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Abstract: The field of Medicine and Healthcare has attained revolutionary advancements in the
last forty years. Within this period, the actual reasons behind numerous diseases were unveiled,
novel diagnostic methods were designed, and new medicines were developed. Even after all these
achievements, diseases like cancer continue to haunt us since we are still vulnerable to them. Cancer
is the second leading cause of death globally; about one in every six people die suffering from it.
Among many types of cancers, the lung and colon variants are the most common and deadliest ones.
Together, they account for more than 25% of all cancer cases. However, identifying the disease at an
early stage significantly improves the chances of survival. Cancer diagnosis can be automated by
using the potential of Artificial Intelligence (AI), which allows us to assess more cases in less time and
cost. With the help of modern Deep Learning (DL) and Digital Image Processing (DIP) techniques,
this paper inscribes a classification framework to differentiate among five types of lung and colon
tissues (two benign and three malignant) by analyzing their histopathological images. The acquired
results show that the proposed framework can identify cancer tissues with a maximum of 96.33%
accuracy. Implementation of this model will help medical professionals to develop an automatic and
reliable system capable of identifying various types of lung and colon cancers.

Keywords: deep learning; lung cancer detection; colon cancer detection; histopathological image
analysis; image classification

1. Introduction

Cancer refers to a range of diseases where abnormal cells develop inside the human
body because of random mutations. Upon generation, these cells divide uncontrollably
and spread throughout the organs. If it goes untreated, most types of cancer can eventually
result in death. Cancer is the principal cause of death worldwide after cardiovascular
diseases. In 2018, more than 18 million new cancer cases were reported worldwide, along
with 9.55 million deaths [1]. According to the predictions made by the American Cancer
Society, more than 1.8 million new cancer cases will be reported in 2020, and over 606,000
death will occur in the USA alone [2]. Based on the data collected between 2015 and 2017,
two out of every five American citizens will be diagnosed with cancer at some point in their
lifetime. Cancer cells can develop in any part of the body; the most common organs affected
are lungs, breasts, brain, colon, rectum, liver, stomach, skin, and prostate. Among them,
lung and colon cancers result in the greatest number of deaths both in men and women. In
2018, they were responsible for 2.9 million new cases, along with over 2.5 million deaths
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in the USA alone [3]. There are many reasons behind cancer, ranging from behavioral
traits such as high body mass index, tobacco and alcohol usage to physical carcinogens,
such as exposure to ultraviolet rays and radiation, including certain biological and genetic
carcinogens [3]. However, the cause may vary from one patient to another. Common
cancer symptoms are pain, fatigue, nausea, persistent cough, breathing difficulties, weight
loss, muscle pain, bleeding, bruising, and many more [4]. Then again, neither of these
symptoms are exclusive to cancer, nor all of them are apparent in every patient. As a result,
it is hard to determine the presence of cancer without a thorough diagnostic procedure
such as Computed Tomography (CT) scan, Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET) scan, ultrasound, or Biopsy. In many cases, the victims show
little to no symptom at the early stages; and when symptoms become apparent, more often
than not, it is already too late.

In some cases, a person inherits the abnormal gene that leads to cancer from his/her
parents. People who carry the risk of developing inherited cancers need to go through
regular checkups. These diagnostic methods are costly, and many people cannot afford
them. Approximately 70% of deaths due to cancer occur in low and middle-income
countries [3]. According to the data collected in 2016, only 26% of countries with low
incomes had the pathological services necessary to diagnose cancer available to the public;
countries with high incomes, on the other hand, could offer diagnosis and treatment
services to over 90% of their population [3]. Not just cancer, the lack of proper diagnosis
leaves the people of developing and underdeveloped countries extremely vulnerable to
other diseases as well. To overcome this challenge, these countries have to invest heavily
in the public health sector, set up numerous laboratories and pathology centers with the
necessary equipment, and train more individuals to carry out the diagnostic procedures.
Furthermore, they have to keep the charges of these tests within reach of the people who
live below the poverty line. Admittedly, these goals are difficult to achieve for any such
country in the world, and even if it is possible, all of these things will not happen overnight.
If we want to stay in the fight against cancer and give these people a realistic chance of
survival, we have to look for alternative ways of diagnosis.

