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Purpose: Wearable biometric monitoring devices (WBMD) show promise as a cutting 
edge means to improve health and prevent disease through increasing accountability. By 
regularly providing real-time quantitative data regarding activity, sleep quality, and recovery, 
users may become more aware of the impact that their lifestyle has on their health. The 
purpose of this study was to examine the efficacy of a biometric tracking ring on improving 
sleep quality and increasing physical fitness over a one-year period.

Methods: Fifty-six participants received a biometric tracking ring and were placed in one 
of two groups. One group received a 3-month interactive behavioral modification 
intervention (INT) that was delivered virtually via a smartphone app with guided text 
message feedback (GTF). The other received a 3-month non-directive wellness education 
control (CON). After three months, the INT group was divided into a long-term feedback 
group (LT-GTF) that continued to receive GTF for another nine months or short-term 
feedback group (ST-GTF) that stopped receiving GTF. Weight, body composition, and 
VO2max were assessed at baseline, 3 months, and 12 months for all participants and 
additionally at 6 and 9 months for the ST-GTF and LT-GTF groups. To establish baseline 
measurements, sleep and physical activity data were collected daily over a 30-day period. 
Daily measurements were also conducted throughout the 12-month duration of the study.

Results: Over the first 3 months, the INT group had significant (p < 0.001) improvements 
in sleep onset latency, daily step count, % time jogging, VO2max, body fat percentage, 
and heart rate variability (rMSSD HRV) compared to the CON group. Over the next 9 months, 
the LT-GTF group continued to improve significantly (p < 0.001) in sleep onset latency, daily 
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step count, % time jogging, VO2max, and rMSSD HRV. The ST-GTF group neither improved 
nor regressed over the latter 9 months except for a small increase in sleep latency.

Conclusion: Using a WBMD concomitantly with personalized education, encouragement, 
and feedback, elicits greater change than using a WBMD alone. Additionally, the 
improvements achieved from a short duration of personalized coaching are largely 
maintained with the continued use of a WBMD.

Keywords: wearable, biometric ring, fitness, recovery, step count, heart rate variability, sleep onset latency, 
VO2max

INTRODUCTION

It is now well known that positive lifestyle habits, such as 
regular exercise and adequate sleep, profoundly affect one’s 
mental and physical health. A sedentary lifestyle is one of the 
prominent modifiable contributors of mortality and disease 
globally. It undoubtedly plays a central role in increasing the 
risk of developing chronic health conditions, such as 
cardiovascular disease, hypertension, metabolic syndrome, obesity, 
cancer, and depression (Richardson et  al., 2004; Charansonney 
and Després, 2010; Teychenne et  al., 2010; Tremblay et  al., 
2010; León-Latre et  al., 2014; Mainous et  al., 2019), and serves 
as a major predictor of hospitalization and mortality (Biswas 
et al., 2015). Despite a widespread understanding of the beneficial 
aspects of physical activity, roughly half of American adults 
fail to meet the minimum guidelines for recommended exercise 
(Piercy et al., 2018; Du et al., 2019; Singh et al., 2020). Similarly, 
short sleep duration, coupled with deficits in sleep quality or 
restfulness, predisposes individuals to obesity, mental health 
conditions, neuroendocrine dysfunctions, and cardiovascular 
disease (Durmer and Dinges, 2005; Vorona et al., 2005; Mullington 
et  al., 2009; Medic et  al., 2017). Recent literature indicates 
that more than 1  in 3 U.S. adults do not regularly get enough 
restful sleep, defined as at least seven hours per night (Centers 
for Disease Control and Prevention (CDC), 2009; Gamble et al., 
2017). Strategies that assist individuals in adopting and 
maintaining healthier lifestyles may be  an important catalyst 
in addressing public health concerns worldwide.

A growing body of research indicates that the use of 
digital health technology, notably “wearables,” facilitates the 
adoption of healthy behaviors with the potential of playing 
a salubrious role in disease prevention. Wearable technologies 
are smart microelectronic devices worn on or close to the 
body that utilize sensors or micro-controllers to detect, 
transmit, and analyze physiological parameters in real time. 
Refined sensory technology is also rapidly advancing within 
the medical device field (Presti et  al., 2020). At times, these 
devices have demonstrated a profound positive impact on 
health behaviors, such as exercise, sleep, and more (Dunn 
et  al., 2018; Massaroni et  al., 2019). Wearables are uniquely 
capable in that they leverage the users data to provide 
motivation and accountability (Bianchi, 2018; Nanda et  al., 
2019; Düking et al., 2020). During sleep deprivation, wearables 
can encourage the user to get adequate sleep. By corollary, 
during extended periods of inactivity, they can remind you to 

increase your activity level. Commonly, wearables include 
a screen interface or mobile application to augment intrinsic 
behavior-regulating strategies, such as goal setting, 
associations, and self-monitoring. Extrinsic strategies enhanced 
by digital technology include education, reinforcement, 
encouragement, and actionable feedback (Bandura, 1991; 
Asbjørnsen et  al., 2019).

While many studies support the efficacy of wearables to 
positively impact behavior in the short term, there is a dearth 
of evidence on long-term adherence and adaptation. The use 
of many devices tends to result in only short-term adoption 
and temporary changes in motivation and behaviors (Klasnja 
et al., 2011). In fact, a study by Lee et al. found that one-third 
of consumers who have owned a wearable device stopped 
using it within six months (Lee et  al., 2016). If wearable 
devices are to be  part of the solution of sustained behavior 
change, a major challenge indeed, they need to leverage 
principles from theories of health behavior. Current consumer-
grade wearables align well with the behavioral change technique 
of self-monitoring, but without an action planning and 
commitment step, they may have less of an impact on actual 
behavioral change.

