
Genetic Modifiers of MeCP2 Function in Drosophila
Holly N. Cukier1, Alma M. Perez1, Ann L. Collins1, Zhaolan Zhou2,3, Huda Y. Zoghbi1,4,5",

Juan Botas1,6"*

1 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America, 2 Neurobiology Program, Children’s Hospital

Boston, Massachusetts, United States of America, 3 Departments of Neurology and Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of

America, 4 Departments of Neuroscience and Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America, 5 Howard Hughes Medical Institute, Baylor

College of Medicine, Houston, Texas, United States of America, 6 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States

of America

Abstract

The levels of methyl-CpG–binding protein 2 (MeCP2) are critical for normal post-natal development and function of the
nervous system. Loss of function of MeCP2, a transcriptional regulator involved in chromatin remodeling, causes classic Rett
syndrome (RTT) as well as other related conditions characterized by autism, learning disabilities, or mental retardation.
Increased dosage of MeCP2 also leads to clinically similar neurological disorders and mental retardation. To identify
molecular mechanisms capable of compensating for altered MeCP2 levels, we generated transgenic Drosophila
overexpressing human MeCP2. We find that MeCP2 associates with chromatin and is phosphorylated at serine 423 in
Drosophila, as is found in mammals. MeCP2 overexpression leads to anatomical (i.e., disorganized eyes, ectopic wing veins)
and behavioral (i.e., motor dysfunction) abnormalities. We used a candidate gene approach to identify genes that are able
to compensate for abnormal phenotypes caused by MeCP2 increased activity. These genetic modifiers include other
chromatin remodeling genes (Additional sex combs, corto, osa, Sex combs on midleg, and trithorax), the kinase tricornered, the
UBE3A target pebble, and Drosophila homologues of the MeCP2 physical interactors Sin3a, REST, and N-CoR. These findings
demonstrate that anatomical and behavioral phenotypes caused by MeCP2 activity can be ameliorated by altering other
factors that might be more amenable to manipulation than MeCP2 itself.
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Introduction

Research in the last decade has linked the methyl-CpG-binding

protein 2 (MeCP2) with a variety of related neurological disorders

[1]. Loss of MeCP2 function causes classic Rett syndrome (RTT),

but can also lead to related neurological conditions with symptoms

that include autism, mild or severe mental retardation with

seizures, or learning disabilities [2,3]. Increased dosage of the

MECP2 locus also leads to RTT-like features and severe mental

retardation [4–6]. Similar phenotypes are recapitulated in mice

that either lack or overexpress MECP2, thus underscoring the

importance of properly regulating MeCP2 levels [7–10]. The

MeCP2 protein contains a methyl-CpG-binding domain (MBD)

and localizes to the heterochromatin where it is believed to

regulate gene expression by recruiting histone deacetylases to alter

chromatin structure [11,12]. While an ortholog for the complete

MeCP2 protein does not exist in Drosophila, methyl-CpG-binding

domains are conserved from flies to humans [13]. MeCP2 also

interacts with other proteins involved in transcriptional repression

and chromatin remodeling including Sin3a, REST and Brahma, a

core component of the SWI/SNF complex [14–16]. These and

other previously identified MeCP2 interactors have well conserved

orthologs in Drosophila (Table S1), as do most components of the

chromatin remodeling machinery. Examples of evolutionarily

conserved chromatin remodeling proteins include members of the

Polycomb and trithorax groups (Pc-G and trx-G, respectively), as

well as proteins involved in histone tail modification [17,18]. Many

of these proteins act in protein complexes that function

antagonistically to promote either activation or repression of

target genes [17,19–21]. Therefore, we hypothesized that genetic

screening in transgenic flies expressing human MeCP2 may permit

the identification of genes capable of compensating the phenotypes

caused by altered MeCP2 levels. These genetic modifiers may

include genes that function antagonistically to MeCP2 in

chromatin remodeling, and perhaps other genes modulating

MeCP2 functions or interactions. Here we report the identification

of such genes.

Results

Expression of Human MeCP2 in Drosophila
We generated transgenic flies overexpressing wild-type MeCP2

as well as three mutant alleles using the human MECP2_e2 cDNA

(Figure 1A). The RTT R106W allele produces a missense
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mutation within the MBD that eliminates the protein’s ability to

bind DNA [22]. The RTT R294X mutation truncates the protein

within the transcriptional repression domain (TRD), but maintains

the nuclear localization signal. The D166 allele completely

removes the MBD and N-terminal portion of the protein.

Constructs were created inserting each allele into the pUAST

vector to utilize the GAL4-UAS system [23]. This system

controls expression in specific cell types depending on the Gal4

driver line used, and can be modified by varying the

temperature of the fly cultures – increased temperature leads

to increased expression.

Independent MeCP2 transgenic lines of each allele were

generated and tested to ensure that any resulting phenotypes

were not caused by the insertion site. Using GMR-Gal4 to drive

transgene expression in the eye [24], we confirmed protein

expression by western blot analysis using extracts from whole fly

heads (Figure 1B). Furthermore, we found that all three MeCP2

alleles that retain amino acid S423, which corresponds to murine

S421, produce protein that is specifically phosphorylated at this

site (Figure 1C). This specific signal was abolished when the

protein extract was treated with alkaline phosphatase (Figure 1D).

Phosphorylation at this serine in mammals is brain specific, and it

is required by MeCP2 to control dendritic patterning, spine

morphogenesis and to regulate the BDNF target gene [25].