According to the Tumor-Node-Metastasis (TNM) system developed and maintained
by the American Joint Committee on Cancer (AJCC), most of the cancers have five different
stages—0, Stage I, Stage II, Stage III, and Stage IV [5]. The system takes into account
numerous factors, including the size and location of the primary tumor, the extent of its
spread to the lymph nodes and other organs, and the presence of any biomarkers that
influence the spread of cancer. The chances of survival vary significantly at different stages.
For example, in the case of colon cancer, more than 93% of people within the age bracket of
18 and 65 years can survive with proper treatment if they are diagnosed at Stage 0; whereas,
the survival rates at the later three stages are 87%, 74%, and 18%, respectively [6]. For colon
cancer patients, the chance of survival falls from 70% at Stage 0 to a frightening 13% at
Stage IV. As discussed before, we do not have a guaranteed treatment for cancer yet, which
means the earlier a person is diagnosed, the more time doctors have to devise a treatment
plan for him/her, and the patient stands a better chance to beat the disease. Early diagnosis
and proper treatment are currently the only way to reduce the number of deaths due to
cancer [7]. However, most of the population is deprived of proper diagnostic facilities,
which makes the battle against this virulent disease even more unamenable.

Surprisingly, a possible solution to this problem has come from a field quite dissimilar
to Medicine and Healthcare. Computer Science has probably advanced the most in the last
fifty years compared to other branches of science and technology. Machine Learning (ML)
has a wide range of applications in Pathology, ranging from the detection of diseases to
intelligent systems, which, judging by the patients’ symptoms, can prescribe conventional
medicines [8]. The latter area is still in its infancy, and a lot of research works need to
be done before such applications can be relied on for clinical practices. Nonetheless,
it ascertains AI’s power and implies how it will be used in the medical sector in the
coming years.
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AI has shown incredible potential in the sector of diagnosis and offered us a capable
alternative to the traditional diagnostic methods. At present, the process of diagnosis of a
particular disease requires taking samples from a patient, performing a set of tests on those
samples, converting the results into an interpretable form, and finally, the involvement of a
trained individual to make decisions based on those results. Now, if the samples collected
from a patient are digital in nature or are digitalized by some means, we can use machines
to analyze them. We can then provide them with a set of data containing decisions on
similar cases encountered in the past. Finally, we can instruct them to identify the diseases
present in the new patient. In ML, making decisions that rely on the knowledge gathered
from previous scenarios is known as supervised learning. Numerous supervised learning
algorithms have been developed in the last three decades, and they are very proficient in
working with biomedical data.

ML algorithms have been used in the classification and prediction of various types
of biomedical signals. The development of Deep Learning (DL) algorithms has enabled
machines to process high-dimensional data such as image, multidimensional anatomical
image, and video as well. DL is a sub-field of ML that describes the learning algorithms
inspired by the structure and function of the human brain [9]. DL uses the power of
Artificial Neural Networks (ANNs) to achieve enhanced pattern recognition abilities. A
detailed overview of the numerous ML techniques used in various lung and colon cancer
diagnoses is provided in the next section. Above all, it is apparent that AI has given the
field of medical diagnosis a new dimension, and it is gradually becoming a viable substitute
for the traditional diagnostic methods.

Nevertheless, AI is still a long way away from taking over the diagnostic sector. Even
though AI models are promising on paper and in controlled experiments, they have not
yet reached that level of reliability, where they can be trusted with the duty of making
life-altering decisions. Surely, some simple diagnostic procedures are carried out solely
by machines with very little to no human intervention. However, AI methods are often
not accurate enough, and their performance in the practical situation remains in question.
Furthermore, there are some ethical dilemmas as well. However, these challenges make this
field more open to further research, which is very inviting to the researchers. And they are
tackling these challenges by collecting more practical data, developing new and improved
learning algorithms, and putting the resultant models through rigorous tests. In this paper,
we describe the outcome of a similar effort. Using a new set of histopathological images,
we have developed a Convolutional Neural Network (CNN)-based novel classification
method to distinguish among five different types of lung and colon tissues. The results
show that the model is well-capable of classifying the associated lung and colon cancer
varieties with high reliability. Necessary graphs, tables, charts, and other illustrations have
been provided for easy interpretation while describing this cancer diagnosis approach in
the subsequent sections.