Adherence seems to be  influenced by the individual’s 
recognition of long-term benefits, social support, and internal 
motivation (Kononova et  al., 2019). User surveys have shown 
that low levels of compliance are associated with discomfort, 
the inconvenience of wearable devices, and a lack of activity 
specificity that is important for goal setting and reinforcement 
(McNamara et al., 2016; Faust et al., 2017; Ridgers et al., 2018). 
Thus, perhaps smaller, lighter, and more inconspicuous wearables 
that require less frequent charging may mitigate some compliance 
issues. Additionally, research indicates that integrating wearable 
devices into more comprehensive, personally tailored behavioral 
interventions improves compliance and behavior change (Dolezal 
et  al., 2015, 2019).

Behavioral modification interventions can empower positive 
lifestyle and behavioral changes by improving health education, 
increasing motivation, and providing actionable goals. The 
present study was conducted to examine the efficacy of a 
personalized behavioral modification protocol informed by data 
from a biometric tracking ring over a one-year period. 
We  hypothesized that the behavioral intervention augmented 
by wearable technology would have improved adherence and 
subsequent sleep and exercise outcomes compared to a 
non-augmented intervention.
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MATERIALS AND METHODS

Participants
Volunteers were recruited and enrolled from the University of 
California, Los Angeles (UCLA) campus and the surrounding 
Los Angeles area. Inclusion criteria included: (i) men and 
women aged 18–55 years, (ii) little to no exercise in the past 
3 months (<4x/month), (iii) willingness to wear a ring 
continuously for the duration of the study (i.e., 12 months), 
and (iv) willingness to refrain from engaging in any new activity 
outside of the study requirements of walking, jogging, or 
running. All volunteers completed a pre-participation physical 
activity readiness questionnaire (PAR-Q) and an exercise history 
questionnaire. Exclusion criteria included: (i) any significant 
medical diagnoses, including cardiovascular or pulmonary 
disease, that may limit the ability to exercise or increase the 
cardiovascular risk of exercising, and (ii) failing to meet the 
criteria for low or moderate risk of exercise participation as 
defined by American College of Sports Medicine Guidelines. 

The research was a year-long randomized, placebo-controlled 
study using healthy participants enrolled from October 2018 
to November 2019. All participants provided written informed 
consent prior to study onset. The study was approved by the 
UCLA Institutional Review Board (IRB#11-003190) and carried 
out wholly according to the Helsinki Declaration’s 
ethical standards.

Protocol
This randomized study with concealed allocation and assessor 
blinding was conducted in the Airway & Exercise Physiology 
Research Laboratory at the David Geffen School of Medicine 
at UCLA. Participants were randomly allocated (1:1) to receive 
either a behavioral modification intervention with daily GTF 
(INT group) or a non-directive, equal attention wellness education 
placebo-controlled program (CON group) by an investigator 
independent of the recruitment of participants using an online-
generated random number program. Allocation was concealed 
with the use of consecutively numbered envelopes. After 3 months, 

FIGURE 1 | CONSORT diagram showing participant flow through the study. INT, Intervention; CON, Control; GTF, Guided Text Feedback; LT-GTF, Long-Term GTF; 
ST-GTF, Short-Term GTF.
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those in the INT group were further randomized (1:1) to 
receive either daily GTF for the entire 12 months (long-term 
GTF, LT-GTF group) or no further GTF (short-term GTF, 
ST-GTF group). A CONSORT flow diagram of the progression 
through the phases of the trail is shown in Figure  1. Both 
the behavioral modification intervention and wellness education 
program were conducted remotely via a smartphone application 
(UC Fit v1.11) downloaded to participants’ smartphones from 
either the Google Play Store or Apple App Store. Guided text 
message-based feedback was sent once per day (365 for the 
LT-GTF and 90 texts for the ST-GTF groups, respectively), 
using standard short message service (SMS). A trained research 
associate (in consultation with an experienced clinical sleep 
psychologist) provided GTF in addition to conducting the 
behavioral modification and equal attention sessions throughout 
the study.

Intervention Group: Behavioral Modification
The weekly behavioral modification intervention entailed twelve, 
30-min digitally interactive whiteboard and screencasting 
presentations embedded into a smartphone app (UC Fit v1.11). 
Each presentation covered a different topic related to reducing 
stress, enhancing relaxation, or improving sleep, and provided 
individualized recommendations for implementation. The 
behavioral modification program was developed, successfully 
implemented, and published by the UC Fit lab during a previous 
study (Dolezal et  al., 2019). It focused on altering the key 
mediators of behavior change, including self-efficacy, social 
support, and motivation. The content, commonly provided to 
individuals with induced insufficient sleep syndrome, was 
developed to encourage participants to implement stress 
management techniques, such as relaxation, problem-solving 
to adherence, and healthy sleep hygiene (Borbély, 1982; 
Morgenthaler et  al., 2006; Miller and Rollnick, 2012).

Daily Guided Text Message-Based Feedback
During the course of the study, participants in ST-GTF and 
LT-GTF groups (combined as the INT group during months 
0–3) received daily text message-based feedback that utilized 
social-cognitive behavioral models (Shaw et  al., 2013; Collins 
et  al., 2014; Fassnacht et  al., 2015; Hall et  al., 2015; Maddison 

et  al., 2015; Yan et  al., 2015) that incorporated a combination 
of positive reinforcement techniques. GTF was informed by a 
thorough review of the activity and sleep data from the prior 
24 h and personalized to each participant. Examples of GTF 
are illustrated in Table 1. Third-party access to each participant’s 
Oura app-enabled research associates to perform these reviews 
remotely and without additional disruption to the participant’s 
normal routine.

Control Group: Wellness Education Program
To account for the non-specific effects of time and attention 
conferred by the intervention (independent of the sleep-related 
content), participants randomized to the CON group received 
equal time periods of education. Once per week, participants 
viewed a 30-min digital presentation within the UC Fit app 
that covered generalized healthy lifestyle advice and were 
absent of any specific guidance related to relaxation, stress 
reduction, or sleep. The wellness education program included 
the following topics: healthy relationships, brainpower, 
movement therapy (ergonomics), general health screening, 
environmental health, cancer screening, tobacco/nicotine, time 
management, basic hygiene practices, and preventable diseases/
immunizations.

