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Background: The DNA damage repair (DDR) pathway is one of the pathways of tumor pathogenesis, but 
its relationship with the immunophenotype has not been clarified in colon cancer (CC).
Methods: We identified the differentially expressed immune-related genes (DEIRGs) between two DDR 
molecular subtypes, namely, C1 and C2, and used univariate Cox analysis and least absolute shrinkage and 
selection operator (LASSO) penalized Cox regression analysis to construct the risk score in the training 
cohort [n=1,009, a combination of The Cancer Genome Atlas (TCGA) and GSE39582]. Regarding 
the median risk score as the unified cutoff to classify the patients into high- and low-risk groups. Two 
independent cohorts (GSE17538, n=232; GSE38832, n=122) were used for external validation of the 
prognostic value of the risk score. The IMvigor210 cohort (n=348) was used to test the predictive value of the 
risk score for immunotherapy response. Gene set variation analysis (GSVA) and gene set enrichment analysis 
(GSEA) were performed to discover the underlying mechanism. Immune cell infiltration was quantified by 
the single sample gene set enrichment analysis (ssGSEA) algorithm.
Results: The high-risk group showed significantly reduced overall survival (OS), disease-specific survival 
(DSS), disease-free survival (DFS), progression-free survival (PFS), and relapse-free survival (RFS) compared 
to the low-risk group, and the two groups differed significantly in lymphatic invasion, American Joint 
Committee on Cancer (AJCC) TNM stage, preoperative carcinoembryonic antigen (CEA) level, etc. The 
enrichment levels of pathways related to colorectal cancer, epithelial-mesenchymal transition (EMT), 
angiogenesis, hypoxia, P53, TGF-β, KRAS signaling, etc., were upregulated in the high-risk group, but 
DDR-related pathways were defective in the high-risk group. The immunophenotypes of the high-risk 
group tended to be desert and excluded, and the risk score of patients who responded to immunotherapy was 
significantly lower than that of patients who did not respond to immunotherapy. The higher the infiltration 
levels of gamma delta T cells (γδ T cells), immature dendritic cells, and T follicular helper (Tfh) cells, the 
more significant adverse impact on the prognosis of CC patients was exhibited and an obviously positive 
correlation with the risk score was showed.
Conclusions: An immune gene risk score associated with the DDR molecular subtype was built and 
verified herein; that is applicable to the prognosis and immunotherapy response prediction in CC.
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Introduction

Background

DNA is the most important genetic material in the human 
body, and its integrity affects the accuracy of genetic 
information transmission (1). In the human body, endogenous 
factors (such as replication errors, oxidative deamination and 
reactive oxygen species) and exogenous factors (such as UV 
light and radiation) could cause abnormalities in the chemical 
structure or coding characteristics of DNA (2,3), resulting in 
DNA damage, which in turn affects genome replication and 
transcription (4). If DNA damage is not repaired in time, 
cells will experience cell cycle arrest, aging or programmed 
cell death, which would pose a threat to the body and even 
lead to diseases (5,6). For example, DNA repair function is 
defective in the process of tumorigenesis and destroys the 
stability of the genome (7). Under normal circumstances, 
the human body guards the intracellular genomic DNA 
from a variety of physical and chemical factors through 
the DNA damage repair (DDR) pathway, thus maintaining 
the stability of genetic material. The functional gene 
sets that the DDR pathway mainly depends on including 
homologous recombination (HR), mismatch repair (MMR), 
base excision repair (BER), nucleotide excision repair 
(NER), and nonhomologous end-joining (NHEJ). There 
is evidence that functional imbalances or defects in DDR 
genes are related to tumor susceptibility (8).

Rationale and knowledge gap

Colon cancer (CC) is one of the most common malignant 
tumors in the digestive tract (9). It ranks fourth among 
the most common malignant tumors in the world; 
approximately 400,000 men and 380,000 women suffer from 
CC every year (10). In recent years, with the advancements 
in surgical concepts, the improvement in neoadjuvant 
therapy and the progress of laparoscopic techniques, 
the overall survival (OS) time of patients with CC has 
been significantly improved (11). However, there are still 
many patients being diagnosed with the advanced stage 
at the first diagnosis and missing the best opportunity for 
operation (12). At present, there are opposite conclusions 
in different studies on the relationship between the DDR 
and the prognosis of patients with CC (13,14). Therefore, 
in the face of one of the major threats to human health, 
it is particularly important to understand the molecular 
mechanism of the DDR: how cancer gradually changes 
the repair process of DNA and how to make use of these 

processes to kill cancer cells.

