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Abstract
The determination of the sample size required by a crossover trial typically depends

on the specification of one or more variance components. Uncertainty about the value

of these parameters at the design stage means that there is often a risk a trial may

be under- or overpowered. For many study designs, this problem has been addressed

by considering adaptive design methodology that allows for the re-estimation of the

required sample size during a trial. Here, we propose and compare several approaches

for this in multitreatment crossover trials. Specifically, regulators favor reestimation

procedures to maintain the blinding of the treatment allocations. We therefore develop

blinded estimators for the within and between person variances, following simple or

block randomization. We demonstrate that, provided an equal number of patients are

allocated to sequences that are balanced for period, the proposed estimators follow-

ing block randomization are unbiased. We further provide a formula for the bias of

the estimators following simple randomization. The performance of these procedures,

along with that of an unblinded approach, is then examined utilizing three motivat-

ing examples, including one based on a recently completed four-treatment four-period

crossover trial. Simulation results show that the performance of the proposed blinded

procedures is in many cases similar to that of the unblinded approach, and thus they

are an attractive alternative.

K E Y W O R D S
blinded, crossover trial, internal pilot study, sample size reestimation

1 INTRODUCTION

Crossover trials, in which participants are randomly allocated to receive a sequence of treatments across a series of time periods,

are an extremely useful tool in clinical research. Their nature permits each patient to act as their own control, exploiting the

fact that in most instances the variability of measurements on different subjects in a study will be far greater than that on the

same subject. In this way, crossover trials are often more efficient than parallel group trials. Like most experimental designs, the

determination of the sample size required by a crossover trial, to achieve a certain power for a particular treatment effect, depends

on the significance level, and at least one factor that accounts for the participant's variance in response to treatment. While the

former are designated quantities, the variance factors will usually be subject to substantial uncertainty at the design stage.

Their value will often be greatly affected by components of the current trial, such as inclusion/exclusion criteria for example,
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that renders estimates obtained from previous trials biased. This is troubling since sample size calculation is of paramount

importance in study design. Planning a trial that is too large results in an unnecessary number of patients being made susceptible

to interventions that may be harmful. It also needlessly wastes valuable resources in terms of time, money, and available trial

participants. In contrast, too small a sample size confers little chance of success for a trial. The consequences of this could be

far reaching: a wrong decision may lead to the halting of the development of a therapy, which could deprive future patients of a

valuable treatment option.

To address this problem in a parallel group setting with normally distributed outcome variables, Wittes and Brittain (1990),

building upon previous work by Stein (1945), proposed the internal pilot study design. In their approach, at an interim time period

the accrued data is unblinded, the within-group variance computed, and the trial's required sample size adjusted if necessary.

However, unblinding an ongoing trial can reduce its integrity and introduce bias (ICH, 1998). Consequently, Gould and Shih

(1992) explored several approaches for reestimating the required sample size in a blinded manner. Since then, a number of papers

have advocated for reestimation in a parallel group setting to be based upon a crude one-sample estimate of the variance, and

methodology has also been proposed that allows the type-I error-rate to be more accurately controlled (Kieser & Friede, 2003).

More recently, much work has been conducted on similar methods for an array of possible trial designs and types of outcome

variable (see, e.g. Jensen & Kieser, 2010; and Togo & Iwasaki, 2011), with these methods also gaining regulatory acceptance

(CHMP, 2007; FDA, 2010).

Thus, today, sample size reestimation procedures have established themselves for parallel group trials as an advantageous

method to employ when there is pre-trial uncertainty over the appropriate sample size. In contrast, there has been little explo-

ration of such methodology within the context of multitreatment crossover trials. Golkowski, Friede, and Kieser (2014) recently

explored a blinded sample size reestimation procedure for establishing bioequivalence in a trial utilizing an AB/BA crossover

design. Jones and Kenward (2014) discussed how the results of Kieser and Friede (2003) could be rephrased for an AB/BA

crossover trial testing for superiority. In addition, several unblinded reestimation procedures for AB/BA bioequivalence trials

have been proposed (Potvin et al., 2007; Montague et al., 2012; Xu et al., 2016), the performance of which has recently been

extensively compared (Kieser & Rauch, 2015). The work of Lake, Kammann, Klar, and Betensky (2002) and van Schie and

Moerbeek (2014) on sample size reestimation in cluster randomized trials has some parallels with the methodology required for

crossover trials, because of the necessitated mixed model for data analysis. Likewise, this is true of the methodology presented

by Zucker and Denne (2002) on reestimation procedures for longitudinal trials. However, we are unaware of any article that

explicitly discusses reestimation in crossover trials with more than two-treatments. There are many examples of such trials in

the literature, while they also remain the focus of much research (see, e.g. Bailey & Druilhet, 2014; and Lui & Chang, 2016).

In this article, we consider several possible approaches to the interim reassessment of the sample size required by a multi-

treatment crossover trial. We assume a normally distributed outcome variable, and that a commonly utilized linear-mixed model

will be employed for data analysis. We focus primarily on a setting in which the final analysis is based on many-to-one com-

parisons for one-sided null hypotheses, but provide additional guidance for other possibilities in the Supplementary Material.

Blinded procedures for estimating the between and within person variance in response are proposed, following either simple or

block randomisation to sequences that are balanced for period. The performance of these estimators is contrasted to that of an

unblinded procedure via a simulation study motivated by a real four-treatment four-period crossover trial. Additionally, in the

Supplementary Material we provide results for two additional examples. We now proceed by specifying the notation used in the

re-estimation procedures. Our findings are then summarized in Section 3, before we conclude in Section 4 with a discussion.