The rest of the paper is organized as follows. Section 2 provides an overview of the
previous works similar to our effort. Section 3 provides an overview of the contents of
the employed dataset. Section 4 elucidates the principles of the methods and techniques
required to build this model. Section 5 outlines the experimental setup, presents its
outcomes, and provides brief discussions where they are necessary. Finally, Section 6 gives
a summary of the work described in this article, along with some scopes of further research.

2. Related Works

The potential of computers in medical diagnosis was first recognized by Lee Lusted
in 1955 [10]. Eight years later, Lodwick et al. digitized chest X-rays for the first time to
develop Computer-Aided Diagnosis (CAD) applications and applied them to diagnose
Lung cancer [11]. Published in 1963, their research marks the first practical use of computers
in medical image diagnosis [12]. Throughout the 70s and 80s, lung cancer identification
using chest radiographs was one of the most researched CAD applications. However, the
invention of the DL methods has changed the field altogether. Researchers have used
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both DL and non-DL based learning algorithms in almost all types of a cancer diagnosis.
Since our work belongs to the lung and colon cancer diagnosis domain, we will elaborately
discuss the reported methods in these two areas. These approaches vary in terms of the
type of images used, the processing techniques applied to those images, the kind of features
extracted, and the architecture of the ML model used for cancer identification [13]. In the
next few paragraphs, we will describe some of the prominent studies published in recent
years whose objectives are similar to ours.

In 2013, Shi et al. described a multi-modal Sparse Representation-based Classification
(mSRC) method for lung cancer diagnosis [14]. Their study captured needle biopsy speci-
mens and automatically segmented 4372 cell nuclei regions for lung cancer classification.
Their method reached an 88.10% classification accuracy on average. Xu et al. worked with
a set of histopathological colon images, extracted four types of features from them, and
employed three types of Support Vector Machines (SVMs) for classification [15]. Instead of
single-level classification, they carried out a multi-label classification to identify multiple
types of cancer residing in different image areas.

In 2014, Kuruvilla and Gunavathi proposed a CAD method for lung cancer classifica-
tion based on the analysis of CT scan images [16]. They extracted six types of statistical
features from those images and classified them using two Artificial Neural Networks
(ANNs), one with only forward propagation and the other one with forward and back-
propagation. According to this elaborate study, skewness provides the best classification
outcome when paired with ANN with back-propagation. Deppen et al. inscribed a non-
invasive pulmonary nodule diagnosis method based on PET scans analysis along with
Fludeoxyglucose F-18 (FDG) data [17]. They tested the method on 8511 cases, among which
60% were malignant, and their model detected them with high sensitivity and specificity.

In 2016, Sirinukunwattana et al. described a Spatially Constrained CNN (SC-CNN)
method to detect and classify four nuclei types in colon cancers based on histopathological
images [18]. Their proposed method does not require the segmentation of nuclei and can
provide a maximum F-measure of 80.2% while classifying them. Kuepper et al. reported
a label-free classification method for colon cancer grading [19]. In this study, they used
infrared spectral histopathology images and different dedifferentiation states of colon
carcinoma. The classification was performed by a Decision Tree (DT)-based supervised
learning method called Random Forest (RF).

In 2017, Shen et al. described a Multi-crop CNN (MC-CNN)-based nodule malignancy
classification method [20]. Their approach’s specialty is that they did not use any segmen-
tation or feature extraction techniques on the CT scan images they worked with. They
relied entirely on their ML model for the intended lung nodule detection and achieved an
87.14% classification accuracy. Sun et al. used CNN and Deep Belief Network (DBN) on
134,668 CT scan images to determine the presence of lung cancer in them [21]. Yuan et al.
detailed a DL method that can detect polyps automatically from colonoscopy videos [22].
For classification, they used AlexNet, a well-known CNN-based architecture that resulted
in a 91.47% classification accuracy.