Therefore, this key posttranslational modification is conserved

when MeCP2 is expressed in Drosophila.

Association of MeCP2 with chromatin is a functional property

of the mammalian protein [12], and was evaluated by

promoting MeCP2 expression with the ubiquitous Actin5c-Gal4

driver. Immunofluorescent staining of squashed salivary glands

demonstrated that MeCP2 localizes to the nucleus and associates

with polytene chromosomes along many bands in all four alleles

(Figure 1E-I’’). While there is widespread association, MeCP2

does not localize to all polytene bands, suggesting target

specificity. Association with the polytene chromosomes does

not solely depend upon the MBD or C-terminal regions since all

four proteins behave similarly. The ability of the R106W and

D166 mutants to associate with chromosomes implies that the

methyl-CpG-binding domain is not required for this activity.

Additional factors, possibly functioning in various protein

complexes with MeCP2, may act to recruit MeCP2 to the

chromatin.

Phenotypes Caused by MeCP2 Overexpression in
Drosophila

MeCP2 overexpression in the fly eye by GMR-Gal4 was utilized

as an assay for rapid genetic screening of modifiers. Overexpres-

sion of multiple independent lines of all four alleles resulted in

external eye phenotypes of varying degrees (Figure 2A–E). Lines

expressing comparable protein levels were selected for each allele

(Figure 1B). The full-length wild-type, R106W and D166 lines

cause a disruption of the external structure of the eye that is

recognized as a ‘‘glassy’’ effect on the surface when observed by

light microscopy (Figure 2A–D). When evaluated by scanning

electron microscopy, these same animals show disorganized

ommatidia and partial loss of interommatidial bristles

(Figure 2A’–D’). These features were enhanced in flies cultured

at a higher temperature (Figure 2A’’–D’’) as a result of elevated

expression levels. Of all four alleles, the full-length protein causes

the strongest disruption to the external eye. While the R294X

allele does not cause an obvious disruption of the external eye

structure, it shows a loss of pigmentation phenotype (Figure 2E,

2E’, and data not shown), which had only been seen in one of the

most strongly expressing full-length lines. Moreover, expression of

the R294X allele at a higher temperature is lethal, possibly a

consequence of the leaky expression of the GMR-Gal4 driver into

other tissues.

We also overexpressed MeCP2 in other fly tissues. Expression of

the full-length protein in the wing pouch by C5-Gal4 produces

extra vein tissue around the L3 and L5 wing veins (Figure 2F, G).

Furthermore, neuronal expression of full-length MeCP2 by the

CHA-Gal4 driver [26] leads to impaired motor function in adult

flies as measured in a climbing assay (Figure 2H, Video S1). While

external eye phenotypes are most practical for primary screening

to identify novel genetic modifiers of MeCP2, both the wing vein

and climbing phenotypes are valuable as secondary screening

assays to validate genetic interactions.

Genetic Modifiers of MeCP2
We rationalized that in vivo genetic modifiers of MeCP2 function

might be enriched among known MeCP2 physical interactors. In

support of this hypothesis we previously showed that a large

proportion of the physical interactors of huntingtin (the protein

that when mutant causes Huntington’s disease) are also genetic

modifiers of huntingtin-induced neurodegeneration [27]. To test

this hypothesis in the case of MeCP2, we evaluated Sin3A, Smrter,

and crooked legs, the Drosophila homologs of Sin3a, N-CoR, and REST

(Table S1) [28,29]. We found that heterozygous loss-of-function

mutations in each of these three direct interacting partners alter

the MeCP2 eye phenotype (Table 1, Figure 3).

We then tested other candidate modifier genes that were chosen

based on their functions. In addition to chromatin remodeling

genes, these included a collection of kinases because MeCP2 is

phosphorylated [25], and two genes implicated in Angelman

syndrome, a disorder that shares clinical features with Rett

syndrome. These last two candidates are the Drosophila homolog of

UBE3A, the gene encoding a ubiquitin ligase misregulated in

Angelman syndrome, and its target pebble [30,31]. When available,

both loss-of-function and overexpression mutant Drosophila lines of

each candidate were collected. A total of 584 mutant Drosophila

lines were obtained and screened against the full-length MeCP2

allele; 392 lines representing 158 individual kinases, 174 lines

representing 54 unique chromatin remodeling genes, and 18 lines

encompassing UBE3A and pebble mutants.

Author Summary

Rett syndrome (RTT) is a progressive neurodevelopmental
disorder that affects girls early in childhood and is caused
by mutations in the MECP2 gene. Loss of MeCP2 function
can also lead to clinically distinct conditions characterized
by autism, learning disability, and mental retardation.
Remarkably, increased levels of MeCP2 leads to related
neurological disorders and mental retardation as well.
These data emphasize the critical importance of regulating
MeCP2 protein levels for normal post-natal development
and function of the nervous system. MeCP2 is a protein
that associates with chromatin and is thought to modulate
gene expression. We have generated Drosophila that
overexpress human MeCP2 to investigate the possibility
that adjusting the activity of other genes may compensate
for altered levels of MeCP2. In support of this hypothesis,
we found a variety of modifier genes, including chromatin
remodeling genes, that are able to ameliorate and/or
aggravate the consequences of MeCP2 overexpression.
These findings open the possibility of therapeutic avenues
for RTT and related neuropsychiatric disorders by targeting
proteins that are possibly easier to manipulate than MeCP2
itself.

