 No 23 0.45

1" Genes harbouring homozygous mutations, biallelic deletions or mutations in the single remaining allele included. 133 genes implicated in homolo-

gous recombination and/or PARP inhibitor sensitivity have been investigated.

2 See Supplementary Table S7 for full list of mutations in relevant genes
3 Gene expression-based signature of PARP inhibitor sensitivity

HR: homologous recombination, n.a.; not available, mut; mutated, PARPi; PARP inhibitor wt; wild-type

3.4. Existing HRD-related mutations and genomic signatures have
limited predictive power for PARP inhibition in CRC cell lines

All the PARP inhibitor sensitive cell lines with available DNA
sequencing data (n = 7) harboured mutations in at least one gene
implicated in homologous recombination and/or PARP inhibitor
sensitivity (range 1-32 mutated genes, Table 2, Supplementary
Table S7), although biallelic alterations were detected in only 3 cell
lines (2 MSS, 1 MSI, Table 2). SKCO1 (MSS) had a homozygous
splice mutation in ATM, while HCT116 (MSI) and MDST8 (MSS) had
homozygous mutations in MSH3 and PTEN, respectively. MDST8
also harboured a hemizygous mutation in REV3L. None of the sensi-
tive samples with DNA copy number data had complete losses of
any of the homologous recombination-related gene loci. Notably,
31% (16/52) of the PARP inhibitor resistant cell lines also had
homozygous mutations in at least one of these genes, including
truncating mutations in MSH3 (HCA7), PTEN (LIM2405) or ATM
(SW1222). The positive predictive value of a homozygous mutation
in any homologous recombination-related gene for PARP inhibitor
sensitivity was only 16%, suggesting shortcomings in applying
an HRD-related gene-specific strategy to predict PARP inhibitor
sensitivity in CRC.

Next, we evaluated the predictive power of the DNA copy number
based HRD score [12] and a gene expression-based signature of PARP
inhibitor sensitivity [20]. Neither the genomic HRD scores (n = 43 cell
lines; HRD scores: resistant 28.6 versus sensitive 24.0, p = 0.5, indepen-
dent samples t-test) nor the transcriptomic sensitivity score (n = 75
cell lines; p= 0.46, independent samples t-test) were associated with
efficacy of PARP inhibition in CRC cell lines. Both signatures lacked pre-
dictive value also when analysed separately in MSI and MSS cell lines
(p > 0.6). These results indicate that predictive signatures of PARP
inhibitor efficacy developed in other cancer types cannot be translated
to CRC.

3.5. PARP inhibitor sensitivity is strongly associated with TP53 wild-
type status in CRC cell lines

Further exploratory analyses of the molecular correlates of PARP
inhibitor sensitivity were focused on the MSS subgroup to reduce the
potential influence from DNA repair mechanisms not related to
homologous recombination. Gene set expression enrichment analysis
(GSEA) showed that DNA damage-, TP53-, and immune-related sig-
natures were upregulated in sensitive compared to resistant cell lines
(Fig. 4a). Moreover, a significant enrichment with TP53 wild-type sta-
tus was seen among the PARP inhibitor sensitive samples (OR = 15.7;
95% confidence interval 1.5-168.1, p = 0.023, Fisher's exact test,
Fig. 4b). Notably, this was also evident when including MSI cell lines
(p = 0.001; Supplementary Table S8a and Fig. S3b), and multiple
regression analysis incorporating TP53 and MSI status showed that

only the former was significantly associated with PARP inhibitor
sensitivity (p = 0.001 and p = 0.39, respectively, Supplementary
Table S8b).

3.6. Transcriptional activity downstream of TP53 is a primary response
to PARP inhibition in CRC cell lines

Response mechanisms of PARP inhibition were analysed by gene
expression profiling of pairs of sensitive (SKCO1 and LS513; TP53
wild-type) and resistant (SW1222 and SNU61; TP53 mutated) MSS
cell lines after treatment with talazoparib or DMSO for control (Sup-
plementary Fig. S3c-d and Table S9). GSEA of the most upregulated
genes (treatment versus control) in the two sensitive cell lines
showed that DNA damage repair, and more specifically TP53 activity,
was among the primary response mechanisms (Fig. 4c). Notably, the
five most upregulated genes (GDF15, PLK2, MDM2, TP53INP1, RRM2B)
were all known transcriptional targets of TP53, and were upregulated
exclusively in the sensitive cell lines (Supplementary Fig. S3e).
A treatment response signature based on these five genes was signifi-
cantly upregulated in TP53 wild-type compared to mutated samples
in the larger panel of MSS cell lines prior to treatment exposure
(Fig. 4d). Furthermore, in the TP53 wild-type group, sensitivity to
PARP inhibitors was indeed higher in cell lines with a high response
signature (Fig. 4e), although the low number of cell lines within each
subgroup precluded statistically significant associations (p = 0.056).