2 METHODS

2.1 Hypotheses, notation, and analysis
We consider a crossover trial with𝐷 treatments, indexed 𝑑 = 0,… , 𝐷 − 1. Treatments 𝑑 = 1,… , 𝐷 − 1 are considered experi-

mental, and are to be compared to the common control 𝑑 = 0. We suppose that 𝐾 sequences, indexed 𝑘 = 1,… , 𝐾 , are utilised

for treatment allocation, and denote by 𝑛𝑘 the number of patients allocated to sequence 𝑘. The number of periods in the trial,

which is equal to the length of each of the sequences, is denoted by 𝑃 .

We restrict our focus to trials with normally distributed outcome data, to be analysed using the following linear-mixed model

𝑦𝑖𝑗𝑘 = 𝜇0 + 𝜋𝑗 + 𝜏d(𝑗,𝑘) + 𝑠𝑖𝑘 + 𝜖𝑖𝑗𝑘, 𝑖 = 1,… , 𝑛𝑘, 𝑗 = 1,… , 𝑃 , 𝑘 = 1,… , 𝐾. (1)

Here

(i) 𝑦𝑖𝑗𝑘 is the response for individual 𝑖, in period 𝑗, on sequence 𝑘;

(ii) 𝜇0 is an intercept term; the mean response on treatment 0 in period 1;
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(iii) 𝜋𝑗 is a fixed effect for period 𝑗, with the identifiability constraint 𝜋1 = 0;

(iv) 𝜏d(𝑗,𝑘) is a fixed direct treatment effect for the treatment administered to an individual in period 𝑗, on sequence 𝑘, with the

identifiability constraint 𝜏0 = 0. Thus d(𝑗, 𝑘) = 0,… , 𝐷 − 1;

(v) 𝑠𝑖𝑘 ∼ 𝑁(0, 𝜎2
𝑏
) is a random effect for individual 𝑖 on sequence 𝑘;

(vi) 𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎2
𝑒
) is the residual for the response from individual 𝑖, in period 𝑗, on sequence 𝑘.

This model, and its implied covariance structure, is the standard for a crossover trial that ignores the possible effects of

carryover. Thus we are implicitly heeding the advice of Senn (1992), and others, that a crossover trial should not be conducted

when carryover is likely to be an issue. Furthermore, note that by the above, two observations 𝑦𝑖1𝑗1𝑘1 and 𝑦𝑖2𝑗2𝑘2 are independent

unless 𝑖1 = 𝑖2 and 𝑘1 = 𝑘2.

We assume that the following hypotheses are to be tested, to attempt to establish the superiority of each experimental inter-

vention versus the control

𝐻0𝑑 ∶ 𝜏𝑑 ≤ 0, 𝐻1𝑑 ∶ 𝜏𝑑 > 0, 𝑑 = 1,… , 𝐷 − 1.

Note though that for Examples 1 and 3, slightly different hypotheses are assessed, as negative effects imply efficacy. Additionally,

in the Supplementary Material we detail how one can handle alternate hypotheses of interest.

We suppose that it is desired to strongly control the FWER, the maximal probability of one or more incorrect rejections among

the family of null hypotheses for all possible treatment effects, to some specified level 𝛼 ∈ (0, 1). There are several possible ways

to define power in a multitreatment setting. Throughout, we assume that pairwise power of at least 1 − 𝛽 ∈ (0, 1) to reject, without

loss of generality,𝐻01 is required when 𝜏1 = 𝛿 > 0 for designated type-II error-rate 𝛽 and clinically relevant difference 𝛿. Thus,

from here, when referring to power we mean the probability that 𝐻01 is rejected. However, in the Supplementary Material we

describe how a desired familywise power could be achieved.

To test the hypotheses, we assume that 𝑁 patients in total will be recruited to the trial, with each randomized to one of the

𝐾 sequences, and that the the linear-mixed model (1) will be fitted to the accumulated data. Note that in fitting this model, a

choice must be made over whether to utilize maximum likelihood, or restricted error maximum likelihood (REML), estimation.

Given the bias of the maximum likelihood estimator of the variance components of a linear-mixed model in finite samples, and

that crossover trials are often conducted with relatively small sample sizes, here we always take the latter approach. Note though

that this would have little effect for larger sample sizes. For further details on these considerations, we refer the reader to, for

example, Fitzmaurice, Laird, & Ware (2011). In brief, the REML estimation procedure, for a linear-mixed model of the form

𝒚 = 𝑋𝜷 +𝑍𝒃 + 𝝐 with 𝒃 ∼ 𝑁(𝟎, 𝐺) and 𝝐 ∼ 𝑁(𝟎, 𝑅), iteratively optimizes the parameter estimates for the effects in the model.

The following modified log-likelihood is maximized to provide an estimate, Σ̂, for Σ = 𝑍𝐺𝑍⊤ + 𝑅, using an estimate, �̂�, for 𝜷

−1
2
log |Σ| − 1

2
(𝒚 −𝑋�̂�)⊤Σ−1(𝒚 −𝑋�̂�) − 1

2
log |𝑋⊤Σ−1𝑋|.

Then, �̂� is updated to

�̂� = (𝑋⊤Σ̂−1𝑋)−1𝑋⊤Σ̂−1𝒚,

and the process repeated. Given the final solutions �̂� and Σ̂, we take Var(�̂�) = (𝑋⊤Σ̂−1𝑋)−1.