Genetic Modifiers of MeCP2
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Figure 1. MeCP2 alleles used to generate transgenic Drosophila: protein expression, phosphorylation at serine 423, and association
with polytene chromosomes. A. Four MECP2 alleles were cloned into pUAST to generate transgenic flies. The methyl-CpG-binding domain (MBD)
is represented by blue boxes and the transcription repression domain (TRD) is represented by green boxes. The nuclear localization signal (NLS) falls
within the TRD. B. Western blot analysis demonstrates expression of each of the alleles when driven by GMR-Gal4. Two distinct MeCP2 antibodies
were utilized in order to recognize each allele to confirm that a deletion removed an epitope region. C. Immunoblot with a phospho-specific
antibody shows phosphorylation in the three alleles retaining amino acid S423. D. Immunoblot with the phospho-specific MeCP2 S423 antibody in
negative control, extracts from MeCP2 expressing flies when treated with calf intestinal phosphatase and untreated MeCP2 extracts. The treated
samples fail to produce a band with the phospho-specific antibody, but demonstrate MeCP2 expression with the whole MeCP2 antibody (E-I’’).
Immunoflourescence of squashed polytene chromosomes dissected from 3rd instar larvae raised at 25uC. Control larvae do not have MeCP2
immunoreactivity (E-E’’). All MeCP2 alleles demonstrate accumulation of the MeCP2 protein in banded pattern along the polytene chromosomes
(F-I’’).
doi:10.1371/journal.pgen.1000179.g001
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Each mutant line carrying a candidate modifier was crossed to

flies expressing the full-length MeCP2 allele from the GMR-Gal4

driver and screened for both enhancers and suppressors. The

initial hits in this screen were then re-evaluated with an

independent full-length MeCP2 transgenic line. Genes that modify

the MeCP2 phenotypes across multiple strains and MeCP2 lines

are the chromatin remodeling genes Additional sex combs (Asx), corto,

osa, Sex combs on midleg (Scm), and trithorax (trx), the kinase tricornered

(trc) and the UBE3A target pebble (pbl) (Table 1). Partial loss of

function of Asx, corto, osa, pebble, or Scm suppress the eye phenotype

induced by full-length MeCP2, while trc has a similar effect when it

is overexpressed (Figure 4A–H, note improved ommatidial

organization relative to MeCP2 control). In contrast, enhance-

ment of the eye phenotype was observed in MeCP2 animals with

either loss-of-function mutations in trx or overexpression alleles of

Scm, osa, and pbl (Figure 4I-4R, Figure S1, note greater ommatidial

disruption, loss of interommatidial bristles and, in some cases,

reduction in eye size and eye depigmentation). To exclude the

possibility that modifiers of the Gal4-UAS system may simply

cause changes in expression of MeCP2, western blot analysis was

Figure 2. MeCP2 overexpression leads to eye, wing and motor performance phenotypes. Light microscope images (A–E), and scanning
electron microscope images (A’–D’’) of fly eyes from controls or animals expressing MeCP2 driven by GMR-Gal4 driver at either 27.5uC or 30uC.
External eyes of control flies show normal ommatidial organization, while eyes from animals expressing any of four distinct MeCP2 alleles show
disruption in the structured pattern of the eye the surface. Note increased severity of the phenotypes at the higher temperature. F–G. The C5-Gal4
driver was used to drive either UAS-lacZ or full-length MeCP2 throughout the wing pouch at 25uC. Compared to controls, MeCP2 expressing flies
have extra vein tissue (arrowheads) near L3 and L5. H. The neuronal driver CHA-Gal4 was used to drive expression of either UAS-eGFP or full-length
MeCP2 at 25uC. Each sample represents a group of 20 virgin females. Beginning at 3 days of age, a lower percent of MeCP2 expressing flies are able
to climb to 7 cm in 18 seconds as compared to control flies (Repeated measures ANOVA p,0.001). Over time, both groups decrease in their ability to
climb. Error bars represent the standard error. Genotypes: A-A’’, GMR-Gal4/+. B-B’’, GMR-Gal4:UAS-MeCP2FLM119-2M/+. C-C’’, GMR-Gal4:UAS-MeCP2
R106W/+. D-D’’, GMR-Gal4:UAS-MeCP2 D166/+. E-E’, GMR-Gal4:UAS-MeCP2 R294X/+. F, C5-Gal4/+. G, C5-Gal4:UAS-MeCP2 FLM119-1M/+. H, CHA-Gal4/UAS-
eGFP and CHA-Gal4/UAS-MeCP2 FLM119-2M.
doi:10.1371/journal.pgen.1000179.g002

Genetic Modifiers of MeCP2
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performed and demonstrated that the modifiers did not alter the

level of MeCP2 protein (Figure S2).

Each modifier line found to alter the full-length MeCP2

phenotype was also investigated in the context of the D166 and

R294X MeCP2 alleles to determine if the modification was

dependent upon a specific MeCP2 domain. For the MeCP2 D166

allele, all genetic modifiers behaved similarly to the full-length

MeCP2 allele (Table 1, Figure S3).

Since the MeCP2 R294X allele does not dramatically alter the

structure of the eye, suppression was assessed primarily by gain in

the amount of eye pigmentation. Enhancement was assessed by

increased loss of pigmentation and/or disruption in the external

structure of the eye. We found similar phenotype modifications as

with full-length MeCP2 with two interesting exceptions (Table 1

and Figure S4). Partial loss of Sin3A function, which enhances

full-length MeCP2 (compare Figures 3B and 3C), suppresses

MeCP2 R294X phenotypes (compare Figures S4D and S4A).

