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Abstract
Purpose of Review In recent years, a family of adiponectin paralogs designated as C1q/TNF-related protein (CTRP) has attracted
increasing attention. They are inflammatory adipocytokines mostly secreted from epicardial adipose tissue, which modulate the
development and prognosis of coronary artery disease (CAD). This review summarizes the pathophysiological roles of individual
members of the CTRP superfamily in the development of CAD.
Recent Findings Recent studies have revealed how members of the CTRP family, CTRP1, CTRP3, CTRP5, CTRP9, CTRP12,
and CTRP13, can influence both development and progression of CAD by modulating metabolic pathways, influencing
immuno-inflammatory response, and regulating cardiovascular functions.
Summary Research to date has not been sufficient to answer the specific mechanism of the CTRP family in the occurrence and
development of CAD. This review explores the evidence of CTRP superfamily regulating different pathophysiology stages of
CAD through the immuno-inflammation, glucose and lipid metabolism, and vascular endothelial function.

Keywords Coronary artery disease . Biomarker . Immunology . Inflammation .Metabolism

Abbreviations
CAD Coronary artery disease
EAT Epicardial adipose tissue
TNF Tumor necrosis factor
CTRPs C1q complement/tumor necrosis factor

(TNF)–associated proteins
TLR Toll-like receptor
NF-κB Nuclear factor kappa B
Ox-LDL Oxidized low-density lipoproteins
IL Interleukin
MMP Matrix metalloproteinase
TGF Transforming growth factor
AMP Adenosine monophosphate
ICAM Intercellular adhesion molecule
VCAM Vascular cell adhesion molecule
MCP Monocyte chemoattractant protein
VSMC Vascular smooth muscle cells

BMI Body mass index
AMPK AMP protein kinase
ACC Acetyl-CoA carboxylase
LOX Lipoxygenase
STAT Signal transducer and activator of transcription
ABC ATP-binding membrane cassette transporter

Introduction

Endothelial dysfunction, inflammatory response, and meta-
bolic dysregulation are key factors involved in initiation and
progression of coronary artery disease (CAD) [1, 2].
Epicardial adipose tissue (EAT) is located inside the pericar-
dial sac, which is adjacent to the epicardium surrounding the
heart. EAT is considered a metabolically active organ with
endocrine activity. It can secrete a large amount of inflamma-
tory adipocytokines, of which, adiponectin is a well-known
cardiovascular protective factor [3, 4]. The C1q complement/
tumor necrosis factor (TNF)–associated proteins (CTRPs) su-
perfamily is a paralog of adiponectin, composed of CTRP1-
CTRP15, which share a common structural domain with
adiponectin [5]. CTRPs mRNA showed highest expression
in white adipose tissue around the heart, making it the main
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secretory organ, though these proteins are also secreted by
other viscera, such as the heart and liver [6]. Increasingly,
researchers have begun to focus on the pathophysiological
role of the CTRP family in cardiovascular diseases. The main
members of the CTRP family related to the pathophysiologi-
cal mechanisms of CAD were found to be CTRP1, CTRP3,
CTRP5, CTRP9, CTRP12, and CTRP13. These proteins reg-
ulate endothelial function, inflammatory response, and meta-
bolic dysfunction to influence CAD progression.

Regulation of Immune-Inflammation

CAD is a complex, chronic process that does not simply in-
volve intra-arterial accumulation of cholesterol and calcium.
An inflammatory response driven by both pro-inflammatory
cells and cytokines also plays an important role in driving
development of atherosclerosis and promoting thrombosis,
leading to adverse cardiovascular events [7, 8].

CTRP1 regulates low-grade chronic inflammation in coro-
nary atherosclerosis [9]. The inflammatory response and pro-
inflammatory cytokines induce increased secretion of CTRP1,
which in turn increases expression of adhesion molecules and
chemokines such as TNF-α, interleukin (IL)-6, and IL-1b, by
activating the p38 MAPK/NF-kB pathway [10–12]. These
processes stimulate both in vitro and in vivo adhesion of leu-
kocytes to endothelial cells and further promote formation of
macrophages and macrophage-derived foam cells in athero-
sclerotic plaques, thus exerting a pro-inflammatory, pro-
atherogenic effect and accelerating deterioration of CAD
[10, 13]. Conversely, CTRP1 can also activate the 1P/
cAMP-dependent pathway in cardiomyocytes to reduce apo-
ptosis and inflammatory response, and thus exert a beneficial
effect on the pathophysiology of ischemic heart disease [14].