In 2018, Selvanambi et al. provided a Lung cancer prediction method based on
glowworm swarm optimization (GSO) using images from multiple sources [23]. They
chose the Recurrent Neural Network (RNN) as their learning algorithm and obtained
a maximum of 98% accuracy. De Carvalho Filho et al. proposed a CNN-based lung
cancer identification method and tested it on a dataset containing over 50,500 CT scan
images [24]. Da Nóbrega et al. described a method to identify the malignant nodule in
the lung using ResNet50, a CNN-based learning algorithm [25]. Their study also explores
other learning methods, including Transfer Learning, ImageNet, MobileNet, Xception, and
InceptionV3. Masood et al. proposed a CAD method for pulmonary cancer detection and
stage classification [26]. The authors used CNN and DFCNet in their study and tested their
model on six different datasets. Babu et al. described an RF-based classification model to
predict the presence of colon cancer by analyzing histopathological cancer images [27]. First,
they took the R-G-B images to the HSV plane and then performed wavelet decomposition
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to extract features. By changing the level of image magnification, they achieved a maximum
of 85.4% classification accuracy. Mo et al. used a method based on Faster R-CNN for colon
cancer detection [28]. They used an approximate joint optimization that can optimize
classification and regression losses at the same time. Urban et al. reported a method that
can identify polyps from colonoscopy images with a 96% classification accuracy [29]. The
authors hand-labeled 8641 colonoscopy images collected from 2000 patients and trained a
CNN model with them. Then, they tested their method on 20 colonoscopy videos having a
total duration of five hours. Akbari et al. proposed a CNN-based classification method
with binarized weights to identify colorectal cancer from colonoscopy videos [30]. They
tested their method using the data collected from the Asu Mayo Test clinic database and
achieved over 90% classification accuracy.

In 2019, Shakeel et al. presented an automatic Lung cancer detection method based on
CT scan images [31]. They applied bin smoothing normalization for image de-noising and
selected features using the minimum repetition and Wolf heuristic feature selection process.
The most interesting approach of this study is the classifier’s choice; the authors used a
Discrete AdaBoost optimized ensemble learning generalized neural network (DAELGNN)
and obtained over 99% classification accuracy. Toraman et al. reported a study whose aim
was to classify colon cancer’s likelihood using Fourier Transform Infrared (FTIR) spec-
troscopy signals [32]. The authors extracted several statistical features from those signals
and then used SVM and ANN to classify them, which resulted in a 95.71% classification
accuracy (ANN).

In 2020, Suresh and Mohan described a lung cancer diagnosis method based on nod-
ule region of interest (ROI)-based feature learning using CNN. They collected CT scan
images from the Lung Image Database Consortium (LIDC) and Infectious Disease Research
Institute (IDRI) databases and employed Generative Adversarial Networks (GANs) to
generate additional images to increase the sample size. They achieved a 93.9% classification
accuracy (maximum) using CNN-based classification algorithms [33]. Masud et al. de-
scribed a pulmonary nodule detection method based on CT scan images using a light CNN
architecture [34]. Tested on the LIDC dataset, their model achieved a 97.9% classification
accuracy while distinguishing among normal, benign, and malignant cases. Shakeel et al.
proposed another CT scan image-based lung cancer detection method. Upon removing
noise from the images, they employed an Improved Deep Neural Network (IDNN) for
image segmentation and various Ensemble Methods (EM) for image classification [35].

3. Lung and Colon Cancer Dataset

This research worked with a new (published in 2020) lung and colon cancer histopatho-
logical image dataset known as the LC25000 dataset [36]. Assembled by Andrew A.
Borkowski and his associates, this dataset contains 25,000 color-images of five types of
lung and colon tissues [37]. These variants are Colon Adenocarcinoma, Benign Colonic
Tissue, Lung Adenocarcinoma, Benign Lung Tissue, and Lung Squamous Cell Carcinoma.
Colon Adenocarcinoma is the most common type of colon cancer, which makes up more
than 95% of all colon cancer cases. Adenocarcinoma occurs when a particular type of polyp
(tissue growth) called Adenoma is developed inside the large intestine, which later turns
into cancer. Lung Adenocarcinoma accounts for about 40% of all lung cancers and is found
more in women than men. This type of cancer cells usually develops in the glandular cells,
and then spread towards the alveoli inside the lungs. All the tumors developed in the
lungs and colon are not cancerous, as they do not spread to other parts of the body. These
types of tumors are called benign tumors, which are usually not life-threatening. However,
they still need to be surgically removed and checked for the presence of cancer through
Biopsy. And finally, Lung Squamous Cell Carcinoma is a kind of small-cell cancer that
develops in the lungs’ air passages or bronchi. It is the second most common type of lung
cancer and accounts for about 30% of all cases.