Exercise
The exercise intervention focused on increasing leisure-time 
physical activity – walking in particular – as well as 
encouragement to accrue incidental activity through daily tasks, 
such as household chores and active transport. All participants 
were instructed to walk or jog at least 150 to 300 min per 
week in accordance with the American College of Sports 
Medicine Physical Activity (American College of Sports Medicine, 
2017) and Center for Disease Control Physical Activity Guidelines 
(Centers for Disease Control and Prevention, 2018). Over time, 
participants receiving the intervention were encouraged to 
increase walking speeds to a comfortable jog.

Baseline, Quarterly, and Post-test 
Outcome Measures
All outcomes were measured in-person at the lab or remotely 
using a multisensory wearable sleep and activity tracker. The 
primary outcome measure for this study was Sleep Quality 
measured by Sleep Onset Latency and Total Sleep time. Secondary 
outcomes included additional sleep metrics (listed below), 
Cardiovascular Fitness measured by VO2max, Physical Activity 
measured by total Step Count and % Time Jogging, Heart 
Rate Variability, and Body Composition.

In-Person: Anthropometric and Cardiovascular 
Fitness Laboratory Measures
All study participants visited the laboratory and were tested 
for anthropometrics (weight and percent body fat) and 
cardiovascular fitness. These assessments were conducted near 
the same time of day by the same examiner at baseline (0-month) 
and month 3 for CON group and at months 0, 3, 6, 9, and 
12 for the INT group.

TABLE 1 | Examples of guided text message-based feedback (GTF) for 
participant activity utilizing positive reinforcement techniques including 
informative, affirmatory, and persuasive content (i.e., guided).

Type Text Message

Informative
You took 8,235 steps yesterday with 
10% of time jogging

Affirmatory
Wonderful job! This week you increased 
in average step counts by 800 since 
last week

Persuasive

Your sleep and HRV trends this week 
indicate good sleep and adequate 
recovery. This week let us strive for a 
larger portion of your steps coming 
from jogging
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Height was determined using a precision stadiometer (Seca, 
Hanover, MD, United States), and body mass and percent body 
fat (BF%) were measured using a calibrated octipolar, 
multifrequency, multisegmental bioelectrical impedance analyzer 
scale (BIA; 270; InBody, Biospace, Cerritos, CA, United States). 
The BIA measurements were carried out according to the 
manufacturer’s instructions by a trained investigator. Briefly, 
each participant stood upright on the scale platform with the 
ball and heel of each foot on two metallic footpads while 
holding a handgrip with both hands pronated and perpendicular 
to the floor. The participant held the handgrip completely with 
the palm on one electrode and the thumb resting on the top 
of the unit’s other electrode. To ensure accuracy, participants 
adhered to standard pre-measurement BIA guidelines 
recommended by the American Society of Exercise Physiologists 
(Heyward, 2001).

A portable, lightweight (~800 g) metabolic analyzer (PNOE, 
Palo Alto, CA), which has been previously validated (Tsekouras 
et  al., 2019) and successfully utilized in exercise research 
(Browne et  al., 2020; Robinson et  al., 2020; Hu et  al., 2021), 
was used to determine participants cardiovascular fitness (or 
aerobic capacity; VO2max) via an incremental, symptom-limited 
maximal treadmill exercise test. The PNOE was attached by 
a shoulder harness to the participants’ upper back while wearing 
a standard facemask and head support (Hans Rudolph, Inc., 
Shawnee, KS). The PNOE measured breath-by-breath ventilation 
as the participant breathed through a microelectromechanical 
hot film anemometer flow sensor that directed expired air to 
the gas analyzer for measures of oxygen consumption (VO2) 
and carbon dioxide production (VCO2). The gas analyzers 
were calibrated before each assessment per manufacturer 
instructions. Simultaneous time-aligned measures of heart rate 
were recorded via a chest strap (RS400; Polar Electro, Inc., 
Kempele, Finland).

Remote: Wearable Biometric (Sleep and Activity) 
Measures
Prior to study initiation, each participant completed a detailed, 
step-by-step instructional tutorial on how to use the Oura 
ring (2nd generation), a commercially available multisensory 
wearable sleep and activity tracker (Ōura Health, Oulu, Finland). 
The biometric ring is shown in Figure  2. The OURA ring 
detects pulse rate, variation in inter-beat-intervals, and pulse 
amplitude from the finger optical pulse waveform (i.e., infrared 
photoplethysmography). The ring also measures motion via 
triaxial accelerometry (configured to record data at a sampling 
frequency of 50 Hz and a resolution of ± 2 g) and skin temperature 
that uses a negative temperature coefficient thermistor. The 
manufacture asserts to use these physiological signals (a 
combination of motion, nocturnal heart rate and heart rate 
variability, and pulse wave variability amplitude), in combination 
with sophisticated machine learning-based methods, to compute 
deep (PSG N3), light (PSG N1+N2), and rapid-eye-movement 
(REM) sleep as well as sleep/wake states (de Zambotti et  al., 
2019). Very recently, the Oura ring showed high accuracy 
wake-sleep detection, sleep staging sensitivity, and specificity 

that approaches results typically reported in PSG and EEG-based 
studies (Asgari Mehrabadi et  al., 2020; Roberts et  al., 2020).

For each participant, the finger (excluding pinky) 
demonstrating the best, snug fit for the waterproof, titanium-
made ring was chosen. Oura rings come in different sizes (US 
standard ring sizes 6–13), weigh ~5 g, and have a battery life 
of around 5–6 consecutive nights. The ring automatically 
connects via Bluetooth and transfers data to a mobile platform 
via the dedicated Oura application from either the Google 
Play Store or Apple App Store. Oura app notifications and 
firmware updates were disabled for the entirety of the study 
to control for potential confounding variables. Participants were 
asked to wear the ring 24/7 (except when charging) and to 
open the application every morning to automatically upload 
the data from the ring to the smartphone app. This ensured 
that both participants and research study associates were able 
to view the sleep, HRV, and activity data provided by 
the application.