CTRP3 is a potent anti-inflammatory adipokine that in-
hibits proinflammatory pathways in monocytes and
microcells, exerting anti-inflammatory, anti-apoptotic, and
cardioprotective effect during development of CAD [15, 16].
CTRP3 affects inhibitory toll-like receptors (TLRs) and nu-
clear factor kappa B (NF-κB) signaling pathways to reduce
secretion of inflammatory adipocytokines, thus attenuating
both insulin resistance and obesity-related, chronic, systemic
anti-inflammatory responses [17, 18]. Furthermore, CTRP3
promotes activation of the PI3K/Akt/eNOS pathway, which
inhibits endothelial inflammation induced by oxidized low-
density lipoproteins (ox-LDL) by downregulating expression
of CTRP, TNF-α, and IL-6, delaying atherosclerosis progres-
sion [19••].

Elevated levels of CTRP5 can promote in-stent restenosis
after coronary stent implantation. CTRP5 promotes expres-
sion of matrix metalloproteinase-2, cyclin D1, and TNF-α in
vascular endothelial cells, by activating Notch1, transforming
growth factor (TGF)-β, and hedgehog pathways, thereby

promoting the growth, migration, and inflammation of vascu-
lar smooth muscle cells (VSMC) [20•].

CTRP9 is the closest paralog of adiponectin, and its anti-
inflammatory and anti-atherosclerosis features allow it to play
a cardioprotective role in the CAD process [21]. CTRP9 stim-
ulates adenosine monophosphate (AMP)–activated protein ki-
nase pathway to inhibit expression of adhesion molecules
such as intercellular adhesion molecule (ICAM)-1 and vascu-
lar cell adhesion molecule (VCAM)-1 in endothelial cells,
decreases secretion of proinflammatory cytokines such as
TNF-α and monocyte chemoattractant protein (MCP)-1 with-
in atherosclerotic plaques, reduces proliferation VSMC, pro-
motes vasodilation (further inhibiting inflammatory responses
inmacrophages), and thus increases stability of atherosclerotic
plaques [22, 23•, 24].

CTRP12 is associated with inflammatory cytokines and
plays a potential role in atherosclerosis. CTRP12 is known
to reduce the expression of pro-inflammatory cytokines and
decrease macrophage accumulation within adipose tissue in
obese mice, and also was found to inhibit the secretion of
inflammatory cytokines IL-6 and TNF-α in CAD patients
[25, 26]. Therefore, overexpression of CTRP12 exerts an
anti-inflammatory effect during both development and deteri-
oration of CAD.

CTRP13 inhibits macrophage activation and infiltration
of vessel walls, reduces plaque formation, and thereby
inhibits development of atherosclerosis. Furthermore, it
prevents proliferation and migration of macrophages by
downregulating lipid uptake, delays local and systemic
inflammatory responses during atherosclerosis by promot-
ing autophagy (in macrophages), and accelerates CD36-
dependent degradation of autophagolysosomal pathways,
thus reducing number of macrophages in lesions [27, 28].
A case-control study found that CTRP13 led to decreases
in obesity and inflammation and that it showed negative
correlation with proinflammatory cytokines such as
TNF-α and IL-6, while TNF-α and body mass index
(BMI) were its independent negative predictors [16].

Effects on Glucose and Lipid Metabolism

Glucose and lipid metabolism are the two major processes
involved in increasing the risk and severity of CAD.
Abnormal metabolism affects activity of regulatory pathways,
composition of the final product, degree of inflammation, and
coronary-plaque formation, thus contributing to the develop-
ment of CAD and accelerating occurrence of adverse cardio-
vascular events [29, 30].

CTRP1 is involved in regulation of obesity-related, meta-
bolic, and cardiovascular diseases, and affects cardiac metab-
olism by primarily regulating blood glucose and lipid metab-
olism [31]. Increased expression of CTRP1 could improve
insulin sensitivity and glucose tolerance, which in turn may
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increase glucose metabolism and reduce adiposity in an
overnutritional state [32]. CTRP1 increases fatty acid oxida-
tion and energy expenditure. It inhibits acetyl-CoA carboxyl-
ase (ACC) via the AMP protein kinase (AMPK) pathway to
attenuate obesity [33].