The LC25000 dataset images were collected at James A. Haley Veterans’ Hospital
situated in Tampa, Florida. The authors primarily collected 1250 images (250 images of
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each type) of cancer tissues from pathology glass slides. They used image augmentation
techniques to rotate and flip the original images under different conditions and thus,
expanded the dataset to 25,000 images (5000 images in each class). The original images’
size was 1024 × 768 pixels, but before applying the augmentation techniques, they were
cropped to 768 × 768 pixels to make them square. All the images present in the dataset
are the Health Insurance Portability and Accountability Act (HIPAA) compliant, validated,
and free to use. Figure 1 presents sample histopathological images of these five classes
collected from the LC25000 dataset. Table 1 lists the contents of the dataset and the assigned
class names and IDs used in Section 4.

Figure 1. Sample images of (a) colon adenocarcinoma, (b) colon benign tissue, (c) lung adenocarcinoma, (d) lung benign
tissue, and (e) lung squamous cell carcinoma collected from the LC25000 dataset.

Table 1. Contents of the LC25000 dataset and the assigned class labels.

The Type of Cancer Class Name Class ID Number of Samples

Colon Adenocarcinoma Col_Ad 0 5000

Colon Benign Tissue Col_Be 1 5000

Lung Adenocarcinoma Lun_Ad 2 5000

Lung Benign Tissue Lun_Be 3 5000

Lung Squamous Cell Carcinoma Lun_SC 4 5000

4. Methodology

After choosing the histopathological image dataset, features were extracted from them
using two separate algorithms. The collected features were concatenated to formulate a
combined feature set, and classification was performed based on it using a multi-channel
CNN [38]. These steps have been described in the following subsections.
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4.1. Image Sharpening Using Unsharp Masking

Image preprocessing is essential to remove noise, enhance specific properties, and
draw out useful information from images—making them more suitable for the learning
algorithm. This research used two image transformation techniques: two-dimensional
Discrete Fourier transform (2D-DFT) and Single-level discrete two-dimensional wavelet
transform (2D-DWT) extract features from the histopathological cancer images. Prior to
feature extraction, each image’s contrast was enhanced using a popular image sharpening
method known as Unsharp Masking (UM). UM’s basic idea is to subtract a blurred version
of the original image from the image itself. UM enhances the contrast where different
colors meet each other and, thus, sharpens the original image. If we consider I(m, n) as a
sample image where m is the height and n is the image’s width (in pixels). However, since
we are working with square images, in our case, m = n. The sharpened form of I, Is will be
as follows:

Is(m, m) = I(m, m) + λ∇(m, m) (1)

where, λ is a factor that adjusts the intensity of the correction (λ > 0), and ∇(m, m) is a
suitably-defined gradient at (m, m) [39]. A variety of gradient function can be used for UM.
The one that is most commonly used is called the discrete Laplacian operator, which is
defined as [40]:

∇(m, m) , I(m, m)− 1
4
[I(m− 1, m) + I(m, m− 1) + I(m + 1, m) + I(m, m + 1)] (2)

We can get the desired Is from Equations (1) and (2). A UM outcome is influenced by
three factors—radius, amount, and threshold of the operation. Radius governs the size
of the area around the edges that is affected by sharpening. We need a large radius to
sharpen wider regions around the edges and a smaller value for sharpening the narrower
regions. Amount determines the strength of the sharpening effect. Threshold allows us
to regulate whether or not a pixel will be considered as an edge pixel. It is also useful to
reduce sharpening noise. In our case, we used [2, 2, 0.1] as the value of the radius, amount,
and threshold, respectively. To sharpen an R-G-B image, it is primarily converted to “Lab”
color space, then UM is applied only on the L-channel (lightness), and finally, the image
is converted back to the R-G-B format. Figure 2 illustrates the result of image sharpening
using UM on a sample histopathological image under the described conditions.