Partial loss of trx function, which enhances the full-length MeCP2

phenotype (compare Figures 4B and 4I), but, in the case of the

trxE2 allele suppresses the R294X phenotype (compare Figures

S4A and S4P).

The candidate suppressor genes were then further tested against

the full-length MeCP2 allele in a second independent assay using

the L3 wing vein phenotype (Figure 5A–E). Indeed, alleles of Asx,

osa, Scm and trc are able to decrease the penetrance of the L3 wing

vein phenotype. Furthermore, loss of function of osa and

Table 1. Genetic Modifiers of MeCP2.

MeCP2 alleles

Drosophila Gene, Flybase ID
Mammalian Homolog(s) Modifier Allele Full length D166 R294X

crooked legs (crol), FBgn0020309 c04670 (LOF) sup sup sup

RE1 silencing transcription factor (REST) e0407 (LOF) sup sup sup

Sin3a, FBgn0022764 dQ4 (LOF) enh enh sup

Sin3a

Smrter (Smr), FBgn0024308 e04377 (LOF) sup sup sup

nuclear receptor co-repressor (N-CoR) e04389 (LOF) sup sup no mod

Additional sex combs (Asx) 1 (GOF) enh enh enh

FBgn0000141 EY07384 (LOF) sup sup sup

Additional Sex Combs like 1(Asxl1) XF23(LOF) sup sup sup

corto, FBgn0010313 07128b (LOF) sup sup sup

Mastermind like 2 (Maml2) c03244 (LOF) sup sup sup

e02822 (LOF) sup sup sup

osa, FBgn0003013 00090 (LOF) sup sup sup

AT-rich interaction domain 1a & 1b 308 (LOF) sup sup sup

(Arid1a, Arid1b) EY09619 (LOF) sup no mod sup

UAS-osa (OE) enh enh enh

pebble (pbl), FBgn0003041 2 (LOF) sup no mod sup

Epithelial cell transforming 3 (LOF) sup no mod sup

sequence 2(Ect2) 5 (LOF) sup no mod sup

09645 (LOF) sup no mod no mod

UAS-pebble (OE) enh enh enh

Sex combs on midleg (Scm) e01989 (LOF) sup sup no mod

FBgn0003334 D1 (LOF) sup no mod sup

Sex combs on midleg homolog 1(Scmh1) ET50e (LOF) sup sup no mod

M36 (LOF) sup sup sup

M56 (LOF) sup sup sup

UAS-scm (OE) enh enh no mod

XF24 (LOF) sup sup sup

tricornered (trc), FBgn0003744 UAS-trc LD (OE) sup sup sup

Nuclear Dbf-related 1 & 2 (Ndr1, Ndr2) UAS-trc wtn (OE) sup sup sup

trithorax (trx), FBgn0003862 1 (hypomorph) enh enh no mod

Mixed lineage leukemia (Mll) E2 (amorph) enh enh sup

KG04195 (LOF) enh enh no mod

LOF: loss of function, GOF: gain of function, OE: overexpression.
no mod: no clear modification with this particular allele.
doi:10.1371/journal.pgen.1000179.t001
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overexpression of trc improve the climbing phenotype caused by

neuronal-specific expression of MeCP2 (Figure 5F). Consistent

modification of MeCP2 phenotypes in different tissues, including a

behavioral phenotype caused by neural-specific expression,

provides additional evidence for the capacity of theses genes to

modulate MeCP2 function.

Discussion

We have used the Drosophila model system to facilitate the

identification of genes capable of counterbalancing the conse-

quences of altered levels of the human MeCP2 protein. First, we

established anatomical and behavioral assays to assess the effects of

expressing human MeCP2 in flies. We used an eye phenotype as a

primary assay for the genetic screen, and impaired motor

performance and other phenotypes as secondary assays for

validating purposes. The eye phenotype has been used successfully

in a variety of genetic screens including screens for enhancer/

suppressors of other neurological disease models. Although

expression of a variety of ‘‘toxic’’ human proteins leads to

apparently similar ‘‘rough’’ eye phenotypes, their specificity is

demonstrated when comparing the genetic modifiers uncovered in

the screens. For example, there is little or no overlap between the

MeCP2 modifiers reported here and modifiers of the eye

phenotype produced by expression of ataxin-1 [32,33] or

huntingtin [27]. In contrast, we found that the majority of the

modifier genes modulating the eye phenotype caused by wild-type

MeCP2 similarly modulate the phenotypes caused by the R294X

and D166 MeCP2 mutations. Two exceptions are Sin3A and trx,

which have opposite effects on wild-type and R294X MeCP2

(Table 1, Figures 3B, C versus Figures S4A, D, and Figures 4B, I

versus Figures S4A, P). MeCP2 associates with a co-repressor

complex containing Sin3A through the TRD domain [14], which

is partially deleted in the truncated R294X protein. This mutant

also lacks the MeCP2 C-terminal region that is important for

interactions with chromatin in vitro [34]. The TRD domain and/

or C-terminal region may thus be involved in the observed genetic

interaction between MeCP2 and trx. It is important to note that

both Sin3A and trx do modify the eye phenotype of R294X MeCP2

animals, albeit in the opposite way from the wild-type MeCP2.