Objective

Prospective clinical trials conducted in recent years have 
shown that the DDR is critical to the immunotherapy 
response of cancer patients (15-17). However, the effect 
of the DDR on the immunophenotype of CC patients has 
not been clarified. This study analyzed the prognostic value 
of immune-related genes that are differentially expressed 
in CC patients with different DDR molecular subtypes 
to provide references for precise clinical assessment of 
the prognosis of CC patients. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
747/rc).

Methods

Data acquisition

Four large-sample independent CC cohorts, namely, The 
Cancer Genome Atlas (TCGA)-colon adenocarcinoma 
(COAD) (n=430), GSE39582 (n=579), GSE17538 (n=232), 
and GSE38832 (n=122), were included in the research. 
The clinical and mRNA expression data are available 
from TCGA (https://portal.gdc.cancer.gov/) and Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/). The transcripts per million (TPM) kilobase 
values were transformed from the fragments per kilobase of 
transcript per million (FPKM) data for data normalization 
in the different RNA-seq cohorts via the R package “limma”, 
and the ComBat function of the R “SVA” package was used 
to remove the batch effects in different datasets (18,19). The 
data analyzed in this research were obtained from public 
databases, and the approval of the local ethics committee 
was not required. This study was conducted in accordance 
with the Declaration of Helsinki (as revise in 2013). The 
flowchart of this work is presented in Figure S1.

DDR-related gene cluster analysis

The genes associated with DDR pathways were extracted 
from the molecular signatures database (MSigDB, http://
www.gsea-msigdb.org/gsea) (tables available at https://cdn.
amegroups.cn/static/public/tcr-23-747-1.xlsx). The immune-
related gene list was obtained from the ImmPort database 
(https://immport.niaid.nih.gov) and the Innate database 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-747/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-747/rc
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/)
http://www.ncbi.nlm.nih.gov/geo/)
https://cdn.amegroups.cn/static/public/TCR-23-747-Supplementary.pdf
http://www.gsea-msigdb.org/gsea
http://www.gsea-msigdb.org/gsea
https://cdn.amegroups.cn/static/public/tcr-23-747-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-747-1.xlsx
https://immport.niaid.nih.gov


Translational Cancer Research, Vol 12, No 10 October 2023 2783

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(10):2781-2805 | https://dx.doi.org/10.21037/tcr-23-747

(https://www.innatedb.ca/) (tables available at https://cdn.
amegroups.cn/static/public/tcr-23-747-2.xlsx). The training 
cohort (n=1,009), which was a combination of the TCGA 
and GSE39582 cohorts, was used to analyze the prognostic 
value of the DDR-related genes (DDRGs) for CC. The 
prognosis-related genes (PRGs) screened by univariate 
Cox regression analysis (P<0.05) were subjected to cluster 
analysis via the R package “ConsensusClusterPlus”. 
Gene set variation analysis (GSVA) was performed with 
the R package “GSVA” to evaluate immune-related 
pathway enrichment for different clusters (20). The tumor 
microenvironment (TME) scores were calculated by the R 
package “estimate” for comparison of the TME in different 
clusters. The OS difference between different clusters was 
analyzed by the Kaplan-Meier method. The Wilcoxon 
signed-rank test contained in the R package “limma” was 
used to identify the differentially expressed immune-related 
genes (DEIRGs) between different clusters [false discovery 
rate (FDR) <0.05] (21).

Construction and validation of the prognostic risk score

Univariate Cox regression analysis was performed in the 
training cohort (n=1,009), the PRGs were defined as the 
genes with a P value <0.001. The overfitting between 
the PRGs was removed by the least absolute shrinkage 
and selection operator (LASSO) algorithm with penalty 
parameter (λ) determined by the lowest partial likelihood 
deviance based on the R package “glmnet” (22). We 
performed 1,000 10-fold cross-validations of datasets 
and selected genes with more than 900 repetitions. The 
regression coefficient was shrunk with a penalty proportional 
to the size for determining a subset of genes. The genes 
with nonzero regression coefficients obtained from LASSO 
regression analysis were included in the multivariate Cox 
regression analysis (23). The risk score was equal to the sum 
of the product of the multivariate Cox regression coefficient 
of each gene multiplied by the expression level of each  
gene (24). The median risk score was the cutoff dividing 
patients into high- and low-risk groups (25). Internal 
(TCGA-COAD, n=430; GSE39582, n=579) and external 
(GSE17538, n=232; GSE38832, n=122) cohorts were used to 
validate the risk score’s performance in predicting prognosis, 
which was assessed by Kaplan-Meier survival analysis and 
time-dependent receiver operating characteristic (ROC) 
analysis. Univariate and multivariate Cox regression analyses 
were utilized to test whether the risk score could serve as an 
independent prognostic indicator. The chi-square test was 

used to compare clinical feature differences in different risk 
groups. The IMvigor210 cohort (http://research-pub.gene.
com/IMvigor210CoreBiologies/) was enrolled to test the 
risk score’s predictive value for immunotherapy response.