Figure 2. A sample colon cancer image (a) raw and (b) sharpened using unsharp masking.
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4.2. Feature Extraction from Cancer Images

As stated earlier, we will use two basic Digital Image Processing (DIP) techniques
to extract features from the cancer histopathological images. These methods are briefly
described below:

4.2.1. Extraction of 2D Fourier Features

FT’s basic idea is to decompose a signal into an infinite number of sine and cosine
functions. It was discovered afterward that it is possible to obtain the amplitude of those
sine and cosine functions as well. If these functions are expressed in a series by using an
integral, it is called the Fourier series. Discrete Fourier Transform (DFT) is the type of FT
commonly used today to process signals in computer-based applications. DFT can extract
the frequency components of any time-series signals of any length. If we have a N-point
time-domain signal Px, its N-point DFT can be expressed as follows:

FPu =
1
N

N−1

∑
x=0

Pxe−j( 2πxu
N ) (3)

Equation (3) describes the DFT of a one-dimensional (1D) data (signal). Since we are
working with images, which are 2D data, we need an extended version of DFT. 2D-DFT
transforms the pixels of an image based on their 2D spatial locations, which are indexed as
co-ordinates (x, y). It extracts the horizontal and vertical spatial frequencies (u, v) from an
image. If we consider an image, I of m×m pixels, its 2D-DFT can be expressed as [41]:

FPu,v =
1
m

1
m

m−1

∑
x=0

m−1

∑
y=0

Px,ye−j2π( ux
m +

vy
m ) (4)

Equation (4) can also be separated to show how DFT is done in two different axes:

FPu,v =
1

m2

m−1

∑
x=0

{
m−1

∑
y=0

Px,ye−j( 2πvy
m )

}
e−j( 2πux

m ) (5)

2D-DFT highlights the lower frequency components of an image where most of the
important information resides. On the other hand, the high-frequency components indicate
the rapid changes in intensity, which typically occurs at the edges of objects [41]. Figure 3a
shows a sample (sharpened) histopathological image. Figure 3b–d shows its red, green, and
blue channel information, respectively. IFr, IFg, and IFb are their corresponding 2D-DFT
transformed form calculated using Equation (5) and illustrated in Figure 3g,i,k, respectively.
Figure 3e is a combined representation of the previous three images that can be interpreted
as the 2D-DFT of Figure 3a.
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Figure 3. (a) A sharpened histopathological image; (b) red, (c) green, and (d) blue channel illustration of (a); (e) 2D-DFT
and (f) 2D-DWT output of (a); (g) 2D-DFT and (h) 2D-DWT output of (b); (i) 2D-DFT and (j) 2D-DWT output of (c); and (k)
2D-DFT and (l) 2D-DWT output of (d).

4.2.2. Extraction of 2D Wavelet Features

Wavelets are mathematical functions that represent scaled and shifted forms of a
signal. Wavelet transform (WT) is widely used for analyzing a signal into its frequency
components at different resolutions. In the case of images, WT can reveal the frequency
and spatial properties of that image at the same time. The Discrete wavelet transform
(DWT) refers to any WT where the wavelets are discretely sampled. The first algorithm
of DWT was developed by Alfréd Haar [42]. 1D-DFT can capture the frequency and
location information of a signal simultaneously. It decomposes a signal into two separate
components: approximation coefficients and detail coefficients, and raises the level. If we
consider a N-point time-domain signal Px, whose approximation and detail coefficients at
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level i are Ai(x) and Di(x), respectively, then for the next level (i + 1) values of these two
coefficients would be as follows:

Ai+1(x) =
L−1

∑
k=0

h(k)Ai(2x− k) (6)