Thus, the TRD/C-terminal domains may play a modulating role

rather than being required for the interaction.

A commonly accepted model of MeCP2 function postulates that

MeCP2 binds to methylated CpG islands in promoters where it

recruits histone deacetylases and other co-repressors to silence

gene transcription [14,35]. However, accumulating evidence

Figure 3. Known MeCP2 physical interactors are also genetic modifiers of the MeCP2 eye phenotype. A–C. SEM images of the external
eye of a control, a fly expressing full-length MeCP2, and full-length MeCP2 in the presence of a heterozygous loss-of-function allele of Sin3A cultured
at 27.5uC. Reduced Sin3A activity enhances the disorganization of the ommatidia in the eye. D–G. SEM images of the external eye of a control, a fly
expressing full-length MeCP2, and full-length MeCP2 in the presence of either loss-of-function of crooked legs or Smrter cultured at 30uC. Both alleles
suppress the ommatidial disorganization caused by MeCP2 expression in the eye. Genotypes: A. GMR-Gal4/+. B, GMR-Gal4:UAS-MeCP2 FLM119-1M/+. C,
GMR-Gal4:UAS-MeCP2 FLM119-1M/Sin3AdQ4. D, GMR-Gal4/+. E, GMR-Gal4:UAS-MeCP2 FLM119-2M/+. F, GMR-Gal4:UAS-MeCP2 FLM119-2M/crold03416. G, Smre04389/
+; GMR-Gal4:UAS-MeCP2 FLM119-2M/+.
doi:10.1371/journal.pgen.1000179.g003

Genetic Modifiers of MeCP2
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Figure 4. Novel genetic modifiers of the MeCP2 eye phenotype. A–B. MeCP2 expression by GMR-Gal4 at 30uC causes severe disorganization
of the ommatidia and interommatidial bristles compared to controls. C–H. This phenotype is alleviated when combined with loss-of-function mutants
in Asx, corto, osa, pbl, Scm, or overexpression of trc. I. In contrast, the loss-of-function trx allele enhances the external eye phenotype. J–L. When
MeCP2 is driven by GMR-Gal4 at 27.5uC, the mild eye phenotype of MeCP2 is enhanced when combined with overexpression of Scm. M–R. Even
though the MeCP2 flies do not show an eye phenotype at 25uC (N), when combined with either overexpression of osa (O) or pbl (Q), a strongly
disrupted phenotype results that causes a loss of interommatidial bristles and, in the case of pbl, a reduction in the number of ommatidia. When osa
and pbl are overexpressed alone, they have very mild phenotypes (P, R). Genotypes: A, GMR-Gal4/+. B, GMR-Gal4:UAS-MeCP2FLM119-2M/+. C, GMR-
Gal4:UAS-MeCP2FLM119-2M/AsxXF23. D, GMR-Gal4:UAS-MeCP2FLM119-2M/+; cortoc03244/+. E, GMR-Gal4:UAS-MeCP2FLM119-2M/+; osa00090/+. F, GMR-Gal4:

Genetic Modifiers of MeCP2
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suggests that this may be too simple a view of MeCP2 function.

For example, MeCP2 binds to unmethylated DNA with affinity

only 3 times weaker than to methylated DNA [36], and MeCP2

also binds [37] or requires AT sequences for binding [38].

Moreover, MeCP2 interacts with both methylated and unmethy-

lated chromatin and leads to alterations in the secondary structure

of both types of chromatin [34,39]. In addition, large-scale

mapping of MeCP2 binding sites in chromosomal regions

containing candidate MeCP2 target genes revealed that: 1)

MeCP2 is absent from highly methylated promoters, 2) only

,6% of MeCP2 binding sites are in CpG islands, and 3) many

MeCP2-bound promoters are actively expressed [40]. Further-

more, a recent study of gene expression patterns in mice that either

lack or overexpress MeCP2 suggests that many genes are activated

by MeCP2 [41]. Here we show that the methyl-CpG-binding

domain is not necessary for association of the MeCP2 protein with

chromatin in polytene chromosomes (Figures 1H-H’’), nor is it

required to produce an eye phenotype in Drosophila (Figures 2D-

D’’). In this context it is interesting to note that unlike mammals,

bacteria, plants, and other insects, the levels of DNA methylation

are very low in Drosophila [42]. Together these data suggest that

MeCP2 function may be more complex than previously thought.

MeCP2 may regulate both methylated and unmethylated target

genes in vivo, possibly as part of large protein complex(es) of

chromatin remodelling proteins regulating gene expression both

positively and negatively.