In our case, 𝜷 = (𝜇0, 𝜋2,… , 𝜋𝑃 , 𝜏1,… , 𝜏𝐷−1)⊤, and the following 𝐷 − 1 Wald test statistics are formed

𝑇𝑑 =
𝜏𝑑√

Var(𝜏𝑑)
, 𝑑 = 1,… , 𝐷 − 1,

where 𝜏𝑑 and Var(𝜏𝑑) are extracted from �̂� and Var(�̂�), respectively.

Next, we reject𝐻0𝑑 if 𝑇𝑑 > 𝑒, with 𝑒 chosen to control the FWER. Explicitly, using a Dunnett test (Dunnett, 1955), we take

𝑒 as the solution to

1 − 𝛼 = Ψ𝐷−1{(𝑒,… , 𝑒)𝑇 ,Var(𝑻 ), 𝜈𝑁}, (2)

where Ψ𝑀{𝐱,Λ, 𝜈} is the 𝑀-dimensional cumulative distribution function of a central multivariate t-distribution with

covariance matrix Λ and 𝜈 degrees of freedom. We take the degrees of freedom here, for sample size 𝑁 , to be
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𝜈𝑁 = (𝑁 − 1)(𝑃 − 1)− (𝐷 − 1), which arises from that associated with an analogous multilevel ANOVA design. Moreover,

Var(𝑻 ) is the covariance matrix of 𝑻 = (𝑇1,… , 𝑇𝐷−1)⊤, which can be calculated using Var(�̂�).
Now, in this case, if 𝜎2

𝑒
and 𝜎2

𝑏
were known, and we assumed that 𝑛1 = ⋯ = 𝑛𝐾 , we could derive a simple formula for the

total number of patients,𝑁 , required to achieve the desired power for the trial. Here, we denote this formula using the function

N(𝜎2
𝑒
, 𝜎2
𝑏
), explicitly stating its dependence upon the within and between person variances. In the Supplementary Material, we

elaborate on how this formula can be derived.

Our problem, as discussed, is that in practice 𝜎2
𝑒

and 𝜎2
𝑏

are rarely known accurately at the design stage. Therefore, we propose

to reestimate the required sample size at an interim analysis timed after 𝑛int ∈ ℕ patients. That is, we consider several methods

to construct estimates, �̂�2
𝑒

and �̂�2
𝑏
, for 𝜎2

𝑒
and 𝜎2

𝑏
, respectively, based on the data accrued up to the interim analysis. Then, the

final sample size for the trial is taken as

�̂� =
⎧⎪⎨⎪⎩
𝑛int if N(�̂�2

𝑒
, �̂�2
𝑏
) ≤ 𝑛int,⌈N(�̂�2

𝑒
, �̂�2
𝑏
)⌉ if 𝑛int < N(�̂�2

𝑒
, �̂�2
𝑏
) < 𝑛max,

𝑛max if N(�̂�2
𝑒
, �̂�2
𝑏
) ≥ 𝑛max,

where ⌈𝑥⌉ denotes the nearest integer greater than or equal to 𝑥 and 𝑛max ∈ ℕ is a specified maximal allowed sample size. It

could be based, for example, on the cost restrictions or feasible recruitment rate of a trial. Of course, if �̂� = 𝑛max then the trial

will be expected to be underpowered. Thus, if necessary, additional patients are recruited and a final analysis conducted as above

based on the calculated values of the test statistics 𝑇𝑑 , and the critical value 𝑒 as defined in Equation (2).

Throughout, to give our function N(⋅) a simple form, we consider values of 𝑛int that imply an equal number of patients could

be allocated to each of the 𝐾 sequences, and assume randomisation schemes that ensure this is the case. Moreover, for reasons

to be elucidated shortly, we consider from here only settings where the 𝐾 sequences are balanced for period. That is, across the

chosen sequences, each treatment appears an equal number of times in each period. We now proceed by detailing each of our

explored methods for estimating 𝜎2
𝑒

and 𝜎2
𝑏

based on the internal pilot data.

2.2 Unblinded estimator
The first of the methods we consider is an unblinded procedure. As noted, such an approach is typically less well favored by

regulatory agencies. However, though this may not always actually prove to be the case (see, e.g. Friede & Kieser, 2013), one may

anticipate its performance in terms of estimating the key variance components and provided desired operating characteristics to

be preferable to that of the blinded procedures. This method therefore serves as a standard against which to assess the blinded

estimators. Explicitly, this approach breaks the randomization code and fits the linear-mixed model (1) to the accrued data using

REML estimation. With the REML estimates of 𝜎2
𝑒

and 𝜎2
𝑏

obtained, they are utilized in the reestimation procedure as described

above.

2.3 Adjusted blinded estimator
Zucker, Wittes, Schabenberger, and Brittan (1999) considered a blinded estimator for two-arm parallel trial designs based on

an adjustment to the one-sample variance. Golkowski et al. (2014) considered a similar unadjusted procedure for two-arm bioe-

quivalence trials. Here, we consider a similar approach for multi-treatment crossover trials. Specifically, the following blinded

estimators of the within and between person variances are used

�̂�2
𝑒
= 1

2(𝑃 − 1)(𝑛int − 1)

𝑃∑
𝑗=2

𝐾∑
𝑘=1

𝑛int∕𝐾∑
𝑖=1

(𝑝𝑖𝑗𝑘 − �̄�𝑗)2+

−
𝑛int

2𝐾(𝑃 − 1)(𝑛int − 1)

𝑃∑
𝑗=2

𝐾∑
𝑘=1

(
𝜏∗

d(𝑗,𝑘) − 𝜏
∗
d(𝑗−1,𝑘)