Quantification of immune cell infiltration using the ssGSEA 
algorithm

The 23 types of immune cell infiltration were quantified 
by the normalized enrichment score (NES) based on the 
single sample gene set enrichment analysis (ssGSEA) 
algorithm (26). The NES differences between the high- 
and low-risk groups was compared by the independent-
samples t-test, and P<0.05 was considered to be statistically 
significant.

Exploring the underlying molecular mechanisms of the 
prognostic signature

The R package ‘limma’ was used to identify the differentially 
expressed genes (DEGs) between the high- and low-risk 
groups (FDR <0.05), and the R package “clusterProfiler” 
was utilized to annotating the DEGs’ Gene Ontology (GO) 
term. Gene set enrichment analysis (GSEA) was used to 
determine the active molecular pathways in different risk 
groups (nom P<0.05, FDR <0.25) (19,27).

Statistical analysis

All statistical analyses were accomplished with R software 
(v3.6.3). The Student’s t-test was performed for continuous 
variables with a normal distribution, while the categorical 
variables were compared by the Pearson chi-square test. 
The survival outcome of patients between subgroups was 
compared by the Kaplan-Meier method with a two-sided 
log-rank test. Univariate and multivariate Cox regression 
models were used to verify the independent prognostic 
value of the risk model. The Wilcoxon rank-sum test was 
used to compare immune cell infiltration and immune 
pathway activation between different groups and clusters. A 
two-sided P<0.05 was considered statistically significant.

Results

DDR cluster analysis

Univariate Cox regression analysis suggested that there 
were 20 DDRGs associated with the OS of 1,009 CC 

https://cdn.amegroups.cn/static/public/tcr-23-747-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-747-2.xlsx
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patients in the training cohort (Figure 1A). According to 
the 20 DDRGs, the training cohort was clustered into 
C1 and C2 (Figure 1B,1C). The Kaplan-Meier survival 
curve showed that the OS of C2 was significantly reduced 
compared to that of C1 (Figure 1D). The immune score in 
C1 was significantly higher than that in C2, demonstrating 
that there were significant differences in the immune 
microenvironment between the two subtypes (Figure 1E).

GSVA for different subtypes

The GSVA results showed that there were great differences 
between C1 and C2 in many biological processes related 
to the immune response, such as the immune response to 
tumor cells, diversification of immune receptors via somatic 
mutation, and positive regulation of the T helper type-1 

(Th1) immune response (Figure 2). These results indicated 
that immune-related genes may play a critical role in the 
clinical outcomes of different DDR subtypes.

An 8 immune gene risk score predicts the prognosis of CC

On the basis of the above analysis results, we identified a 
total of 1,135 DEIRGs between C1 and C2 (Figure 3A,3B). 
As shown by the univariate Cox regression analysis, 24 
DEIRGs exhibited a significant correlation with the OS 
of CC patients (P<0.001) (Figure 3C). Thirteen genes with 
nonzero LASSO regression coefficients were retained 
for multivariate Cox regression analysis (Figure 3D): risk 
score = CD36 * 0.153186265 − F2RL2 * 0.216884471 − 
IL17RB * 0.131787886 + INHBB * 0.228290017 + MID2 
* 0.173778976 + PLEC * 0.245896502 + SEMA4C * 

DDR
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Figure 1 Clustering analysis of DDR related genes in the training cohort. (A) Correlation analysis of the prognostic DDR related genes; (B) 
the heatmap of two clusters; (C) the heatmap of expression levels of 20 prognostic DDR related genes in two clusters; (D) the Kaplan-Meier 
survival analysis for two clusters; (E) the TME scores differences between two clusters. ***, P<0.001. DDR, DNA damage repair; TME, 
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Figure 2 GSVA of immune related pathways in two DDR molecular subtypes. TCGA, The Cancer Genome Atlas; GSVA, gene set variation 
analysis; DDR, DNA damage repair.

0.195763643 − TAPBPL * 0.283424794 (Figure 3E). The 
expression levels of eight genes were significantly different 
between C1 and C2 (Figure 4A). The Kaplan-Meier survival 
analysis also suggested that the expression levels of the 
eight genes were significantly associated with the OS of 
CC patients (Figure 4B). In the training cohort, the median 
risk score was 0.9854, which served as the unified cutoff for 
dividing patients equally into high- and low-risk groups. 
The OS of the high-risk patients was obviously lower than 
that of the low-risk patients (P<0.001, Figure 5A). The area 
under the curve (AUC) values for the risk score predicting 
the OS of patients at 1, 3 and 5 years were 0.691, 0.687, 
and 0.667, respectively (Figure 5B). The high- and low-
risk groups were well separated into two clusters, as shown 
in the principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) (Figure 5C,5D).  
Low-risk patients were found to have lower death 
rates and longer survival times than high-risk patients  
(Figure 5E,5F). The training cohort was divided into six 
subgroups according to the clinical features presented in the 
heatmap (Figure 6A). Significant differences were found in 
OS between the high- and low-risk groups regardless of the 

patient’s sex, age and pathologic stage (Figure 6B).