CTRP3 is a cardioprotective, anti-inflammatory cytokine.
It improves insulin sensitivity, enhances insulin-mediated glu-
cose uptake, and reduces hepatocyte gluconeogenesis (and
subsequent glucose output), thereby slowing down develop-
ment of CAD [34, 35]. A cross-sectional study found low
levels of CTRP3 in association with CAD, though its levels
in correlation to obesity and diabetes showed sex-specific dif-
ferences [36].

CTRP5 upregulates 12/-15-lipoxygenase (LOX) expres-
sion via the signal transducer and activator of transcription
(STAT)-6 signaling pathway. Inhibition of the STAT6-12/15-
lipoxygenase-dependent pathway attenuates CTRP5-induced
transcytosis and oxidative modification of the LDL
transendothelial monolayers, thereby retarding development
and progression of early-stage atherosclerosis [37].

CTRP9 regulates lipid metabolism and enhances the
AMPK/mTOR autophagy signaling pathway to enhance
acid-lipid-mediated cholesterol efflux, increases the level of
expression of the cholesterol-transporting receptors like ATP-
binding membrane cassette transporter (ABC) A1, and G1
(ABCG1), which accelerates cholesterol efflux from foam
cells, thereby preventing THP-1 macrophages from forming
foam cells and slowing progression of early atherosclerosis
[24, 38]. An in vivo study of mice showed that overexpression
of CTRP9 reduced fasting insulin levels and fasting blood
glucose, increasing insulin sensitivity [39, 40]. CTRP9 corre-
lated positively with parameters of glucose metabolism by
activating Akt, AMPK, and p42/44 MAPK pathways, and
further increasing glucose uptake [41].

CTRP12 inhibits gluconeogenesis and increases glucose
uptake in hepatocytes and adipocytes by activating the
PI3K-Akt signaling pathway and improving insulin sensitivity
[42]. CTRP12 exerts a beneficial effect on glucose and insulin
metabolism and plays a potential detrimental role in athero-
sclerosis via its association with insulin resistance, decreased
high-density lipoprotein cholesterol, and increased BMI [43,
44].

CTRP13 exerts a beneficial effect during insulin-mediated
glucose uptake, which can reduce glucose output in hepato-
cytes by inhibiting the expression of gluconeogenic enzymes.
CTRP13 reduces phosphorylation of AMPK in adipocytes,
muscle cells, and hepatocytes; promotes AMPK signaling
pathway activation to increase glucose uptake in adipocytes;
and inhibits stress-activated protein kinase/JNK stress signal-
ing, to decrease lipid-induced, insulin resistance in hepato-
cytes, thereby reducing hepatocytic gluconeogenesis and de-
creasing insulin resistance [34]. In addition, CTRP13 hydro-
lyzes cholesterol droplets stored in macrophages, inhibits in-
tracellular influx of cholesterol, and promotes cholesterol ef-
flux, thus inhibiting the formation of foam cells and deceler-
ating progression of atherosclerosis [45, 46].

Mechanisms of Vascular and Myocardial Injury

Coronary artery endothelial injury is an early event in the
pathological process of atherosclerosis, mediated via im-
mune-inflammation, oxidative stress, and biochemicals [47,
48]. Endothelial cells are constantly exposed to these stimu-
lating factors and strive to maintain antithrombotic, anti-in-
flammatory, and anti-proliferative homeostasis through com-
pensatory responses [49]. This normal homeostasis, when im-
paired, can aggravate subsequently the inflammatory

Fig. 1 Macrophages derive from monocytes, which form foam cells
following phagocytosis of lipids. The accumulation of macrophages
and foam cells promotes the formation of atherosclerotic plaques.
Vascular injury promotes secretion of inflammatory cytokines, adhesion
molecules, and chemokines, which aggravates the inflammatory response

of the vascular endothelium and promotes plaque formation. Endothelial
cell angiogenic factors promote endothelial cell proliferation and enhance
the survival and regeneration of ischemic cardiomyocytes. Vascular
remodeling due to long-term chronic inflammation stimulation
manifests as the thickened blood vessel wall and the narrowed lumen
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response, leading to vasomotor dysfunction and ventricular
remodeling, as seen after myocardial infarction [50, 51].