)2
,

�̂�2
𝑏
= 1

2

{
1

2(𝑃 − 1)(𝑛int − 1)

𝑃∑
𝑗=2

𝐾∑
𝑘=1

𝑛int∕𝐾∑
𝑖=1

(𝑞𝑖𝑗𝑘 − 𝑞𝑗)2 − �̂�2𝑒+
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−
𝑛int

2𝐾(𝑃 − 1)(𝑛int − 1)

𝑃∑
𝑗=2

𝐾∑
𝑘=1

(
𝜏∗

d(𝑗,𝑘) + 𝜏
∗
d(𝑗−1,𝑘)

)2+
+

2𝑛int

𝐷2(𝑛int − 1)

(
𝐾∑
𝑘=1
𝜏d(1,𝑘)

)2⎫⎪⎬⎪⎭ ,
for specified 𝜏∗

𝑑
, 𝑑 = 0,… , 𝐷 − 1, with 𝜏∗0 = 0, where

𝑝𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − 𝑦𝑖𝑗−1𝑘,

𝑞𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 + 𝑦𝑖𝑗−1𝑘,

�̄�𝑗 =
1
𝑛int

𝐾∑
𝑘=1

𝑛int∕𝐾∑
𝑖=1
𝑝𝑖𝑗𝑘,

𝑞𝑗 =
1
𝑛int

𝐾∑
𝑘=1

𝑛int∕𝐾∑
𝑖=1
𝑞𝑖𝑗𝑘.

In the Supplementary Material, we show that if 𝜏∗
𝑑
= 𝜏𝑑 for 𝑑 = 1,… , 𝐷 − 1 then E(�̂�2

𝑒
) = 𝜎2

𝑒
and E(�̂�2

𝑏
) = 𝜎2

𝑏
, and thus �̂�2

𝑒

and �̂�2
𝑏

are unbiased estimators for 𝜎2
𝑒

and 𝜎2
𝑏

, respectively. This is the reason for our restrictions on the employed randomization

scheme (which assumes 𝑛1 = ⋯ = 𝑛𝐾 = 𝑛int∕𝐾 at the interim reassessment), and the employed sequences (which are assumed

to be balanced for period). The above estimator could be used when there is imbalance in the number of patients allocated to each

sequence, or without making this restriction on the sequences, but results on the expected values of the variance components

would have a more complex form. It is therefore advantageous to ensure an equal number of patients are allocated to each

sequence, and also logical to utilize period-balanced sequences. We also view it as sensible therefore to explore the performance

of the estimators in this case.

It is also important to assess the sensitivity of the performance of these estimators to the choice of the 𝜏∗
𝑑

, hoping for it to

have negligible impact as in analogous procedures for other trial settings (Kieser & Friede, 2002). Adapting previous works

(see, e.g. Kieser & Friede, 2003; Zucker et al., 1999; Gould & Shih, 1992), we assess this procedure for 𝜏∗
𝑑
= 0, and 𝜏∗

𝑑
= 𝛿,

𝑑 = 1,… , 𝐷 − 1, and refer to these henceforth as the null adjusted and alternative adjusted reestimation procedures, respectively.

Note that one limitation of this approach in practice is that there is no guarantee that the above value for �̂�2
𝑏

will be positive.

Therefore, we actually reevaluate the required sample size as N{�̂�2
𝑒
,max(0, �̂�2

𝑏
)}. For the examples provided in the Supple-

mentary Material, we demonstrate that the above procedure still performs well despite this inconvenience. Moreover, in certain

routinely faced scenarios, as will be discussed shortly, the value of 𝜎2
𝑏

is inconsequential and this issue therefore no longer exists.

However, in general this must be kept in mind when considering using this procedure for sample size reestimation.

2.4 Blinded estimator following block randomization
The above reestimation procedures are explored within the context of a simple randomisation scheme that only ensures an equal

number of patients are allocated to each sequence prior to the interim reassessment. In contrast, the final blinded estimator we

consider exploits the advantages block randomization can bring, extending the methodology presented in Xing and Ganju (2005)

for parallel arm trials to crossover studies.

We suppose that patients are allocated to sequences in 𝐵 blocks, each of length 𝑛𝐵 (with these values chosen such that

𝐵𝑛𝐵 = 𝑛int). We recategorize our data as 𝑦𝑖𝑗𝑏, the response from patient 𝑖 = 1,… , 𝑛𝐵 , in period 𝑗, in block 𝑏. Then, the following

blinded estimators are used to recalculate the required sample size

�̂�2
𝑒
= 1

2(𝑃 − 1)(𝑛int − 𝐵)

𝑃∑
𝑗=2

𝐵∑
𝑏=1

𝑛𝐵∑
𝑖=1

(𝑝𝑖𝑗𝑏 − �̄�𝑗𝑏)2,

�̂�2
𝑏
= 1

2

{
1

2(𝑃 − 1)(𝑛int − 𝐵)

𝑃∑
𝑗=2

𝐵∑
𝑏=1

𝑛𝐵∑
𝑖=1

(𝑞𝑖𝑗𝑏 − 𝑞𝑗𝑏)2 − �̂�2𝑒

}
,
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where

𝑝𝑖𝑗𝑏 = 𝑦𝑖𝑗𝑏 − 𝑦𝑖𝑗−1𝑏,

𝑞𝑖𝑗𝑏 = 𝑦𝑖𝑗𝑏 + 𝑦𝑖𝑗−1𝑏,

�̄�𝑗𝑏 =
1
𝑛𝐵

𝑛𝐵∑
𝑖=1
𝑝𝑖𝑗𝑏,

𝑞𝑗𝑏 =
𝑛𝐵∑
𝑖=1

𝑛𝐵∑
𝑖=1
𝑞𝑖𝑗𝑏.