Internal validation of the 8 immune gene risk score in the 
TCGA and GSE39582 cohorts

Significant differences in OS, disease-specific survival (DSS), 
disease-free survival (DFS), and progression-free survival 
(PFS) were detected between the high- and low-risk groups 
in the TCGA cohort (Figure 7), and OS, DSS, DFS, and 
PFS in the high-risk group were all notably lower than 
those in the low-risk group (P<0.001, Figure 7A,7D,7G,7J). 
The AUC values of 1-, 3- and 5-year OS predicted by 
the risk score were 0.709, 0.671, and 0.630, respectively  
(Figure 7B). The AUC values of 1-, 3- and 5-year DSS 
predicted by the risk score were 0.741, 0.732, and 0.728, 
respectively (Figure 7E). The AUC values of 1-, 3- and 
5-year DFS predicted by the risk score were 0.685, 0.731, 
and 0.735, respectively (Figure 7H). The AUC values of 1-, 
3- and 5-year PFS predicted by the risk score were 0.694, 
0.718, and 0.709, respectively (Figure 7K). The risk score 
was an independent indicator to predict OS, DSS, DFS, 
and PFS, as revealed by the univariate and multivariate Cox 
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Figure 3 Construction of the 8 immune gene risk score. (A,B) The heatmap and volmap of DEIRGs between the two DDR molecular 
subtypes (red dots represent the DEIRGs upregulated in the C2, green dots represent the DEIRGs upregulated in the C1); (C) the forest plot 
of univariate Cox analysis; (D,E) LASSO and multivariate Cox regression analysis. *, P<0.05; **, P<0.01; ***, P<0.001. FDR, false discovery 
rate; FC, fold change; CI, confidence interval; DEIRGs, differentially expressed immune-related genes; DDR, DNA damage repair.
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regression analyses (Figure 7C,7F,7I,7L). In the GSE14520 
cohort (Figure 8), the OS and relapse-free survival (RFS) 
of CC patients in the high-risk group showed a notable 
decrease compared to the OS and RFS of CC patients in the 
low-risk group (P<0.001, Figure 8A,8D). The AUC values 
of 1-, 3- and 5-year OS predicted by the risk score were 

0.675, 0.685, and 0.671, respectively (Figure 8B). The AUC 
values of 1-, 3- and 5-year RFS predicted by the risk score 
were 0.655, 0.653, and 0.642, respectively (Figure 8E). As 
revealed by the univariate and multivariate Cox regression 
analyses, the risk score was an independent predictor for OS 
and RFS (Figure 8C,8F).
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Figure 4 Eight immune related genes consisting the risk score. (A) The expression differences of the eight genes between the two DDR 
molecular subtypes; (B) the Kaplan-Meier survival analysis of the high- and low-expression levels of the eight genes. *, P<0.05; **, P<0.01; 
***, P<0.001. DDR, DNA damage repair.

The potential molecular mechanism of the prognostic 
signature

To explore the potential molecular mechanisms of the 
prognostic signature, we identified the DEGs between 
different risk groups (Figure 9A). The GO function 
annotation of DEGs was mainly involved in extracellular 
structure organization, extracellular matrix organization, 
regulation of angiogenesis, and positive regulation of 

endothelial cell proliferation (Figure 9B). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
related to cancer, such as colorectal cancer, pancreatic 
cancer, glioma, and melanoma, were positively enriched 
in the high-risk group (Figure 9C). The hallmarks 
correlated with epithelial-mesenchymal transition (EMT), 
angiogenesis, hypoxia, P53, TGF-β, KRAS signaling, etc., 
were upregulated in the high-risk group (Figure 9D). The 
DDR-related functional pathways, including HR, MMR, 
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BER, and NER, were positively correlated with the low-risk 
group (Figure 9E).