CTRP1 may serve as a vasculoprotective adipokine,
with similar effects on vascular injury as seen with
adiponectin. Increased expression of CTRP1 reduces neo-
intimal hyperplasia and cell proliferation in damaged ar-
teries after vascular injury, through inhibition of VSMC
growth via cAMP-dependent pathways. In addition, it at-
tenuates accumulation of macrophages in damaged blood
vessels, while leaving the degree of both apoptosis and
reendothelialization unaffected [52, 53]. CTRP1 prevents
pathological vascular remodeling, inhibits formation of
collateral circulation by inhibiting in vitro angiogenesis
of endothelial progenitor cells, and prevents vascular ste-
nosis after injury [54]. CTRP1 is an acute phase reactant
of inflammation and is positively associated with fibrino-
gen, which can cause cross-linking and aggregation of
platelets, leading to thrombosis, thereby indicating an as-
sociation with adverse cardiovascular events [55].

CTRP3 reduces myocardial damage after ischemia and
plays a cardioprotective role. CTRP3 attenuates pathological
myocardial remodeling after an acute infarction through inhi-
bition of myocardial fibrosis and enhances the survival and
regeneration of ischemic cardiomyocytes [56, 57]. In addition,
CTRP3 can possibly increase Akt phosphorylation and induce
expression of hypoxia-inducible factor 1-α, vascular endothe-
lial growth factor, and promote secretion of angiogenic factors
from endothelial cells, which can contribute to angiogenesis
[56].

CTRP9 has a higher vasoactive potency than adiponectin
and plays an important role in the regulation of vascular stiff-
ness [58]. It can promote vasodilation, inhibit both neointimal
hyperplasia and endothelium-dependent VSMC proliferation,
attenuate atherosclerosis, and exert a protective effect on car-
diac remodeling after acute myocardial infarction [59–61].
Overexpression of CTRP9 in circulation and in EAT was
found to significantly attenuate VSMC proliferation and neo-
intimal formation [62].

Conclusion

The CTRP family plays an important role in all stages of CAD
by regulating immuno-inflammation, glucose and lipid metab-
olism, and vascular endothelial function. (Table 1) CTRP1
represents as pro-inflammatory and pro-atherosclerotic
markers by contributing toward the secretion of inflammatory
cytokines and adhesion molecules and promoting the forma-
tion of foam cells from macrophages. CTRP5 promotes
VSMC growth, migration, and inflammation. In contrast,
CTRP3, CTRP9, CTRP12, and CTRP13 activate anti-
inflammatory and anti-atherosclerotic mechanisms of CAD,
by inhibiting endothelial inflammation and reducing plaque

formation (mediated via inhibition of both inflammatory cy-
tokine secretion and expression of adhesion molecules). Also,
these four family members reduce macrophage accumulation
and foam-cell formation. CTRP family members regulate vas-
cular endothelial inflammation and plaque formation by reg-
ulating glucose and lipid metabolism. This protein superfam-
ily could improve insulin sensitivity, decrease insulin resis-
tance, increase glucose tolerance, enhance glucose uptake,
and reduce gluconeogenesis. Furthermore, they also enhance
expression of cholesterol transport receptors, promote choles-
terol efflux, and increase fatty acid oxidation. CTRP1,
CTRP3, and CTRP9 increase expression of HIF1α and vas-
cular endothelial growth factor, promote secretion of endothe-
lial cell angiogenic factors, inhibit neointimal hyperplasia and
VSMC proliferation, and inhibit myocardial fibrosis, thus
supporting the survival and regeneration of ischemic
cardiomyocytes (Fig. 1).

CTRP1 and CTRP5, as possible risk factors for CAD, ele-
vate in patients with CAD and associate with the severity of
coronary stenosis. On the contrary, CTRP3, CTRP9,
CTRP12, and CTRP13, as protective factors for CAD, de-
crease in patients with CAD. Thereby, this review on CTRP
superfamily may take unique insight into the development and
progression of CAD. Positive results from such research and
further understanding of their molecular mechanisms will pro-
mote adding these biomarkers to CAD diagnostic guidelines.
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