In the Supplementary Material, provided that an equal number of patients are allocated to each of a set of period balanced

sequences, these are also shown to be unbiased estimators for 𝜎2
𝑒

and 𝜎2
𝑏
. Note though that as above, we must actually reestimate

𝑁 using N{�̂�2
𝑒
,max(0, �̂�2

𝑏
)}. Additionally, when using block randomization, the actual sample size used by a trial may differ

from �̂� , if it is not divisible by the block length 𝑛𝐵 .

3 SIMULATION STUDY

3.1 Motivating examples
We present results for three motivating examples based on real crossover trials. Example 1 is described in Section 3.2, with

Examples 2 and 3 discussed in the Supplementary Material, where their associated results are also presented. Among the three

examples we consider settings with a range of required sample sizes, utilising complete block, incomplete block, and extra-

period designs. This allows us to provide a thorough depiction of the performance of the various estimators in a wide range of

realistic trial design settings.

R (R Core Team, 2016) source code to reproduce our results is available as Supporting Information on the journal's web page

(http://onlinelibrary.wiley.com/doi/10.1002/bimj.201700092/suppinfo).

3.2 Example 1: TOMADO
First, we assess the performance of the various reestimation procedures using the TOMADO trial as motivation. TOMADO

compared the clinical effectiveness of a range of mandibular devices for the treatment of obstructive sleep-apnea hypopnea.

Precise details can be found in Quinnell et al. (2014). Briefly, TOMADO was a four-treatment four-period crossover trial, with

patients allocated treatment sequences using two Williams squares. The data for the outcome Epworth Sleepiness Scale was to

be analyzed using linear-mixed model (1), with the following hypotheses tested

𝐻0𝑑 ∶ 𝜏𝑑 ≥ 0, 𝐻1𝑑 ∶ 𝜏𝑑 < 0, 𝑑 = 1,… , 𝐷 − 1,

since a reduction in the Epworth Sleepiness Scale score is indicative of an efficacious treatment. Consequently, the null hypothe-

ses were to be rejected if 𝑇𝑑 < −𝑒, using the value of 𝑒 determined as above.

Following the methodology described in the Supplementary Material, we can demonstrate that when complete-block period-

balanced sequences are used for treatment allocation, that the required sample size has no dependence upon the between person

variance 𝜎2
𝑏
. Explicitly, we have

N(𝜎2
𝑒
, 𝜎2
𝑏
) ≡ N(𝜎2

𝑒
) =

2𝜎2
𝑒
(𝑧1−𝛼∗ + 𝑧1−𝛽)

2

𝛿2
,

where 𝛼∗ is defined in the Supplementary Material. See Jones and Kenward (2014), for an alternative derivation of this formula.

This substantially simplifies the reestimation procedure, as we only need to provide a value for 𝜎2
𝑒
, and do not require use of the

estimators for 𝜎2
𝑏
.

TOMADOs complete case analysis estimated the following values for the various components of the linear-mixed model (1)

�̂�0 = 10.65, �̂�2 = −0.77, �̂�3 = −0.96, �̂�4 = −0.55,

𝜏1 = −1.51, 𝜏2 = −2.15, 𝜏3 = −2.37, �̂�2
𝑒
= 6.51, �̂�2

𝑏
= 10.12.

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201700092/suppinfo
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Therefore, for 𝜎2
𝑒
= �̂�2
𝑒
, the trials planned recruitment of 72 patients would have conferred power of 0.8 at a significance level

of 0.05 for 𝛿 = −1.24. Consequently, we set 𝛽 = 0.2 and 𝛼 = 0.05 throughout. In the main manuscript, we additionally take 𝛿 =
−1.24 and 𝜎2

𝑏
= 10.12 always. The effect of other underlying values for 𝛿 and 𝜎2

𝑏
is considered in the Supplementary Material. In

contrast, whilst we focus here on the case with 𝜎2
𝑒
= 6.51, we also consider the influence of alternative values for this parameter.

When simulating data we take 𝜇0 = 10.65, 𝜋2 = −0.77, 𝜋3 = −0.96, and 𝜋4 = −0.55. However, the effect of other period effects

is discussed in Section 4 and in the Supplementary Material.

We explore the performance of the procedures under the global null hypothesis (𝜏1 = 𝜏2 = 𝜏3 = 0), when only treatment one

is effective (𝜏1 = 𝛿, 𝜏2 = 𝜏3 = 0), when treatments one and two are effective (𝜏1 = 𝜏2 = 𝛿, 𝜏3 = 0), under the global alterna-

tive hypothesis (𝜏1 = 𝜏2 = 𝜏3 = 𝛿), and under what we refer to henceforth as the observed treatment effects (𝜏1 = −1.51, 𝜏2 =
−2.15, 𝜏3 = −2.37). For simplicity, we assume a single Latin square was used for treatment allocation, and set 𝑛max = 1,000

so that there is no practical upper limit on the allowed sample size. In all cases, the average result for a particular design and

analysis scenario was determined using 100,000 trial simulations.