Using a candidate gene approach, we provide proof of principle

that modulating the activity of modifier genes can amend MeCP2

function in vivo. Among this group of genes is the kinase trc, a

member of the NDR (nuclear Dbf-related) family. We could not

detect alterations in the phosphorylation of MeCP2 in trc mutants

(data not shown). However, there is evidence that both trc and one

Figure 5. Genetic modifiers of the MeCP2 eye phenotype also suppress the L3 wing vein phenotype, and the motor impairment
caused by neuronal overexpression of MeCP2. A–B. Expression of MeCP2 in the wing pouch by the C5-Gal4 driver causes extra wing vein tissue
(arrowheads near L3 and L5 veins) as compared to control flies. C–D. This phenotype is suppressed by genetic modifiers of the external eye
phenotype including osa and Scm. E. Quantification of the L3 wing vein phenotype demonstrates that alleles of Asx, osa, Scm, and trc are all able to
significantly suppress the wing vein phenotype (p,0.05 in all cases). F. Overexpression of full-length MeCP2 by the neuronal driver CHA-Gal4 leads to
a motor function impairment as measured in a climbing assay that becomes more severe over time. When MeCP2 is expressed in the presence of
either a loss-of-function osa00090 allele or the gain of function UAS-trcLD allele, the severity of the climbing phenotype is reduced (Repeated measures
ANOVA p,0.001 at day 13 for osa00090, and for UAS-trcLD at day 10). Each sample represents an initial group of 20 virgin female flies except one
control group which had 15 virgin flies. Error bars represent the standard error. Experiment was performed in duplicate yielding similar results, but
only one data set is shown.
doi:10.1371/journal.pgen.1000179.g005

UAS-MeCP2FLM119-2M/+; pbl09645/+. G, GMR-Gal4:UAS-MeCP2FLM119-2M/+; Scme01989/+. H, GMR-Gal4:UAS-MeCP2FLM119-2M/+; UAS-trcLD/+. I, GMR-Gal4:UAS-
MeCP2FLM119-2M/+; trxKG04195/+. J, GMR-Gal4/+. K, GMR-Gal4:UAS-MeCP2FLM119-2M/+. L, GMR-Gal4:UAS-MeCP2FLM119-2M/+; UAS-Scm/+. M, GMR-Gal4/+. N,
GMR-Gal4:UAS-MeCP2FLM119-2M/+. O, GMR-Gal4:UAS-MeCP2FLM119-2M/UAS-osa. P, GMR-Gal4/UAS-osa. Q, GMR-Gal4:UAS-MeCP2FLM119-2M/UAS-pbl. R,
GMR-Gal4/UAS-pbl.
doi:10.1371/journal.pgen.1000179.g004
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of its mammalian homologs, NDR2, are involved in dendritic

formation [43,44], a feature also found to be affected by mutations

in MeCP2. Also, modification of the MeCP2 phenotype by the E3

ligase UBE3A target pbl [31] is noteworthy due to the similarities

between Rett and Angelman syndromes. Patients with Angelman-

like features have been identified with MeCP2 mutations [45,46]

and, while still controversial, some studies have demonstrated a

decrease of UBE3A in Rett patients and Mecp2 null mice [47–49].

The data presented here suggest that shared pathways may be

involved in Rett and Angelman syndromes.

Misregulation of neuronal genes caused by alterations in

MeCP2 activity is thought to cause Rett and Rett-like syndromes

[50,51]. One possible avenue for therapy is to identify the MeCP2

target genes misregulated during disease and to restore their

normal regulation. This approach may prove impractical if the

targets are numerous or difficult to identify due to subtle variations

in expression levels in response to MeCP2 activity [52–57]. A

possible future treatment based on gene therapy to restore normal

levels of MeCP2 also seems improbable. The nervous systems of

Rett patients are mosaic due to random X-chromosome

inactivation causing some neurons expressing the normal while

others expressing the mutant allele. Therefore, in the context of

neurons expressing the wild-type allele, gene therapy is not

possible because doubling of MeCP2 also leads to disease [5,6,58].

An alternative approach is to identify molecular mechanisms

capable of compensating for the misregulation of target genes

caused by MeCP2 altered levels. This study provides support for

the validity of this approach. We identified specific chromatin

remodeling genes of the Pc-G and Trx-G (i.e., Asx, corto, osa, and

Scm) that suppress the phenotypes caused by MeCP2 overexpres-

sion in Drosophila. Interestingly, both in Drosophila and mammals,

mutations in genes of either Pc-G or Trx-G also suppress the body

patterning abnormalities caused by mutations in members of the

other group [17,19].

In conclusion, human MeCP2 protein expressed in Drosophila

maintains important features observed in mammals such as

phosphorylation and association with the chromatin. The novel

modifiers identified in this model system point to potential

therapeutic targets that might be more amenable to manipula-

tion than MeCP2, and thus they provide new opportunities to

develop therapies for Rett syndrome and related neurological

disorders.

Methods

Generation of MeCP2 Constructs and Drosophila Lines
Each of the MeCP2 alleles described was cloned into the

pUAST vector in order to utilizing the GAL4-UAS system

(Figure 1A). The full-length human cDNA of the MECP2_e2

isoform (1461 nucleotides, 486 amino acids) was subcloned into

the EcoRI site of the pUAST vector. The remaining three alleles

were generated by PCR mutagenesis of this initial construct.

MeCP2 R294X was amplified with primers that attached a stop

codon and Kpn I site to the C-terminal end. This PCR fragment

was digested with EcoRI and Kpn I and then ligated between

these restriction sites in pUAST. Primers amplifying the MeCP2

D166 fragment added an EcoRI site, a conserved Drosophila

consensus sequence (TCGAC), and an ATG start site to the N-

terminal side of the protein. Transgenic Drosophila lines were

generated by injection of these constructs in embryos following

standard methods. We generated eleven MeCP2 full-length lines,

ten MeCP2 R106W lines, three MeCP2 R294X lines and ten

MeCP2 D166 lines. Additional Drosophila lines were obtained from

the Bloomington Drosophila Stock Center, the Harvard Medical

School Exelixis Drosophila Stock Collection, and private investiga-

tors (see acknowledgements).