Increased transcriptional activity downstream of TP53 was further
investigated at the protein level after treatment with two different
PARP inhibitors (talazoparib and niraparib) and an MDM2-TP53
wild-type interaction inhibitor (idasanutlin) as a positive control
(Fig. 5a and Supplementary Fig. S4 and S5). Idasanutlin increased the
protein levels of both TP53 and its downstream cyclin-dependent
kinase inhibitor P21 strongest in the PARP-inhibitor sensitive and
TP53 wild-type cell lines. There was no further increase after combi-
nation with PARP inhibition, but single-agent treatment with either
PARP inhibitor increased the expression levels of P21 exclusively in
the sensitive cell lines. Collectively, these data suggest that PARP
inhibitor sensitivity is associated with wild-type TP53 activity in CRC.

3.7. Wild-type TP53 inhibits RAD51 foci formation in response to PARP
inhibition

To evaluate the involvement of homologous recombination in the
association between wild-type TP53 and sensitivity to PARP inhibi-
tion, we analysed RAD51 expression and RAD51 foci formation,
which are surrogate markers of homologous recombination function-
ality [39]. Consistent with a previous study reporting that wild-type
TP53 can repress RAD51 transcription in response to double-stranded
DNA breaks (40), we observed decreased RAD51 protein expression
after talazoparib treatment in the two TP53 wild-type cell lines
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SKCO1 and LS513. Down-regulation of RAD51 was strongest in
SKCO1, which was also the cell line most sensitive to PARP inhibition
(Fig. 5a and Supplementary Fig. S6a and S6c). Similar results were
found by immunofluorescence microscopy, showing that talazoparib
significantly increased the number of TP53-positive nuclei (3 fold)
and decreased the RAD51 foci (3 fold) in SKCO1, and to a lesser extent
in LS513 (3% increase of TP53 expression and 2% decrease of RAD51
foci; Fig. 5b) Consequently, SKCO1 also exhibited the highest increase
of the DNA double-strand break marker yH2A.X and the apoptotic
marker cleaved PARP after talazoparib treatment (Supplementary
Fig. S6a, d-e). In contrast to talazoparib, treatment with the TP53
inhibitor PFT-8 had the opposite effect on TP53 and RAD51, with a
significant decrease of TP53 expression and 4 fold decrease of
expressing nuclei, as well as an increase of nuclei with RAD51 foci (4
fold) in SKCO1. A significant increase of RAD51 foci was also observed
in the LS513 cell line after TP53 inhibition, despite the fact that fewer
RAD51 expressing nuclei were counted compared to control (1.3
fold). Consequently, co-treatment with PFT-8 and talazoparib in the
two PARP inhibitor sensitive cell lines showed that TP53 inhibition
antagonized the impact of PARP inhibition on cell viability after 48h
and 72h, providing further support that wild-type TP53 is required
for the activity of PARP inhibitors in CRC cell lines (Fig. 5c—d and
Supplementary Fig. S7).

4. Discussion

The clinical potential of targeting low-frequency molecular aber-
rations in CRC has been demonstrated using several anticancer agents
with different mechanisms of action [41—43]. Our results from high-
throughput drug screening of a large panel of CRC cell lines suggest a
potential for development of a PARP inhibitor strategy. However,
only a small subset of the cell lines was sensitive to PARP inhibition,
highlighting the need to identify accurate response prediction
markers. Existing transcriptomic and genomic signatures related to
HRD and with proven predictive value in other cancer types had poor
predictive power in CRC. In contrast, a clear association was found
between wild-type TP53 function and PARP inhibitor sensitivity. This
was consistent at different molecular levels and in different analysis
settings, including TP53 wild-type status, a TP53-related gene expres-
sion signature within the TP53 wild-type group, downstream TP53
activity as one of the main response mechanisms after treatment,
and the antagonistic effect of TP53 inhibition. This is somewhat in
contrast to the efficacy of PARP inhibitors seen in ovarian cancer, in
which TP53 is almost invariably mutated [44]. However, recent publi-
cations have shown that synergy between PARP inhibition and either
ionizing radiation or chemotherapy depends on functional TP53
[45,46]. Furthermore, reactivation of mutant TP53 in combination
with olaparib showed highly effective tumour growth inhibition in
pre-clinical models of TP53 mutant TNBC [47]. These findings indicate
context-dependent molecular underpinnings for PARP inhibitor effi-
cacy. While our study does not imply that TP53 mutation status has
sufficient predictive value to be used as a solitary biomarker for PARP
inhibition in CRC, it may point to the TP53 wild-type group as an
overarching stratum more likely to contain responders. Our study is
based on the in vitro activity of PARP inhibition, and additional pre-
clinical analyses are needed to specify a strategy for clinical testing.