Di+1(x) =
L−1

∑
k=0

g(k)Di(2x− k) (7)

where, h(k), g(k), and L are the low-pass filter, high-pass filter, and the size of the filters [43].
In 2D-DWT, this operation is performed on both the rows and columns of an image. As a
result, for images, four different matrices are level, namely, approximation coefficients (A),
the horizontal detail coefficients (cH), vertical detail coefficients (cV), and diagonal detail
coefficients (cD). If we take our previous image, I of m×m pixels, then these coefficients
can be calculated as follows:

cAi+1,(x,y) =
1
2

m−l

∑
k=0

m−1

∑
l=0

dkdlcAi,(2x+k,2y+l) (8)

cHi+1,(x,y) =
1
2

m−l

∑
k=0

m−1

∑
l=0

bkdlcAi,(2x+k,2y+l) (9)

cVi+1,(x,y) =
1
2

m−l

∑
k=0

m−1

∑
l=0

dkblcAi,(2x+k,2y+l) (10)

cDi+1,(x,y) =
1
2

m−l

∑
k=0

m−1

∑
l=0

bkblcAi,(2x+k,2y+l) (11)

here, b and d are the scaling coefficients, k and l are the scaling coefficient indices, and
x and y are the location indices [44]. Figure 4 illustrates how these four coefficients are
calculated for a higher level (i + 1), form the approximation coefficient of its previous level
(i). Figure 3 represents the horizontal detail coefficients of Figure 3a extracted using 2D-
DWT. IWr, IWg, and IWb shows the information present in three separate channels calculated
using Equation (8). In this study, we took only the horizontal detail coefficients into account
and used them as a set of features drawn out from the original histopathological images.

Figure 4. The process of decomposition in 2D-DWT.

4.2.3. Feature Set Creation

As seen in Figure 3b–d, the red and green channel of a histopathological image
contains more distinctive information than the blue channel. That is why we will consider
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only the features extracted from the previous two channels and omit the last one. It will
reduce the number of features, and in turn, reduce the complexity of the CNN model. The
entire process of feature extraction, channel selection, and feature set creation has been
portrayed sequentially in Figure 5. A resize operation was performed on the frequency-
domain and wavelet-domain images to reduce their size to 64 × 64 pixels. Each image
was then flattened to a row vector, and all the resultant vectors (25,000) were vertically
concatenated to get the 2D-FFT feature and 2D-DWT feature subsets (Ff and Fw). A further
horizontal concatenation of these two subsets of features resulted in the combined feature
set (Fc), which represents the samples of the dataset in the learning and classification stages.
Figure 6a shows the t-Distributed Stochastic Neighbor Embedding (t-SNE) graph of the raw
histopathological images (64 × 64 pixels) of the LC25000 dataset [45]. As the figure shows,
samples of all the five classes are bounded very closely. Figure 6b shows the t-SNE graph
of the samples based on the features we extracted following our algorithm. As can be seen,
the samples of the Col_Ad, Col_Be, and Lun_Be formed individual and mostly separated
clusters in the 2D plane. This implies that most learning algorithms will have a high
classification rate of these classes. However, Lung_Be and Lung_SC samples are cramped
together, meaning they will be harder to distinguish. A powerful learning algorithm is
required to distinguish among these overlapped samples and identify them properly.

Figure 5. The workflow of the feature extraction and feature set creation process.
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Figure 6. t-SNE graph of the dataset based on (a) the raw features and (b) the (combined) extracted features.

4.3. Cancer Image Classification Using CNN

CNN refers to a group of neural networks (NNs) that uses convolution operations
to extract features from the input data. Convolution is a mathematical operation that
compares two different functions, measures the amount of similarity they have in various
regions, and expresses it as an integral. Interestingly, the development of CNN was inspired
by the biological brain, especially how the neurons in the visual cortex of the brain process
images [46]. CNN is primarily designed to work with 2D and 3D data, but it can easily be
customized to the process data of other dimensions. A CNN model’s operations can be
divided into two principal stages—feature extraction and classification/regression. The
elegance of CNN is that it can automatically extract features from raw data without any
prior processing. That been said, an ML model is as good as the data fed to it; hence,
employing some preprocessing and noise removal techniques on the data before passing it
to the model often helps to elevate its performance [47].