Sleep metrics were defined as the following:

 1. Bedtime (XX h XX min AM/PM): An estimate of the initial 
period intending to sleep.

 2. Sleep Onset Latency (X h XX min): The time it takes for 
you  to fall asleep.

 3. Nocturnal Heart Rate (/min): Number of times your heart 
beats per minute while at rest.

 4. Time in Bed (X h XX min): Number of hours between 
bedtime and wake-up time.

 5. Total Sleep (X h XX min): Total amount of time spent in 
light, REM, and deep sleep.

 6. Wake-up Time (XX hr. XX min AM/PM): Time one rises 
out of bed.

Heart rate variability (HRV) is utilized to reflect modulation 
in the autonomic nervous system (ANS). Typically, a low HRV 
value signifies increased sympathetic drive and ANS 
dysregulation, while a high HRV is indicative of greater 
parasympathetic activity and restoration of cardiovascular 
homeostasis (Taralov et  al., 2015; Kim et  al., 2018). HRV is 

FIGURE 2 | Commercially available multisensory wearable sleep and activity 
tracker (Oura ring 2nd generation; Oura Health, Oulu, Finland) highlighting 
sensor interface.
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also a practical biofeedback tool for improved relaxation and 
sleep, and an indicator of a person’s exercise recovery status 
and readiness to train (Plews et  al., 2012; Hu et  al., 2020). 
HRV has also been shown to be useful in predicting morbidities 
from common mental disorders (such as stress, depression, 
PTSD and anxiety) since these all increase sympathetic output 
and create a self-perpetuating cycle that produces autonomic 
balance and greater allostatic load (i.e., low HRV-rMSSD). In 
a recently validated study (Kinnunen et  al., 2020), a high 
agreement between the Oura ring and gold-standard ECG was 
observed for nightly average HR and HRV (r2 = 0.996 and 0.980, 
respectively). Nocturnal HRV in this study was quantified via 
rMSSD (root mean square of successive R-R interval differences) 
as this is the HRV measurement collected and reported by 
the Oura Ring.

Activity metrics were defined as the following:

 1. Step Count: Measurement of daily steps per 24 h period
 2. % Time Jogging: total steps >4.0 mph/total steps

Statistical Analysis
Descriptive statistics are presented as mean ± standard deviation 
(SD). All Oura ring measures were reported as 5-day rolling 
averages computed by the app. Statistical significance was 
determined based on α = 0.05, and all tests were two-tailed. 
Continuous variables were first assessed for normality via 
Shapiro-Wilk tests. Homogeneity of variances and variances 
of the differences were assessed with Bartlett’s tests and Mauchly’s 
tests of sphericity, respectively. If Mauchly’s test of sphericity 
was violated, the Huynh-Feldt correction was utilized. Two-by-two 
and two-by-three mixed-model ANOVA were conducted. If 
significant main effects and/or interaction was found, pairwise 
comparisons using independent or paired t tests (for between-
group and within-group comparisons, respectively) were then 
performed. In order to control the familywise error rate, a 
Bonferroni correction was employed. Effect sizes were measured 
by η2 following ANOVA and Hedges’ g following pairwise 
comparisons. Analysis was performed in Excel (Microsoft 
Corporation®, Redmond, Washington) and R (version 4.0.4; 
R Foundation for Statistical Computing®, Vienna, Austria).

RESULTS

For the first three months of the study, fifty-six adult volunteers 
ages 28–47 years old (28 females) were enrolled and randomized 
to the control group (26 participants, 13 female) or intervention 
group (30 participants, 15 female; Table  2). Following the 
partitioning of the intervention group after month 3, 15 
participants (7 female) in the LT-GTF group and 15 participants 
(8 female) in the ST-GTF group completed the entire 12-month 
study. Daily Oura ring data was successfully retrieved from 
55 of the 56 study participants. One control participant had 
an unknown technical issue precluding any data from after 
the 3rd week. Thus, 99.44% (19,962) of the possible 20,075 
daily Oura measures were successfully captured during the 

12-month period. During the 30-day baseline collection prior 
to study start, there were eleven total days of missing data 
cases among the 56 participants: five due to initially low battery 
charge status prior to recording, and six short-term memory 
issues from not opening the associated Oura App for data 
download within two days (memory limitation).

Anthropometrics
There was no significant difference in age or height across 
groups. Participants’ characteristics are included in Table  2. 
From 0–3  months and 6–12 months, there was a significant 
main effect of time (p < 0.001; η2 = 0.01) as well as an interaction 
between group and time (p < 0.001; η2 = 0.01) on body mass; 
however, pairwise comparisons did not reveal any significant 
differences between groups or time points (Figure  3).

Regarding BF%, there were significant main effects of group 
(p < 0.001; η2 = 0.13) and time (p < 0.001; η2 = 0.24), as well as 
an interaction between group and time (p = 0.006; η2 = 0.06) 
from 0–3 months (Figure 3). Pairwise comparisons demonstrated 
a significant reduction in BF% from 26.8 ± 2.3 to 23.0 ± 2.5% 
(p < 0.001; g = 1.57) in the intervention group. After 3 months, 
the intervention group recorded a significantly lower BF% 
compared to the control group (23.0 ± 2.5 vs. 25.9 ± 2.4%; 
p < 0.001; g = 1.17). From 4–12  months, there was a significant 
main effect of time (p < 0.001; η2 = 0.05) as well as an interaction 
between group and time (p < 0.001; η2 = 0.06); however, pairwise 
comparisons did not reveal any significant differences between 
groups or time points (Figure  3).