DNA damage-related mechanisms were indeed involved in
responses to PARP inhibition also in CRC cell lines, but not necessarily
related to the known genomic markers of HRD. In most genes impli-
cated in homologous recombination and PARP inhibitor sensitivity,
biallelic aberrations are required for oncogenic impact [11]. We

identified biallelic aberrations in ATM, PTEN and MSH3 in three of the
PARP inhibitor sensitive cell lines. Homozygous deletion of ATM in
SKCO1 cells (TP53 wild-type) has been shown to induce sensitivity to
olaparib [22], whereas PTEN deficiency has been shown to sensitize
CRC cell lines to PARP inhibition [48]. However, the lack of PARP
inhibitor sensitivity in other cells harbouring homozygous frameshift
mutations in ATM (SW1222: TP53 mutated) and PTEN (LIM2405) in
our study, demonstrates a more complex biomarker-drug associa-
tion. Notably, while loss of BRCA1 or PTEN have been shown to cause
HRD in diverse cancer cells, simultaneous inactivation of both genes
reactivates homologous recombination and confers resistance to
PARP inhibition [18]. Thus, each mutation must be interpreted in the
context of other relevant co-occurring mutations to precisely charac-
terize the effect on homologous recombination competence and
PARP inhibitor sensitivity. Our results suggest that TP53 mutation
status should be taken into account in CRC.

Analyses of response mechanisms to PARP inhibitors suggested
that RAD51 may provide a link between wild-type TP53, HRD and
treatment sensitivity in CRC. RAD51 is a crucial player in homologous
recombination and assists in double-strand break repair by binding
to DNA and mediating homologous pairing and strand exchange [49].
Up-regulation of RAD51 seems to reduce sensitivity to excessive DNA
damage in cancer cells and to represent a compensatory pathway for
other deficient repair mechanisms [50]. TP53 has been reported to
down-regulate important homologous recombination proteins,
including RAD51, and thus inhibit inappropriate DNA repair [40].
However, the frequent mutations of TP53 in tumour cells cause a ten-
dency for RAD51 to be overexpressed and to increase the resistance
to DNA damage. Notably, a recent study in patient-derived CRC mod-
els demonstrated that RAD51 foci formation after exposure to radia-
tion was associated with resistance to olaparib, supporting the
relevance of RAD51 as a marker of homologous recombination profi-
ciency and sensitivity to PARP inhibitors [51]. These results are in line
with our findings, which indicated that wild-type TP53-mediated
suppression of RAD51 is a possible mechanism by which PARP inhibi-
tors exhibit their activity.

The limited overlap of previously reported genomic and transcrip-
tomic signatures of HRD among primary CRCs in our study supported
the pre-clinical data and indicated that the molecular characteristics
of HRD are different in CRC than other cancer types in which syn-
thetic lethality with PARP inhibition is well described. The poor-prog-
nostic association of a high DNA copy number-based HRD score in
stage III-IV CRC is supported by analyses of CRCs in TCGA [52], but is
in contrast to the positive prognostic impact of HRD in TNBC and
ovarian cancer [15,17]. The latter analyses were performed in patient
cohorts receiving the DNA damaging compounds cisplatin or carbo-
platin, to which HRD confers sensitivity through inefficient DNA
repair, thereby contributing to the superior survival. Patients with
stage III-IV CRC are commonly treated with oxaliplatin-containing
chemotherapy, which in contrast to other platinum compounds does
not kill cells through the DNA damage response [53]. Thus, HRD is
not expected to be beneficial for treatment efficacy in this setting.
However, these somewhat conflicting results reinforce the need for
interpretation of genomic HRD scores according to cancer type. A
recent study suggested that the phenotypic impact of BRCA mutations
on mutational patterns and PARP inhibitor sensitivity is restricted to
cancer types associated with BRCA-mediated heritable cancer risk (i.
e. breast, ovary, pancreatic and prostate cancers) [54]. Thus, muta-
tions in BRCA1/2 and other genes related to HRD found in CRC may be
biologically neutral passenger mutations with limited impact on phe-
notype and drug sensitivity. However, the exact impact of each gene

based on genes upregulated (paired limma-analysis) in PARP inhibitor sensitive cell lines (SKCO1 and LS513) after treatment with talazoparib compared to DMSO (control). d Five-
gene response signature (GDF15, PLK2, MDM2, TP53INP1, RRM2B) according to TP53 mutation status in untreated MSS cell lines. e Comparison of PARP inhibitor sensitivity scores in
MSS TP53 wild-type (wt) cell lines split according to the 5-gene response signature. Samples are dichotomized according to high or low gene response signature using a threshold
of 0.3, reflecting the largest discontinuity in the distribution of response signature values. P value from Welch's t-test.
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on homologous recombination and/or PARP inhibitor sensitivity is
likely very diverse, both with respect to character and magnitude.
The association between defects in ATM and abrogated homologous
recombination and sensitivity to PARP inhibition is well-character-
ized in various tumour types [11]. Our finding of SKCO1 cells with
deleted ATM and TP53 wild-type status to have clearly the strongest
PARP inhibitor sensitivity and the highest HRD score among the sen-
sitive cell lines provides multi-level support of ATM defects as a rele-
vant predictive marker of PARP inhibition also in CRC.

In conclusion, we demonstrated activity of PARP inhibitors in a
subset of CRC cell lines. The limited predictive value of existing HRD-
related biomarkers suggested a need for development of novel strati-
fied treatment strategies with respect to PARP inhibition in CRC, and
this study points to wild-type TP53 function as a relevant starting
point.
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