Western Blot Analysis and Alkaline Phosphatase
Treatment

Protein was collected from Drosophila heads in a solution of 5%

b-mercaptoethanol in Laemmli Sample Buffer (Bio-Rad). For the

alkaline phosphatase treatment, Drosophila heads were collected in

protein extraction buffer (PBS with 0.1% Nonident P40 and

protease inhibitors), samples were smashed and kept on ice for

1 hour, vortexing each 10 minutes in order to facilitate protein

extraction. Samples were then mixed 1:1 with the calf intestinal

alkaline phosphatase (CIP) treatment, 10% CIP enzyme (New

England Biolabs), 30% CIP buffer in water, and incubated for

50 minutes at 37uC. Laemmli Sample Buffer was then added to

these reactions. Proteins were run on SDS-PAGE gels with eight

Drosophila heads per lane (except for the alkaline phosphatase

experiment which had ten heads per lane). Proteins were then

transferred to nitrocellulose membrane (Optitran) using 10mM

CAPS with 10% methanol. Membranes were blocked in

BLOTTO 5% Non-Fat Dry Milk (Bio-Rad) in TBS-T (100mM

Tris-Cl pH 7.5, 150mM NaCl, 0.1% Tween 20). The following

antibodies were used diluted in BLOTTO: anti-MeCP2 antibodies

(1:1000, Upstate, #07-013, and Affinity, #PA1-887), anti-lamin C

(1:1000, Developmental Studies Hybridoma Bank, #LC28.26),

and anti-tubulin (1:5000, Developmental Studies Hybridoma

Bank, #E7). Anti-phosphorylated MeCP2 S423 was diluted in

5% BSA (1:1000) [25]. Anti-rabbit and anti-mouse horseradish

peroxidase-conjugated secondary antibodies (Bio-Rad) were dilut-

ed 1:5000 in BLOTTO and membranes were developed using

chemiluminescence with either the ECL kit (Amersham Biosci-

ences) or the SuperSignal West Dura kit (Pierce). Quantification of

western blots was performed on a densitometer (Molecular

Dynamics) using the ImagQuant program.

Scanning Electron Microscopy
Experimental and control lines were crossed to flies with the eye

specific GMR-Gal4 driver. Offspring were sorted by genotype and

whole adult flies were sequentially dehydrated in ethanol,

critically-point dried and placed on aluminum mounts. Samples

were coated with a platinum alloy for a thickness of 50 nm and

flash carbon coated. Drosophila heads were then analyzed with a

JEOL JSM-5900 scanning electron microscope.

L3 Wing Vein Assays
Experimental and control lines were crossed to flies with the C5-

Gal4 driver and cultured at 25uC. Once the offspring had eclosed,

flies were sorted by genotype and each individual wing was scored

under a light microscope for extra vein tissue near or attached to

the L3 wing vein. Wings were removed from flies and mounted in

DPX Mounting Medium (Electron Microscopy Sciences).

Climbing Assay
Experimental and control lines were crossed to flies with the CHA-

Gal4 driver and cultured at 25uC. Virgins were collected of each

genotype and sorted into batches of 20 flies. Flies were enclosed inside

two clean, unused 9.25 cm culturing tubes that had been taped

together, for a total height of 18.5 cm. Flies were tapped down to the

bottom of the vial and permitted 18 seconds to climb within both

tubes to the top. At the end of 18 seconds, flies were scored as to

whether their final position was either above or below 7 cm. Each

group was trained in this procedure for 10 trials and then tested for 10

trials. Trials were performed between 3–6 pm.

Genetic Modifiers of MeCP2
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Immunofluorescence Staining of Polytene Chromosomes
Experimental and control lines were crossed to flies with the

ubiquitous Actin5c-Gal4 driver and cultured at 25uC. Salivary

glands were dissected from third instar larvae, fixed with

formaldehyde, and squashed according to standard protocols.

Samples were blocked with PBT with 0.2% BSA and 5% horse

serum to reduce background. Primary antibodies for MeCP2 were

used (1:100, Affinity and 1:200, Upstate). The secondary

immunofluorescence goat anti-rabbit Cy3 antibody was used at

a 1:200 dilution. The slides were also treated with an RNase

cocktail (1:1000, Ambion) and then TOTO-3 (1:2000, Molecular

Probes) to stain the DNA for confocal microscopy. Slides were

then mounted with a drop of Vectashield containing DAPI in

order to visualize the DNA by eye. Images were collected by

confocal microscopy using the AxioVision and ImageJ programs.

Supporting Information

Figure S1 Overexpression of the novel genetic modifier osa

enhances the MeCP2 external eye phenotype. MeCP2 driven by

GMR-Gal4 at 27.5uC causes increased disorganization of the

ommatidia and interommatidial bristles compared to controls (A–

B). This disorganization is increased when combined with an

overexpression allele of the chromatin remodeling gene osa such

that the overall size of the eye is smaller, ommatidia are

indistinguishable, there are no interommatidial bristles, and

necrotic spots are visible, as shown with arrow (C). Overexpression

of osa alone by GMR-Gal4 also disrupts the external eye structure

(D), but to a much milder degree as compared to co-expression

of MeCP2 and osa. Genotypes: A, GMR-Gal4/+. B, GMR-Gal4:

UAS-MeCP2FLM119-2M/+. C, GMR-Gal4:UAS-MeCP2FLM119-2M/

UAS-osa. D, GMR-Gal4/UAS-osa.