Sleep Metrics
There was no significant difference regarding Time in Bed 
between groups or time points (Figure 4). Regarding sleep onset 
latency (SOL), there were significant main effects of group 
(p = 0.002; η2 = 0.10) and time (p < 0.001; η2 = 0.63), as well as an 
interaction between group and time (p < 0.001; η2 = 0.67) from 
0–3 months (Figure 4). Pairwise comparisons showed a decrease 
from 0.42 ± 0.01 to 0.23 ± 0.01 h (p < 0.001; g = 18.00) in the 
intervention group. At baseline (0 months), the intervention group 
demonstrated a longer SOL than the control group (0.42 ± 0.01 
vs. 0.34 ± 0.06 h; p < 0.001; g = 1.83). However, after 3 months, the 
intervention group demonstrated a shorter SOL than the control 
group (0.23 ± 0.01 vs. 0.35 ± 0.04 h; p < 0.001; g = 4.39).

TABLE 2 | Demographics at baseline for all participants in randomized groups.

Control (n = 26) LT-GTF (n = 15) ST-GTF (n = 15)

Sex (M, F) n = 13, n = 13 n = 8, n = 7 n = 7, n = 8
Age (yr) 35.7 ± 6.3 36.3 ± 6.1 35.6 ± 5.6
Height (cm) 172.7 ± 7.1 171.45 ± 4.3 173.5 ± 5.8
Body mass (kg) 73.9 ± 10.1 74.1 ± 10.5 73.5 ± 9.2
Body fat (%) 27.4 ± 2.2 27.2 ± 2.4 26.3 ± 2.2
VO2 Max (ml/kg/
min)

35.0 ± 0.6 36.4 ± 1.4 36.3 ± 0.7

HRV-rMSSD (ms) 36.7 ± 2.5 30.3 ± 1.7 30.1 ± 1.8

Values are mean ± SD. GTF, Guided Text Feedback; LT-GTF, Long-Term GTF; ST-GTF, 
Short-Term GTF.
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FIGURE 3 | Anthropometrics (Body Mass, BF%), cardiovascular fitness (VO2max), and autonomous nervous system (rMSSD) data. Graphs on the left represent 
control (CON) and intervention (INT) groups from baseline to month 3. Graphs on the right represent measurements taken at 6, 9, and 12 months. LT-GTF, Long-
term GTF group; ST-GTF, Short-term GTF. *Represent statistically significant differences.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Browne et al. Wearables, Feedback, and Behavioral Modification

Frontiers in Physiology | www.frontiersin.org 8 November 2021 | Volume 12 | Article 777874

FIGURE 4 | Sleep metrics (Time in Bed, Sleep Onset Latency, and Total Sleep). Graphs on the left represent control (CON) and intervention (INT) groups from 
baseline to month 3. Graphs on the right represent measurements taken at 6, 9, and 12 months. LT-GTF, Long-term GTF group; ST-GTF, Short-term GTF. 
*Represent statistically significant differences.

From 4–12  months (Figure  4), there were significant main 
effects of group (p < 0.001; η2 = 0.82) and time (p < 0.001; η2 = 0.24), 
as well as an interaction between group and time (p < 0.001; 
η2 = 0.34). Within the LT-GTF group, pairwise comparisons 
revealed a decrease in SOL from month 6 to month 9 (0.17 ± 0.00 
vs. 0.15 ± 0.01 h; p < 0.001; g = 3.15) but an increase from month 
9 to month 12 (0.15 ± 0.01 vs. 0.17 ± 0.01 h; p = 0.002; g = 1.38). 
Within the ST-GTF group, pairwise comparisons demonstrated 
an increase in SOL from month 6 to month 9 (0.22 ± 0.01 vs. 
0.27 ± 0.04 h; p < 0.001; g = 2.20) and from month 6 to month 
12 (0.22 ± 0.01 vs. 0.28 ± 0.04 h; p < 0.001; g = 2.13). After 6 months, 
the LT-GTF group showed a shorter SOL compared to the 

ST-GTF group (0.17 ± 0.00 vs. 0.22 ± 0.01 h; p < 0.001; g = 8.03). 
Similarly, after 9 months, the LT-GTF group showed a shorter 
SOL compared to the ST-GTF group (0.15 ± 0.01 vs. 0.27 ± 0.04 h; 
p < 0.001; g = 4.77). Likewise, after 12 months, the LT-GTF group 
also demonstrated a shorter SOL than the control group 
(0.17 ± 0.01 vs. 0.28 ± 0.04 h; p < 0.001; g = 3.75).

Regarding Total Sleep, there were no significant main effects 
or an interaction from 0 to 3  months. From 4 to 12  months, 
there was a significant main effect (p < 0.001; η2 = 0.05) of time, 
but not group, nor an interaction. Follow-up pairwise comparisons 
examining the different time points did not reveal any significant 
differences (Figure  4).
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Physical Activity
Regarding Step Count, there were significant main effects of 
group (p < 0.001; η2 = 0.32) and time (p < 0.001; η2 = 0.35), as 
well as an interaction between group and time (p < 0.001; 
η2 = 0.35) from 0–3 months. Pairwise comparisons showed an 
increase from 7,446 ± 907 to 9,626 ± 998 steps (p < 0.001; g = 2.26) 
in the intervention group. After 3 months (Figure  5), the 
intervention group demonstrated a greater Step Count than 
the control group (9,626 ± 998 vs. 7,527 ± 359 steps; p < 0.001; 
g = 2.68).

From 4 to 12 months (Figure  5), there were significant 
main effects of group (p < 0.001; η2 = 0.34) and time (p < 0.001; 
η2 = 0.11), as well as an interaction between group and time 
(p < 0.001; η2 = 0.10). Within the LT-GTF group, pairwise 
comparisons revealed an increase in Step Count from month 
6 to month 12 (10,126 ± 1,073 vs. 11,920 ± 1,073 steps; p < 0.001; 
g = 1.63). After 9 months, the LT-GTF group showed a greater 
Step Count compared to the ST-GTF group (11,171 ± 1,034 
vs. 9,581 ± 1,160 steps; p < 0.001; g = 1.41). Similarly, after 
12 months, the LT-GTF group also demonstrated a greater 
Step Count than the control group (11,920 ± 1,073 vs. 
9,527 ± 1,153 steps; p < 0.001; g = 2.09).