3.3 Distributions of �̂�𝟐
𝒆

and �̂�

First, the performance of the reestimation procedures was explored for the parameters listed in Section 3.2, with 𝜎2
𝑒
= 6.51, and

𝑛int ∈ {8, 16, 24, 32, 40}. The resulting distributions of �̂�2
𝑒
, the interim estimate of 𝜎2

𝑒
, are shown in Figure 1 via the median,

lower and upper quartiles in each instance. Additionally, Figure 2 depicts the equivalent results for the distribution of �̂� , the

interim reestimated value for𝑁 . The results are grouped according to the timing of the reestimation and by the true value of the

treatment effects. Note that 𝑛𝐵 = 4 is only considered for values of 𝑛int that allows an equal number of patients to be allocated

to each sequence by the interim analysis.

The median value of �̂�2
𝑒

for the unblinded procedure is always close to, but typically slightly less than, the true value 𝜎2
𝑒
.

The same statement holds for the block randomization procedure with 𝑛𝐵 = 2 or 4. However, while this is true for the adjusted

procedures under the global null hypothesis, it is not otherwise always the case. In particular, both perform poorly for the

observed treatment effects.

As would be anticipated, the alternative adjusted procedure has lower median values for �̂�2
𝑒

than the null adjusted procedure.

Moreover, using the block randomised reestimation procedure with 𝑛𝐵 = 4 seems to improve performance over 𝑛𝐵 = 2, both in

terms of the median value of �̂�2
𝑒
, and by imparting a smaller interquartile range for �̂�2

𝑒
.

The results for �̂� mirror those for �̂�2
𝑒
. Thus �̂� is larger for the adjusted estimators under the observed treatment effects, but

otherwise the distributions are comparable.

Increasing the value of 𝑛int reduces the interquartile range for �̂�2
𝑒

and �̂� for each procedure, and results in median values

closer to the truth, as would be expected. Finally, we observe that the interquartile range for the unblinded procedure is often

smaller than that of its adjusted or block randomisation counterparts.

3.4 Familywise error-rate and power
For the scenarios from Section 3.3 that were not conducted under the observed treatment effects, the estimated FWER and power

were also recorded. The results are displayed in Table 1.

The FWER for each of the procedures is usually close to the nominal level, with a maximal value of 0.052 for the

unblinded procedure with 𝑛int = 32. The adjusted procedures arguably have the smallest inflation across the considered values

of 𝑛int.

In most cases the reestimation procedures attain a power close to the desired level. Of the adjusted procedures, the null

adjusted has a larger power, as would be anticipated given our observations on �̂�2
𝑒

and �̂� above. In fact, the null adjusted method

conveys the highest power for each value of 𝑛int. The power of the block randomized procedures is typically similar to that of

the alternative adjusted method. In addition, whether only treatment one, treatments one and two, or all three treatments are

effective has little effect on the power.

There is no clear to trend as to the effect of increasing 𝑛int on the FWER, however it leads in almost all instances to an

improvement in power. Finally, increasing the value for 𝑛𝐵 in the block randomization procedure increases power as would be

predicted.
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F I G U R E 1 The distribution of �̂�2
𝑒

is shown for each of the reestimation procedures for several values of 𝝉 , and several values of 𝑛int, for

Example 1. Precisely, for each scenario, the median, lower, and upper quartile values of �̂�2
𝑒

across the simulations are given. The dashed line

indicates the true value of 𝜎2
𝑒

3.5 Influence of 𝝈𝟐
𝒆

In this section, we consider the influence of the value of 𝜎2
𝑒

on the performance of our reestimation procedures. Specifically,

while we know that increasing 𝜎2
𝑒

will increase the required sample size, we would like to assess the effect this has upon the

ability of the methods to control the FWER and attain the desired power.

Figures 3 and 4 respectively present our results on the FWER and power of the various reestimation procedures when

𝑛int ∈ {16, 32} for several values of 𝜎2
𝑒
∈ [0.25(6.51), 4(6.51)], under the global null and alternative hypotheses, respectively.

Corresponding findings for �̂� are provided in the Supplementary Material.

Arguably, we observe that the FWER is more variable for smaller values of 𝜎2
𝑒
, with it changing little for several of the

procedures when 𝜎2
𝑒
> 10. There is additionally some evidence to suggest that increasing the value of 𝑛int reduces the overall

effect 𝜎2
𝑒

has on the FWER.
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N̂

F I G U R E 2 The distribution of �̂� is shown for each of the reestimation procedures for several values of 𝝉 , and several values of 𝑛int, for

Example 1. Precisely, for each scenario, the median, lower, and upper quartile values of �̂� across the simulations are given. The dashed line indicates

the true required value of𝑁

For the power, as would be anticipated, the reestimation procedures are over-powered when 𝑛int = 32 and 𝜎2
𝑒

is small. More-

over, increasing the value of 𝑛int universally increases the power. Finally, as 𝜎2
𝑒

increases beyond approximately 𝜎2
𝑒
= 5, for both

considered values of 𝑛int, there is little change in power.

3.6 Influence of 𝜹
Here, we consider the case where 𝜋2 = −0.77, 𝜋3 = −0.96, 𝜋4 = −0.55, and 𝜎2

𝑏
= 10.12, focusing on the influence 𝛿 has upon

the procedures FWER and power. Precisely, Figures 5 and 6 respectively present our findings for the FWER and power of the

various reestimation procedures when 𝑛int ∈ {16, 32} for several values of 𝛿 ∈ [2(−1.24), 0.5(−1.24)], under the global null and

alternative hypotheses, respectively. Complimentary findings for �̂� are provided in the Supplementary Material.
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T A B L E 1 The estimated familywise error-rate (FWER) is shown for each of the considered reestimation procedures and several values of 𝑛int

under the global null hypothesis, for Example 1

Power
Reestimation procedure 𝒏int FWER 𝝉 = (𝜹, 𝟎, 𝟎) 𝝉 = (𝜹, 𝜹, 𝟎) 𝝉 = (𝜹, 𝜹, 𝜹)
Unblinded 8 0.0513 0.7704 0.7694 0.7687