Found at: doi:10.1371/journal.pgen.1000179.s001 (3.3 MB TIF)

Figure S2 Genetic modifiers do not alter protein levels of whole

MeCP2 or phosphorylated S423 MeCP2. Western blots were

performed using the heads of flies expressing MeCP2 by GMR-

Gal4 in the presence of modifiers involved in chromatin

remodeling (A) and kinases (B). Key genetic modifiers that were

found to be the most consistently validated in the external eye

assay and secondary assays are marked with an asterisk. All

modifiers were compared to the two MeCP2 positive controls on

the same blot. Quantification by densitometry failed to find a

significant alteration of MeCP2 levels in the case of modifiers as

compared to the variation in the internal positive controls.

Found at: doi:10.1371/journal.pgen.1000179.s002 (1.9 MB TIF)

Figure S3 Genetic modifiers of the full-length MeCP2 eye

phenotype modify MeCP2 D166 in a similar manner. Light

microscopy images of the external eye of Drosophila expressing the

MeCP2 D166 allele and the indicated modifier genes. Control is

shown in A. All flies cultured at 29uC. Genotypes: A, GMR-

Gal4:UAS-MeCP2 D166/+. B, GMR-Gal4: UAS-MeCP2 D166/

Sin3AdQ4. C, GMR-Gal4: UAS-MeCP2 D166/crole0407. D, Smre04389/

+; GMR-Gal4: UAS-MeCP2 D166/+. E, GMR-Gal4:UAS-MeCP2

D166/UAS-osa. F, GMR-Gal4:UAS-MeCP2 D166/UAS-pbl. G,

GMR-Gal4:UAS-MeCP2 D166/+; UAS-Scm/+. H, GMR-Ga-

l4:UAS-MeCP2 D166/+; trxE2/+. I, GMR-Gal4:UAS-MeCP2

D166/AsxXF23. J, GMR-Gal4:UAS-MeCP2 D166/+; cortoc03244/+.

K, GMR-Gal4:UAS-MeCP2 D166/+; osa00090/+. L, GMR-Ga-

l4:UAS-MeCP2 D166/+; UAS-trcLD/+. M, GMR-Gal4:UAS-MeCP2

D166/+; pbl09645/+. N, GMR-Gal4:UAS-MeCP2 D166/+;

Scme01989/+.

Found at: doi:10.1371/journal.pgen.1000179.s003 (9.8 MB TIF)

Figure S4 Genetic modifiers of the full-length MeCP2 eye

phenotype in the context of the MeCP2 R294X allele. Light

microscopy images of the external eye of Drosophila expressing the

MeCP2 R294X allele and the indicated modifier genes. Control is

shown in A. All flies cultured at 27.5uC. Note that partial loss of

function of Sin3A (panel D) suppresses the MeCP2 R294X

phenotype shown in A, while it enhances the full-length MeCP2

eye phenotype (see Figures 3B and 3C). Likewise, the trxE2 allele

suppresses the MeCP2 R294X phenotype (compare panels A and

P), while it enhances the full-length MeCP2 eye phenotype (see

Figures 4B and 3I). All other genetic modifiers have similar effects

on full-length MeCP2 and MeCP2 R294X phenotypes, although

the genetic interactions may be evident with some but not all

alleles of each modifier genes (see Table 1). Genotypes: A, GMR-

Gal4:UAS-MeCP2 R294X/+. B, GMR-Gal4: UAS-MeCP2 R294X/

crolc04670. C, Smre04377/+; GMR-Gal4: UAS-MeCP2 R294X/+.

D,GMR-Gal4: UAS-MeCP2 R294X/Sin3AdQ4. E, GMR-Gal4:UAS-

MeCP2 R294X/AsxXF23. F, GMR-Gal4:UAS-MeCP2 R294X/+;

cortoc03244/+. G, GMR-Gal4:UAS-MeCP2 R294X/+; osa00090/+. H,

GMR-Gal4:UAS-MeCP2 R294X/+; pbl5/+. I, GMR-Gal4:UAS-

MeCP2 R294X/+; UAS-trcLD/+. J, GMR-Gal4:UAS-MeCP2

R294X/Asx1. K, GMR-Gal4:UAS-MeCP2 R294X/UAS-osa. L,

GMR-Gal4:UAS-MeCP2 R294X/UAS-pbl. M, GMR-Gal4:UAS-

MeCP2 R294X/+; pbl09645/+. N, GMR-Gal4:UAS-MeCP2 R294X/

+; ScmET50e/+. O, GMR-Gal4:UAS-MeCP2 R294X/+; trxE2/+. P,

GMR-Gal4:UAS-MeCP2 R294X/+; trx1/+.

Found at: doi:10.1371/journal.pgen.1000179.s004 (8.5 MB TIF)

Table S1 Drosophila homologs of known MeCP2 Interactors.

Found at: doi:10.1371/journal.pgen.1000179.s005 (0.07 MB

DOC)

Video S1 Neuronal specific overexpression of MeCP2 results in

motor dysfunction. Flies aged 30 days after eclosion are shown in a

climbing assay. After being tapped to the bottom of the vial, flies

are given 18 seconds to climb past 7 cm, marked by a line on the

tube. The control flies (left side, blue) show good climbing ability,

while MeCP2 transgenic flies (right side, red) do not perform well.

Found at: doi:10.1371/journal.pgen.1000179.s006 (3.0 MB

MOV)
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