Regarding % Time Jogging, there were significant main 
effects of group (p = 0.03; η2 = 0.07) and time (p < 0.001; η2 = 0.87), 
as well as an interaction between group and time (p < 0.001; 
η2 = 0.89) from 0–3  months (Figure  5). Pairwise comparisons 
showed an increase from 2.1 ± 0.4 to 7.8 ± 0.6% (p < 0.001; 
g = 11.29) in the intervention group. At baseline (0 months), 
the intervention group demonstrated a smaller % Time Jogging 
than the control group (2.1 ± 0.4 vs. 5.4 ± 0.6%; p < 0.001; g = 6.54). 
However, after 3 months, the intervention group demonstrated 
a greater % Time Jogging than the control group (7.8 ± 0.6 
vs. 5.1 ± 0.6%; p < 0.001; g = 4.80).

From 4–12  months (Figure  5), there were significant main 
effects of group (p < 0.001; η2 = 0.97) and time (p < 0.001; η2 = 0.70), 
as well as an interaction between group and time (p < 0.001; 
η2 = 0.77). Within the LT-GTF group, pairwise comparisons 
revealed an increase in %time jogging from month 6 to month 
12 (14.2 ± 0.7 vs. 19.6 ± 0.7%; p < 0.001; g = 7.41). After 9 months, 
the LT-GTF group showed a greater %time jogging compared 
to the ST-GTF group (16.1 ± 0.8 vs. 9.1 ± 0.7%; p < 0.001; g = 9.24). 
Similarly, after 12 months, the LT-GTF group also demonstrated 
a greater % Time Jogging than the control group (19.6 ± 0.7 
vs. 8.2 ± 0.7%; p < 0.001; g = 14.97).

FIGURE 5 | Physical activity measurements (Step Count, % Time Jogging). Graphs on the left represent control (CON) and intervention (INT) groups from baseline 
to month 3. Graphs on the right represent measurements taken at 6, 9, and 12 months. LT-GTF, Long-term GTF group; ST-GTF, Short-term GTF. *Represent 
statistically significant differences.
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Cardiovascular Fitness
Regarding VO2max, there were significant main effects of group 
(p < 0.001; η2 = 0.71) and time (p < 0.001; η2 = 0.54), as well as 
an interaction between group and time (p < 0.001; η2 = 0.45) 
from 0–3  months (Figure  3). Pairwise comparisons showed 
an increase from 36.3 ± 1.1 to 40.6 ± 1.6 ml/kg/min (p < 0.001; 
g = 3.04) in the intervention group. At baseline (0 months), the 
intervention group demonstrated a greater VO2max than the 
control group (36.3 ± 1.1 vs. 35.0 ± 0.6 ml/kg/min; p < 0.001; 
g = 1.57). A similar finding occurred after 3 months: the 
intervention group demonstrated a greater VO2max than the 
control group (40.6 ± 1.6 vs. 35.4 ± 0.6 ml/kg/min; p < 0.001; 
g = 4.14).

From 4–12  months (Figure  3), there were significant main 
effects of group (p < 0.001; η2 = 0.78) and time (p < 0.001; η2 = 0.52), 
as well as an interaction between group and time (p < 0.001; 
η2 = 0.62). Within the LT-GTF group, pairwise comparisons 
revealed increases in VO2max from month 6 to month 9 
(43.1 ± 0.8 vs. 45.5 ± 0.7 ml/kg/min; p < 0.001; g = 3.04), from 
month 6 to month 12 (43.1 ± 0.8 vs. 48.0 ± 0.5 ml/kg/min; 
p < 0.001; g = 6.95), and from month 9 to month 12 (45.5 ± 0.7 
vs. 48.0 ± 0.5 ml/kg/min; p < 0.001; g = 4.09). After 9 months, the 
LT-GTF group showed a greater VO2max compared to the 
ST-GTF group (45.5 ± 0.7 vs. 42.5 ± 1.1 ml/kg/min; p < 0.001; 
g = 3.28). A similar finding occurred after 12 months: The LT-GTF 
group demonstrated a greater VO2max than the control group 
(48.0 ± 0.5 vs. 41.9 ± 1.0 ml/kg/min; p < 0.001; g = 7.43).

Heart Rate Variability
Regarding HRV, there were significant main effects of group 
(p < 0.001; η2 = 0.41) and time (p < 0.001; η2 = 0.24), as well as 
an interaction between group and time (p  < 0.001; η2 = 0.31) 
from 0–3 months (Figure  3). Pairwise comparisons showed an 
increase from 30.2 ± 1.7 to 35.5 ± 1.9 ms (p < 0.001; g = 2.89) in 
the intervention group. At baseline (0 months), the intervention 
group demonstrated a smaller rMSSD than the control group 
(30.2 ± 1.7 vs. 36.7 ± 2.5 ms; p < 0.001; g = 3.05).

From 4–12 months (Figure  3), there were significant main 
effects of group (p < 0.001; η2 = 0.65) and time (p < 0.001; η2 = 0.16), 
as well as an interaction between group and time (p < 0.001; 
η2 = 0.33). Within the LT-GTF group, pairwise comparisons 
revealed increases in rMSSD from month 6 to month 9 
(37.7 ± 1.9 vs. 40.0 ± 1.7 ms; p = 0.001; g = 1.28), from month 6 
to month 12 (37.7 ± 1.9 vs. 42.3 ± 1.8 ms; p < 0.001; g = 2.44), 
and from month 9 to month 12 (40.0 ± 1.7 vs. 42.3 ± 1.8 ms; 
p = 0.002; g = 1.24). Within the ST-GTF group, pairwise 
comparisons demonstrated a decrease in rMSSD from month 
9 to month 12 (36.1 ± 1.7 vs. 34.1 ± 1.7 ms; p = 0.004; g = 1.11). 
After 6 months, the LT-GTF group showed a greater rMSSD 
compared to the ST-GTF group (37.7 ± 1.9 vs. 35.2 ± 1.9 ms; 
p = 0.002; g = 1.20). Similarly, after 9 months, the LT-GTF group 
showed a greater rMSSD compared to the ST-GTF group 
(40.0 ± 1.7 vs. 36.1 ± 1.7 ms; p < 0.001; g = 2.24). Likewise, after 
12 months, the LT-GTF group also demonstrated a greater 
rMSSD than the control group (42.3 ± 1.8 vs. 34.1 ± 1.7 ms; 
p < 0.001; g = 4.52).