Null Adjusted 8 0.0496 0.7743 0.7809 0.7753

Alt. Adjusted 8 0.0500 0.7440 0.7512 0.7432

Block rand. with 𝑛𝐵 = 2 8 0.0509 0.7443 0.7455 0.7428

Unblinded 16 0.0506 0.7906 0.7893 0.7867

Null Adjusted 16 0.0512 0.7956 0.8010 0.7942

Alt. Adjusted 16 0.0495 0.7702 0.7731 0.7691

Block rand. with 𝑛𝐵 = 2 16 0.0512 0.7720 0.7723 0.7747

Block rand. with 𝑛𝐵 = 4 16 0.0525 0.7858 0.7887 0.7868

Unblinded 24 0.0509 0.7963 0.7934 0.7950

Null Adjusted 24 0.0496 0.8019 0.8071 0.7990

Alt. Adjusted 24 0.0508 0.7776 0.7793 0.7770

Block rand. with 𝑛𝐵 = 2 24 0.0504 0.7821 0.7838 0.7835

Unblinded 32 0.0520 0.7977 0.7962 0.7988

Null Adjusted 32 0.0509 0.8055 0.8109 0.8072

Alt. Adjusted 32 0.0498 0.7772 0.7857 0.7812

Block rand. with 𝑛𝐵 = 2 32 0.0514 0.7907 0.7879 0.7887

Block rand. with 𝑛𝐵 = 4 32 0.0511 0.8014 0.8002 0.8035

Unblinded 40 0.0516 0.7967 0.8010 0.8000

Null Adjusted 40 0.0504 0.8081 0.8115 0.8062

Alt. Adjusted 40 0.0498 0.7828 0.7858 0.7842

Block rand. with 𝑛𝐵 = 2 40 0.0518 0.7914 0.7926 0.7942

Corresponding values of the power when only treatment one is effective, treatments one and two are effective, or under the global alternative hypothesis when all three

experimental treatments are effective, are also shown. The Monte Carlo error of the FWER and power values is approximately 0.0007 and 0.0013, respectively in each

instance. All figures are given to four decimal places

In Figure 5 we can see that there is no clear pattern to the effect on the FWER of changing 𝛿, with the fluctuations for several

of the estimators relatively small. However, there is some evidence to suggest that increasing the value of 𝛿 (i.e., making it closer

to zero) reduces the FWER, as may be expected as this implies a larger requisite sample size.

Similar statements are true for the power when examining Figure 6. Analogous to our discussions around Figure 4, the

reestimation procedures are over-powered when 𝑛int = 32 and 𝛿 is large in magnitude. Furthermore, increasing the value of 𝑛int

once more universally increases the power, while there appears to be a point beyond which the power remains relatively constant.

3.7 Sample size inflation factor
While the above suggests the overall performance of the reestimation is good, there are several simple refinements that can be

implemented to improve the observed results.

One such refinement, to help ensure the power provided by the reestimation procedures is at least the desired 1 − 𝛽, is to

utilise a sample size inflation factor as originally proposed by Zucker et al. (1999). With it, the value of �̂� as determined using

the arguments above, is enlarged by the following factor(
𝑡1−𝛼,𝜈𝑛int

+ 𝑡1−𝛽,𝜈𝑛int

𝑧1−𝛼 + 𝑧1−𝛽

)2

.

Of course, one must be careful that the new implied sample size does not exceed any specified value of 𝑛max. However, this

factor has then been shown to improve the performance of reestimation procedures in both superiority (Zucker et al., 1999),

noninferiority (Friede & Kieser, 2013), and two-treatment bioequivalence trials (Golkowski et al., 2014).
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F I G U R E 3 The simulated familywise error-rate (FWER) is shown under the global null hypothesis for each of the reestimation procedures

when 𝑛int ∈ {16, 32}, as a function of the within person variance 𝜎2
𝑒
, for Example 1. The Monte Carlo error is approximately 0.0007 in each instance.

The dashed line indicates the desired value of the FWER

Figure 7 displays its effect in the context of our multitreatment crossover trials. Explicitly, the power of the various reestimation

procedures under the global alternative hypothesis, for 𝑛int ∈ {8, 16, 24, 32, 40} and 𝜎2
𝑒
= 6.51, is shown with and without the

use of the inflation factor. For the unblinded, null adjusted, and block randomized method with 𝑛𝐵 = 4, the inflation factor

increases power to above the desired level in every instance. Consequently, this simple inflation factor appears once more to be

an effective adjustment to the basic procedures.
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F I G U R E 4 The simulated power is shown under the global alternative hypothesis for each of the reestimation procedures when

𝑛int ∈ {16, 32}, as a function of the within person variance 𝜎2
𝑒
, for Example 1. The Monte Carlo error is approximately 0.0013 in each instance. The

dashed line indicates the desired value of the power

4 DISCUSSION

In this article, we have developed and explored several methods for the interim re-assessment of the sample size required by a

multitreatment crossover trial. Our methodology is applicable to any trial analyzed using the linear-mixed model (1), when there

is equal participant allocation to a set of period-balanced sequences. Thus while adapting the work of Golkowski et al. (2014)

would be advisable in the case of an AB/BA superiority trial, given that it does not require the use of simulation, our methods
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F I G U R E 5 The simulated familywise error-rate (FWER) is shown under the global null hypothesis for each of the reestimation procedures

when 𝑛int ∈ {16, 32}, as a function of the clinically relevant difference 𝛿, for Example 1. The Monte Carlo error is approximately 0.0007 in each

instance. The dashed line indicates the desired value of the FWER

are pertinent to a broader set of crossover designs. Indeed, they are as readily applicable to multitreatment superiority trials as

they are ones for establishing bioequivalence.