External validation of the prognostic signature in the 
GSE17538 cohort

Using the calculation formula constructed in the training 
cohort, we calculated the risk score of patients in the 
GSE17538 cohort (n=232), and the patients’ death 
rates gradually increased with increasing risk score  

(Figure 10A,10B). Based on the unified cutoff (0.9854), the 
patients were classified into two subgroups: high- and low-
risk groups. Significantly reduced OS, DSS, and DFS were 
exhibited in the high-risk patients relative to the low-risk 
patients (Figure 10C-10E). Good predictive efficacy was 
displayed in the ROC curve for our signature, especially for 
DFS (AUC =0.630 for 1 year, 0.659 for 3 years, and 0.693 
for 5 years) (Figure 10C-10E). Univariate and multivariate 
Cox regression analyses confirmed that the risk score 
capable of the ability to independently predict the OS, DSS, 
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Figure 6 Clinical subgroup analysis of the eight immune gene risk score in the training cohort. (A) The heatmap of the expression levels of 
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Figure 8 The Kaplan-Meier survival analysis, the time-dependent ROC analysis, and univariate and multivariate Cox analysis of the risk 
score in the GSE39582 cohort. (A-C) OS; (D-F) RFS. Green represents univariate Cox analysis, red represents multivariate Cox analysis. 
AUC, area under the curve; CI, confidence interval; ROC, receiver operating characteristic; OS, overall survival; RFS, relapse-free survival.
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and DFS (Figure 10F-10H).

Clinical correlation analysis between different risk groups

On the basis of the clinical data of the three independent 
cohorts, we conducted the chi-square test between different 
risk groups. The results showed that the high- and low-
risk groups differed significantly in lymphatic invasion, 
American Joint Committee on Cancer (AJCC) TNM stage, 
preoperative carcinoembryonic antigen (CEA) level, etc. 
(P<0.05, Tables 1-3).

External validation of the prognostic signature in the 
GSE38832 cohort

With the same calculation formula and the unified cutoff 
(0.9854) obtained in the training cohort, the patients in the 
GSE38832 cohort (n=122) were classified into high- and low-
risk groups (Figure 11A). The high-risk patients’ DSS was 
reduced with statistical significance relative to that of the low-
risk patients (Figure 11B), and the AUC was 0.816 for 1-year, 
0.768 for 3-year, and 0.667 for 5-year DSS (Figure 11C). The 
percent weight of AJCC stage III–IV in the high-risk group 
was significantly higher than that in the low-risk group (66% 
vs. 44%) (Figure 11D), and patients’ risk score increased with 
the progression of AJCC stage (Figure 11E).

Significance of the risk score in immunotherapy

The immunophenoscore (IPS) of the TCGA dataset was 
acquired from The Cancer Immunome Atlas (https://tcia.
at/home) (28); the higher the IPS was, the more sensitive to 
immune checkpoint inhibitors (ICIs), such as anti-PD-1 and 
CTLA4. By comparing the IPS, we found that the response 
of the low-risk group to ICIs was significantly stronger than 
that of the high-risk group (Figure 12A), indicating that the 
likelihood of the low-risk patients become to the responder 
who received immunotherapy was larger. Through the 
comprehensive analysis of the expression profile by Tumor 
Immune Dysfunction and Exclusion (TIDE) (http://tide.
dfci.harvard.edu/), we found that patients with high risk had a 
higher potential for TIDE, which was statistically significant 
(Figure 12B), further confirming that high-risk patients were 
less likely to benefit from ICIs. To verify the above results, 
we applied the calculation formula and the unified cutoff 
(0.9854) on the patients in the IMvigor210 cohort (n=348)  
(Figure 13A). The high-risk patients’ OS was obviously 
lower than that of the low-risk group (Figure 13B). The risk 

score of patients who achieved objective response [complete 
response (CR) + partial response (PR)] after receiving 
immunotherapy was significantly reduced (Figure 13C), the 
risk score of patients with immunophenotype inflammation 
was significantly reduced compared to patients with 
immunophenotype desert and excluded (Figure 13D), and 
the risk score of patients with immunotherapy response 
was significantly lower than that of the patients with 
immunotherapy nonresponse (Figure 13E). The above 
evidence suggests that immunotherapy is an effective 
treatment option for patients in the low-risk group.

Comparison of the immune cell infiltration abundance 
between different risk groups

We quantified the infiltration of 23 types of immune cells 
in the 1,241 CC samples included in the research using 
the ssGSEA algorithm (Figure 14A). Through Kaplan-
Meier survival analysis, four kinds of immune cells’ 
infiltration degree were observed to influence the OS of 
patients significantly, and the higher infiltration levels 
of gamma delta T cells (γδ T cells), immature dendritic 
cells, natural killer T cells, and T follicular helper (Tfh) 
cells resulted in adverse clinical outcomes (Figure 14B). A 
positive correlation was found between the risk score and 
the infiltration level of the above four kinds of immune cells 
(Figure 14C). The infiltration levels of γδ T cells, immature 
dendritic cells, tumor killer T cells, and Tfh cells in the 
high-risk group were significantly higher than those in the 
low-risk group (Figure 14D).