DISCUSSION

This study demonstrates the efficacy of utilizing wearable 
technology in remote delivery of an app-based intervention 
to improve sleep, activity levels, fitness, and health. In general, 
a trend emerged across several key outcome measures, affirming 
the importance of including guidance and encouragement, 
provided in this study through GTF, as key components of a 
successful behavior modification intervention. The CON group 
showed no difference in SOL, Step Count, % Time Jogging, 
VO2max, BF%, and HRV, while significant improvement occurred 
among the INT group over the first three months. During 
the following nine months, those who continued to receive 
GTF (LT-GTF group) continued to improve in each of these 
outcomes except BF%, while scores for those who received 
no further GTF (ST-GTF group) remained relatively stagnant 
or regressed slightly. Figure  6 illustrated trends for SOL, Step 
Count, BF%, and HRV over the course of the study.

SOL is commonly used to aid in the diagnosis of insomnia 
and to monitor the efficacy of treatment, yet there is no 
widespread agreement on a clinical threshold. Many researchers 
and clinicians employ a diagnostic cutoff of >30 min (Martin 
and Ancoli-Israel, 2002; Lichstein et  al., 2003); however, 
Lineberger et  al. (Lineberger et  al., 2006) demonstrated that 
a cutoff value of >20 min best-discriminated individuals with 
insomnia from normal sleepers. This threshold has been endorsed 
in more recent publications (Edinger, 2016; Exelmans et  al., 
2018). With baseline latencies of 20.6 min for the CON group 
and 25.0 min for the INT group, participants in the current 
study could be  considered borderline to meet these criteria 
for insomnia. Thus, it is meaningful that SOL in the INT 
group improved to 14.0 min at the 3-month follow-up, dropping 
below the 20-min insomnia threshold and exceeding the 
published criteria of 10-min improvements for clinical importance 
(Sateia et al., 2017). In fact, with SOL improvements of −11 min 
at 3 months and − 15 min at 12 months among the LT-GTF 
group, the GTF-enabled behavioral intervention rivaled or 
outperformed 13 of 14 commonly used pharmacologic treatments 
analyzed in a recent systematic review and Clinical Practice 
Guideline commissioned by the American Academy of Sleep 
Medicine (Sateia et  al., 2017). Many considerations factor into 
treatment decisions for insomnia. Still, these results indicate 
that behavioral interventions similar to the one presented in 
this study should be  considered, especially among those with 
mild or sub-clinical insomnia or for whom the pharmacologic 
intervention is contraindicated.

The continued improvement in SOL among the LT-GTF 
group is noteworthy. Most interesting, however, is the sustained 
healthy values of the ST-GTF group, which received no further 
external engagement after the short-term 3-month intervention, 
with both groups remaining under the 20-min insomnia threshold 
at the 12-month follow-up. A similar sustained effect was found 
in a recent study by Nguyen et  al., which demonstrated 
maintained improvement in sleep disturbances and PSQI score 
12 weeks after stopping the behavioral feedback and health 
coaching intervention. Unlike the present study, however, subjects 
continued using the wearable fitness and sleep tracker  
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(Nguyen et  al., 2021). Similar to the present, Nguyen et  al. 
included a control group that wore a fitness tracker without 
feedback for a three-month period. Although the control group 
recorded small improvements in wake after sleep onset (WASO) 
and sleep efficiency, only the feedback group improved number 
of awakenings (NWAKE) and Pittsburgh sleep quality index 
(PSQI) score. Taken together, these studies suggest that simply 
wearing a fitness tracker in isolation is insufficient to realize 
a meaningful change in most people. Perhaps more importantly, 
these studies also establish that a relatively brief period of 
guided feedback may be  enough to enact long-term change. 
While continued feedback appears to produce continued 
improvement, a short-term period of personalized coaching 
at the outset of using a fitness tracker may be  sufficient to 
achieve meaningful results and create long-lasting, healthy habits.

This pattern of initial and continued improvement with GTF, 
and maintenance of improved values upon removal of GTF, 
was also observed in Step Count, % Time Jogging, and VO2max. 
Previous research demonstrates similar improvements in physical 
activity and cardiovascular fitness resulting from interventions 
incorporating activity trackers and personalized feedback 
(Braakhuis et  al., 2019; Brickwood et  al., 2019, 2021; Ellingson 
et al., 2019). Furthermore, there is a dose-response relationship 
between physical activity and major health outcomes, where 

simply increasing daily step count has a positive impact on 
mortality and morbidity risk. A widely reported problem with 
physical activity interventions is low compliance in maintaining 
the new lifestyle (van der Bij et al., 2002; Müller-Riemenschneider 
et  al., 2008); however, better long-term adaptations have been 
shown when interventions incorporate feedback and personalized 
behavioral change techniques compared to generic activity 
recommendations or activity trackers alone (Dolezal et  al., 
2015; Ellingson et  al., 2019; Brickwood et  al., 2021). A study 
by Ellingson et  al. recruited participants with a wide range 
of physical activity levels and found that among those entering 
their study with higher activity levels, combining activity tracker 
use with personalized coaching techniques such as motivational 
interviewing and habit education was more effective at 
maintaining high activity levels than receiving an activity tracker 
alone (Ellingson et  al., 2019). This reinforces the previously 
discussed potential for short-term feedback to facilitate long-
term changes.