We explored performance via three motivating examples, allowing consideration of settings with different types of sequences

and a range of required sample sizes. Overall, the results presented here for the TOMADO trial are similar to those provided

in the Supplementary Material for Examples 2 and 3. However, larger inflation to the FWER was observed in Example 2, most

likely as a consequence of its associated smaller sample sizes. Nonetheless, the methods were found to provide desirable power
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F I G U R E 6 The simulated power is shown under the global alternative hypothesis for each of the reestimation procedures when

𝑛int ∈ {16, 32}, as a function of the clinically relevant difference 𝛿, for Example 1. The Monte Carlo error is approximately 0.0013 in each instance.

The dashed line indicates the desired value of the power

characteristics with negligible inflation to the FWER in many settings. In particular, the blinded procedures provided comparable

operating characteristics to the unblinded procedure, and thus can be considered viable alternatives. Following results for parallel

arm trials (Friede & Kieser, 2013), the null adjusted blinded estimator arguably performed better than the other estimators in

that its typical overestimation of the variance at interim led to the desired power being achieved more often. We may therefore

tentatively suggest the null adjusted blinded estimator to be the preferred approach in this setting.
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F I G U R E 7 The influence of the considered inflation factor upon the power of the re-estimation procedures under the global alternative

hypothesis is shown for several values of 𝑛int, for Example 1. The dashed line indicates the desired value of the power

Our findings indicate that for each of the reestimation procedures, the choice of 𝛿 and the underlying values of 𝜎2
𝑒

and 𝜎2
𝑏

often

have little effect upon the FWER and power. We may be reassured therefore that the performance of the procedures should often

be relatively insensitive to the design parameters. On a similar note, it is important to recognize that one cannot be certain when

utilizing these methods that the value of the period effects will not influence the performance of the reestimation procedures.

While the final analysis should be asymptotically invariant to period effects, in finite samples it may influence the results of the

hypothesis tests. Intuitively though one would not anticipate this effect to be large, nor would one routinely expect large period

effects in many settings. In the Supplementary Material, simulations to explore this are presented for the TOMADO example.

The results indicate that there is little evidence to suggest the value of the period effects influences the performance of the

reestimation procedures. Trialists must be mindful however that this cannot be guaranteed, and should therefore be investigated.

We also considered the utility of a simple sample size inflation factor in ensuring the power reaches the desired level. Ulti-

mately, we demonstrated that this was an effective extension to the basic reestimation procedures. Though the observed inflation

to the FWER of our procedures was often small, if more strict control is desired, a crude 𝛼-level adjustment procedure can also

be utilized. For a particular reestimation scenario, the values of 𝜎2
𝑒

and 𝜎2
𝑏
, 𝜎2
𝑒,max

, and 𝜎2
𝑏,max

say, which maximize the inflation

to the FWER under the global null hypothesis can be determined via a two dimensional search. Then, the significance level used

in the analysis of the trial can be adjusted to the 𝛼adj that confers a FWER of 𝛼 for this 𝜎2
𝑒,max

, 𝜎2
𝑏,max

pair, according to further

simulations. This may be useful in practice if the inflation is large for a particular trial design scenario of interest.

It is important to note the seemingly inherent advantages and disadvantages of the various reestimation procedures. The

adjusted estimator is perhaps the most constrained of those considered; requiring an equal number of patients to be allocated to

each sequence for any nonzero adjustment to be reasonable. This is particularly troubling because of the possibility of patient

drop-out.

The estimator following block randomisation does not necessitate equal allocation to sequences (though its performance was

considered here only when this was the case), but could also fall foul of patient drop-out that would prevent the estimation of

the within person variance for each block. It also requires block randomization, and could not be used with a more simple ran-

domization scheme if this was desired. The unblinded estimator of course suffers from none of these problems, but as discussed

may be looked upon less favorably by regulators.

Finally, note that in conducting our work we also considered the performance of two reestimation procedures based on method-

ology for the clustering of longitudinal data (Fraley & Raftery, 2003; Genolini, Alacoque, Sentenac, & Arnauld, 2009). The

motivation for this came from the Expectation-Maximisation algorithm approaches of Gould and Shih (1992) for parallel two-

arm, and Kieser and Friede (2002) for parallel multiarm, studies. These methods may seem appealing, as they are blinded, under

certain assumptions can produce unbiased estimates of the variance parameters, do not require specification of any adjustment,

and in theory should be able to more readily handle small amounts of missing data. However, we found that they routinely

vastly underestimated the size of within person variance, resulting in substantially lower power than that attained by the other
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reestimation procedures. Accordingly, especially given the associated concerns about the appropriateness of an Expectation-

Maximization algorithm for blinded sample size reestimation (Friede & Kieser, 2002), we would not recommend reestimation

be performed based on a clustering-based approach.

In conclusion, following findings for other trial design settings, blinded estimators can be used for sample size reestimation

in multitreatment crossover trials. The operating characteristics of any chosen procedure should of course be assessed pretrial

through a comprehensive simulation study. But, often, investigators can hope to find that the likelihood of correctly powering

their study when there is pretrial uncertainty over the within and between person variances can be enhanced.
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