Discussion

CC is mainly caused by malignant transformation of 
benign lesions of the colon mucosa; its incidence closely 
follows those of gastric and esophageal cancers, and it is 
the third highest incidence among digestive tract malignant  
tumors (29). The number of patients dying from CC 
is increasing every year, and the main reason for the 
poor prognosis of patients with CC is that it has the 
characteristics of concealment, slow progression, lack of 
characteristic clinical manifestations, and early lymph node 
metastasis, among others (30). Growing evidence suggests 
that the process of DNA repair and the occurrence and 
development of cancer are inextricably linked (31-33), 
and its impact on the immunotherapy response of cancer 
patients cannot be ignored (34). However, relevant research 
on CC is still very scarce. To enrich the treatment strategy 

https://tcia.at/home
https://tcia.at/home
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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Table 1 Comparison of clinical features of colon cancer patients in TCGA cohort between different risk groups using the chi-square test

Clinical characteristics High-risk (n=115), n (%) Low-risk (n=110), n (%) Chi-square P value

MSI 5.0067 0.0818

MSI-H 17 (14.78) 26 (23.64)

MSI-L 21 (18.26) 11 (10.00)

MSS 77 (66.96) 73 (66.36)

Age 0 1

≤65 years 51 (44.35) 48 (43.64)

>65 years 64 (55.65) 62 (56.36)

Gender 6.1271 0.0133

Female 66 (57.39) 44 (40.00)

Male 49 (42.61) 66 (60.00)

Lymphatic invasion 4.1149 0.0425

No 60 (52.17) 73 (66.36)

Yes 55 (47.83) 37 (33.64)

AJCC TNM stage 18.8506 3.00E-04

Stage I 13 (11.3) 28 (25.45)

Stage II 36 (31.3) 47 (42.73)

Stage III 38 (33.04) 26 (23.64)

Stage IV 28 (24.35) 9 (8.18)

Preoperative CEA 6.7255 0.0095

≤5 μg/L 67 (58.26) 83 (75.45)

>5 μg/L 48 (41.74) 27 (24.55)

Venous invasion 0.5267 0.468

No 83 (72.17) 85 (77.27)

Yes 32 (27.83) 25 (22.73)

TCGA, The Cancer Genome Atlas; MSI, microsatellite instability; H, high; L, low; MSS, microsatellite stable; AJCC, American Joint 
Committee on Cancer; TNM, tumor, node, metastasis; CEA, carcinoembryonic antigen.

of CC, we carried out this study.

Key findings

In  our  research,  the  immune microenvironment 
(represented by the immune score) and immune pathway 
activity among different prognostic DDR molecular 
subtypes were existed significant differences were found. 
The OS of C2 was significantly reduced compared with 
that of C1, corresponding to its immune score, and the 
immune response was significantly lower than that of C1. 

Based on the above results, we preliminarily speculated that 
immune-related genes may be a potential factor causing 
the difference in prognosis of different DDR molecular 
subtypes of CC. Taking this clue into consideration, we 
identified the DEIRGs between C1 and C2, and univariate 
Cox regression analysis showed that 24 of 1,135 DEIRGs 
were significantly correlated with the OS of CC patients. 
After further screening by LASSO and multivariate Cox 
regression analysis, an 8-gene risk score was built in our 
training cohort. Clinically, OS, DSS, DFS, PFS and RFS 
are important indicators to evaluate tumor prognosis.
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Table 2 Comparison of clinical features of colon cancer patients in GSE39582 cohort between different risk groups using the chi-square test

Clinical characteristics High-risk (n=248), n (%) Low-risk (n=280), n (%) Chi-square P value

Gender 1.1959 0.2741

Female 119 (47.98) 120 (42.86)

Male 129 (52.02) 160 (57.14)

Age 0.0205 0.886

≤65 years 99 (39.92) 109 (38.93)

>65 years 149 (60.08) 171 (61.07)

AJCC TNM stage 9.1005 0.028

I 10 (4.03) 26 (9.29)

II 116 (46.77) 139 (49.64)

III 95 (38.31) 97 (34.64)

IV 27 (10.89) 18 (6.43)

T 17.36 6.00E−04

T1 3 (1.21) 9 (3.21)

T2 12 (4.84) 34 (12.14)

T3 167 (67.34) 192 (68.57)

T4 66 (26.61) 45 (16.07)

N 5.8305 0.1202

N0 132 (53.23) 170 (60.71)

N1 62 (25.00) 68 (24.29)

N2 50 (20.16) 41 (14.64)

N3 4 (1.61) 1 (0.36)

M 5.0973 0.0782

M0 219 (88.31) 262 (93.57)

M1 28 (11.29) 18 (6.43)

MX 1 (0.4) 0 (0)

Tumor location 2.7967 0.0945

Distal 139 (56.05) 178 (63.57)

Proximal 109 (43.95) 102 (36.43)

Chemotherapy 0.0565 0.8122

No 140 (56.45) 162 (57.86)

Yes 108 (43.55) 118 (42.14)

AJCC, American Joint Committee on Cancer; TNM, tumor, node, metastasis.