As our intervention targeted multiple lifestyle factors 
simultaneously, it is possible the effects observed in certain 
outcome measures are at least partially the result of improvements 
made in other related outcomes. Indeed, there is ample evidence 
indicating that exercise positively affects sleep quality (Yang 
et  al., 2012), and since we  did not include groups receiving 

FIGURE 6 | Evolution of Body Fat %, Sleep Onset Latency, Step Count, and rMSSD during the study.
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only partial intervention (e.g., sleep coaching, but no physical 
activity encouragement), we are unable to conclusively determine 
to what extent observed improvements in SOL were due solely 
to an effective sleep intervention. However, prior research has 
demonstrated that the effects of exercise on sleep are highly 
variable depending on the age of the participant, and the 
intensity, and timing of exercise sessions. Additionally, not 
all sleep-related outcomes are equally affected by exercise 
(Dolezal et  al., 2017). A recent systematic review by Dolezal 
et  al. found good evidence that exercise promoted increased 
sleep efficiency and duration, yet 8 of 13 studies reporting 
SOL found no change resulting from exercise (Dolezal et  al., 
2017). Similarly, a meta-analysis by Banno et  al. (2018) found 
benefits from exercise in subjective measures, such as the 
PSQI and insomnia severity index (ISI), but found no effect 
on directly measured sleep latency. Based on these findings, 
we  believe it reasonable to state that improvements in SOL 
observed in the current study are evidence of an effective 
sleep intervention, although parsing this out further in future 
studies involving wearable technology and remotely delivered 
interventions would be  warranted. Regardless, the observed 
improvement in the current study underscores the importance 
of a whole-person and whole-lifestyle approach to 
improved health.

Measuring rMSSD HRV provided a valuable measure of 
parasympathetic activity and cardiovascular homeostasis 
restoration. This outcome measure followed a similar pattern 
to the others discussed, with continued improvement observed 
in the LT-GTF group and no meaningful change for better 
or worse during periods when GTF was withheld. To our 
knowledge, there is no reported minimal clinically important 
change (MCID) for HRV metrics; however, a recent study 
reported Minimal Detectable Change scores between 6.92–9.81 ms 
for rMSSD (Bassi et al., 2018), indicating the 12.1 ms improvement 
observed among the LT-GTF group at 12 months may 
be noteworthy. Multiple studies have shown that physical activity 
positively modulates HRV (Dixon et  al., 1992; Malfatto et  al., 
1996; Sandercock et al., 2007), and HRV may positively influence 
sleep (Zhuang et  al., 2005). Higher HF HRV metrics found 
during a pre-bedtime resting period have been associated with 
shorter sleep latency and fewer arousal events (Werner et  al., 
2015), while another study found higher rMSSD values to 
be  predictive of shorter WASO times (Fantozzi et  al., 2019). 
Therefore, the results of the current study support previous 
research suggesting a positive relationship between increased 
HRV and improved sleep metrics.

Wearables have the potential to be  at the forefront of 
preventative medicine by allowing patients to take control of 
their own healthcare and well-being. For many people, it may 
be  difficult to gauge one’s activity level and quality of sleep 
(Ferrari et  al., 2007; Lauderdale et  al., 2008). Providing users 
with regular biometric feedback eliminates subjectivity and 
allows the user to obtain a more accurate representation of 
their current health status. The improvements seen in SOL, 
Step Count, % Time Jogging, VO2max, BF%, and HR show 
wearables to be  a promising means to generate lasting positive 
impacts on users’ health and overall quality of life.

Applications
Wearables are a relatively inexpensive yet valid, reliable, and 
feasible way to support health-related behavior change and a 
more active lifestyle (Kinnunen et  al., 2019; Lynch et  al., 2019). 
Electronic Health interventions have been shown to produce 
significant weight loss for individuals through applied self-
monitoring, feedback, goal setting, shaping knowledge, and social 
support (Asbjørnsen et  al., 2019). Previous research has also 
suggested that wearable devices’ promotion of physical activity 
and weight loss, combined with the ability to remotely capture 
and report real-life data, may be  useful for health professionals 
with patient monitoring and support. Thus, there is growing 
interest from academic researchers and clinicians to better 
understand how to optimize this technology (Ringeval et  al., 
2020; Altini and Kinnunen, 2021). By leveraging wearable 
technology, the easy accessibility of personal health data has 
the potential to elicit significant behavioral changes when combined 
with personalized feedback to promote a more active and healthier 
lifestyle. Thus, contributing to increased healthspan and lifespan.

Limitations
The interventional group consisted of a small sample size for 
the LT-GTF (n = 15) and ST-GTF (n = 15) groups. This limitation 
is likely mitigated by the study’s 1-month collection of baseline 
data, 12-month study duration, and strong participant adherence 
to wearing the biometric ring; however, future studies may 
consider larger sample sizes to generate greater external validity. 
Additionally, due to the lack of long-term studies conducted 
on the efficacy of wearables for sustained lifestyle modification, 
we  have little to compare the efficacy of the sleep and activity 
interventions from other wearable devices that may offer 
additional benefits and behavior-modifying features. Future 
research is warranted considering the increasing digitalization 
of health, user accessibility of fitness wearables and suggested 
benefits indicated in this study.

CONCLUSION

The utilization of biometric trackers has become increasingly 
widespread in our data-driven society. By providing data 
regarding physical activity, sleep, and other fitness metrics, 
research has previously shown wearables have the potential to 
promote improved health and lifestyle. However, despite the 
extensive data available from a fitness tracker, many users do 
not consistently comply with or utilize the advantages of fitness 
tracking in the long term to promote healthy lifestyle habits. 
Moreover, visually appealing graphs from “big” data misses 
the point; that is, wearable data should be  used as a medium 
that empowers positive changes in users lives not merely as 
a collection device with the expectation the user finds it 
interesting and actionable. That rarely happens. This study 
underscores the importance of integrating these devices in 
tailored, personalized behavioral interventions that provide 
dynamic educational content, real-time encouragement and 
feedback with progressive goal setting. In the present study, 
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this combination resulted in improved sleep quality and increased 
physical activity and fitness. Perhaps most notably, our data 
show that improvements achieved from a short duration of 
personalized coaching are largely maintained with the continued 
use of a wearable biometric device.
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