Strengths and limitations

Both internal and external validation proved that the risk 

score was an independent indicator for the prediction of 

OS, DSS, DFS, PFS and RFS in CC patients and that it had 
high precision. For patients with different clinical features, 
such as age, sex, and pathologic stage, the prognostic model 
was also applicable. But whether this model can be applied 
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to clinical practice still needs prospective cohort study.

Comparison with similar researches

Research on these eight genes in the field of cancer is not 
rare; for example, Li et al. (35) found that CD36 promotes 
the proliferation and metastasis of hepatocellular carcinoma 
by activating the MEK/ERK and PI3K/Akt signaling 
pathways. Lupu et al. (36) found that the inhibition 
of F2RL2 was related to the development of mouse 
precancerous liver lesions. In pancreatic cancer, Song  
et al. (37) found that low expression of IL-17RB is 
associated with longer OS and DFS; however, in thyroid 
cancer, Ren et al. (38) found that IL-17RB could activate the 
expression of MMP-9 through the ERK1/2 pathway and 

promote the invasion and metastasis of thyroid cancer cells. 
Zou et al. (39) found that INHBB inhibits anoikis resistance 
and migration of nasopharyngeal carcinoma cells through 
the TGF-β signaling pathway. Wang et al. (40) found that 
overexpression of MID2 could promote proliferation of 
breast cancer cells. Hu et al. (41) found that the increase in 
PLEC germline copy number resulted in an increased risk 
of esophageal squamous cell carcinoma in Southwest China. 
Hou et al. (42) found that high expression of SEMA4C 
could promote EMT of colorectal cancer and predict poor 
prognosis, and it has also been reported that overexpression 
of SEMA4C can promote the proliferation of breast cancer 
and pancreatic cancer (43,44). Lin et al. (45) found that 
an anti-TAPBPL monoclonal antibody can neutralize the 
inhibitory activity of TAPBPL-Ig on T cells, enhance 

Table 3 Comparison of clinical features of colon cancer patients in GSE17538 cohort between different risk groups using the chi-square test

Clinical characteristics High-risk (n=97), n (%) Low-risk (n=116), n (%) Chi-square P value

Age 0.0267 0.8701

≤65 years 48 (49.48) 55 (47.41)

>65 years 49 (50.52) 61 (52.59)

Gender 0.2886 0.5911

Female 44 (45.36) 58 (50.00)

Male 53 (54.64) 58 (50.00)

Ethnicity 4.599 0.2036

Black 8 (8.25) 4 (3.45)

Caucasian 79 (81.44) 105 (90.52)

Hispanic 1 (1.03) 0 (0)

Other 9 (9.28) 7 (6.03)

AJCC TNM stage 8.1981 0.0421

I 6 (6.19) 21 (18.10)

II 28 (28.87) 37 (31.90)

III 37 (38.14) 33 (28.45)

IV 26 (26.80) 25 (21.55)

Grade 3.493 0.3217

MD 70 (72.16) 89 (76.72)

MPD 5 (5.15) 2 (1.72)

PD 16 (16.49) 14 (12.07)

WD 6 (6.19) 11 (9.48)

AJCC, American Joint Committee on Cancer; TNM, tumor, node, metastasis; MD, moderately differentiated; MPD, moderate to poorly 
differentiated; PD, poorly differentiated; WD, well differentiated.
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Figure 11 External validation of the risk score in the GSE38832 cohort. (A) The heatmap of the expression levels of the eight immune 
gene; (B,C) the Kaplan-Meier survival analysis and the time-dependent ROC analysis for the risk score in predicting the DSS of patients in 
the GSE38832 cohort; (D,E) correlation analysis between the risk score and AJCC stage in the GSE38832 cohort. AJCC, American Joint 
Committee on Cancer; AUC, area under the curve; ROC, receiver operating characteristic.

antitumor immunity, and inhibit tumor growth in animal 
models.

Explanations of findings

The underlying molecular mechanism of the signature may 
help to clarify the poor prognosis of the high-risk group. 
The GSEA results showed that the pathways involved in 

EMT, hypoxia and angiogenesis were abnormally active 
in the high-risk group, while the DDR related pathways 
were obviously suppressed. Current in vivo and in vitro 
experimental evidence suggests that EMT plays an 
important role in primary invasion and secondary metastasis 
of CC. Due to the occurrence of EMT, the cells show loss 
of polarity, decreased adhesion and enhanced migration 
ability (46,47). Tumor angiogenesis is subject to fine and 
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Figure 12 Correlation analysis between the risk score and (A) IPS and (B) TIDE. **, P<0.01; ***, P<0.001. IPS, immunophenoscore; TIDE, 
Tumor Immune Dysfunction and Exclusion.

complex regulation, which involves the degradation of 
the extracellular matrix, the proliferation and migration 
of vascular endothelial cells, and the formation of vascular 
structures and networks (48,49). The rapid proliferation 
of tumor cells leads to local ischemia and hypoxia, directly 
stimulates angiogenesis, promotes the secretion of 

angiogenic factors by many kinds of tissue cells, especially 
tumor cells, promotes the proliferation of endothelial cells, 
and promotes chemotaxis and the migration of endothelial 
cells (50,51). Thus, EMT, hypoxia and angiogenesis 
complement each other in the progression of CC. Although 
the relationship between DNA repair status and the 
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Figure 13 External validation of the risk score in the IMvigor210 cohort. (A) The heatmap of the expression levels of the eight immune 
gene; (B) the Kaplan-Meier survival analysis for the risk score in predicting the OS of patients in the IMvigor210 cohort; (C-E) correlation 
analysis between the risk score and therapeutic effective evaluation, immune subtype, and immunotherapy response in the IMvigor210 
cohort. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; OS, overall survival.
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prognosis of CC has not been determined (17), we found 
that DDR defects are an important molecular feature of the 
high-risk group. These findings may contribute to a better 
understanding of the pathogenesis of CC. Interestingly, 
through mechanistic research, we found that this signature 

was also related to the occurrence and development of other 
cancers, such as colorectal cancer, pancreatic cancer, glioma, 
and melanoma, which may provide new insights for the 
diagnosis and treatment of other malignant tumors.

Immunotherapy has become an effective means to improve 
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the prognosis of CC patients; however, considering the side 
effects of immunotherapy, it is also critical to screen patients 
who can truly benefit from immunotherapy (52). Based on 
our evidence, the possibility of low-risk patients receiving 
a benefit from immunotherapy was obviously higher than 
that of the high-risk group in terms of mechanism, which 
is inseparable from the inflamed immunophenotype of the 
low-risk group (53). The higher infiltration levels of γδ T 
cells, immature dendritic cells, tumor killer T cells, and 
Tfh cells were found to have a significant adverse impact on 
the prognosis of CC patients. These four kinds of immune 
cells were all highly infiltrated in the high-risk group. A 
new study found that the massive infiltration of γδ T cells 
in pancreatic tumor tissue makes it difficult for CD4+ and 
CD8+ T cells to recognize and attack tumor cells (54). 
Immature DCs can further produce immune tolerance by 
inducing the body to produce regulatory T cells, anergic 
T cells or tolerogenic T cells (55). Tumor-infiltrating Tfh 
cells are related to the increase in Th1, CD8+ T and B 
cells producing IFN-γ in tumors and to the improvement 
in tumor outcome. Effective and sustainable antitumor 
immunity depends on the interaction between Tfh B cell 
response and T cell response (56). However, Tfh-like cell-
mediated B cell maturation helps to create conditions for 
the polarization of tumor-promoting M2b macrophages 
in tumors (57). NK cells are inherent lymphocytes and 
have strong cytotoxicity in the innate immune system, 
accounting for 15% of all circulating lymphocytes (58). 
The immunosuppressive TME could damage the function, 
phenotype, activation and persistence of NK cells and even 
lead to abnormal function or failure of NK cells (59,60). 
The significantly positive correlation between the risk score 
and the infiltration level of γδ T cells, immature dendritic 
cells, natural killer T cells, and Tfh cells meant that we 
could estimate the infiltration abundance of the four kinds 
of immune cells by calculating the risk score. This discovery 
may provide new clues for immunotherapy of CC.

Implications and actions needed

In this study, we proposed an immune gene risk score 
for predicting the prognosis of CC based on DDR 
molecular subtypes. A total of 1,363 CC samples from 
three independent cohorts confirmed the stability of the 
prognostic model. Importantly, we discovered the biological 
characteristics of CC patients with poor prognosis by 
exploring the potential mechanism of this prognostic 
signature: activation of EMT and angiogenesis, tumor 

hypoxic microenvironment, defects in DDR-related 
pathways, and desert and excluded immunophenotypes, 
among others. Interestingly, the risk score is also applicable 
for the estimation of immunotherapy response and immune 
cell infiltration. These evidences may provide new insights 
into the comprehensive management of CC patients, but 
the specific function of the eight genes in CC is still not 
fully clarified and needs to be experimentally validated in 
the future.

Conclusions

An immune risk score associated with the DDR molecular 
subtype was built and verified in research applicable for 
prognosis and immune cell infiltration prediction in CC.
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