A CNN model is a collection of multiple layers. There are three main types of layers;
namely, the convolutional layer, the pooling layer, and the fully-connected layer. A number
of small functions, called kernels or filters, are taken and compared with all the images
being processed by the model in the convolution layer. This process generates a set of
features from each input sample, usually a dimension higher than the input. Since the
model extracts these features by itself, they are called automatic features. If we consider a
signal Px, and convolute it with a kernel ω, the output of that convolution will be as follows:

(Px ∗ ω)(α) =
∫

Px(t)ω(α− t)dα (12)

where, α ∈ Rn for all n ≥ 1. Here, Px is called the input layer of convolution, and output
is called feature-map or activation [48]. Now, in the case of data of higher dimensions,
we need to consider t as a discrete parameter and rewrite Equation (12) for a discrete
convolution as follows.

(Px ∗ ω)(α) = ∑
α

Px(t)ω(α− t) (13)

In this process, α travels overs all the values in the space and is not bounded to a
particular dimension. Equation (12) is dimension-independent as well. However, since we
are working with 2D data, the output of a 2D convolution on a sample square image, I of
m×m pixels, can be expressed as follows:
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(I ∗ K)(i, j) =
m−1

∑
p=0

m−1

∑
q=0

I(p, q)K(i− p, j− q) (14)

At the output of a convolution layer, the input image becomes less recognizable.
However, certain information such as the edges, orientation, and patterns become more
visible, and these are the underlying properties from which machines learn.

A pooling layer’s function is to reduce the size (spatial dimensions) of the feature-map
without losing a lot of useful information. Among the variants of pooling options, max-
pooling and average-pooling are the most common. Given a small block of the feature-map,
max-pooling and average-pooling only keep the maximum value and the average value
of that block, respectively, and exclude all the other values. If a max-pooling operation
is performed with a kernel size (p×p) and stride of p on a (i ×j) feature-map, it will
result in a

(
i
p ×

j
p

)
feature-map.

Depending on the size of the input image and the architecture of the CNN-model,
any number of convolution and pooling layers can be applied. However, the feature-map
resolution decreases with each new layer, and the machine gets fewer but more relevant
features to work with. The fully connected layer is usually the last layer of a CNN model,
which performs the classification or regression task following the principles of multi-layer
perceptrons. After a series of convolutions and poolings, all the extracted feature-maps
are flattened to get a single vector of features. This vector acts as the input of a NN. It is
called fully-connected NN because every node of a given layer is connected to all the nodes
of the next layer of NN. The NN output is a class label (for classification) or a value (for
regression) that the model has decided for a particular sample.

Figure 7 presents the architecture of the CNN model we employed to solve our
classification problem. The model has three convolution layers, two max-pooling layers,
a batch-normalization layer, and a dropout layer. As stated in the previous section, we
selected four sets of features extracted from each image. Each set of features were processed
separately by the employed convolution and pooling layers. Their outputs were flattened
and concentrated immediately before the fully connected layer. The purpose of this process
is to bring diversity in the knowledge extracted by the machine and help it to know the
samples more intimately, which, in turn, will enable it to categorize them more accurately.

Figure 7. The architecture of the employed CNN model (single channel).

5. Results and Discussion

In this section, we present the acquired results of the performed ML experiment.
Table 2 provides further information on the CNN model created to classify the histopatho-
logical cancer images. We used 70% of the images (randomly chosen) to train this super-
vised learning model and the remaining 30% image to test it. Since we are working with
a balanced dataset (i.e., each class has the same number of samples), the model will be
less prone to bias towards a particular class while making decisions. We will present the
model’s performance on both subsets and evaluate it based on the widely used evaluation
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parameters, including accuracy, precision, recall, F-measure, and confusion matrix of the
classification.

Table 2. Properties of the employed CNN model.

Variable Value

Image dimensions 64 × 64

Channels 4

Epochs 500

Batch size 64

Filters 64

2D Convolution layers (size) 3 (3 × 3)

Convolution layer activation Relu

2D Maxpooling layers (size) 3 (3 × 3)

Dropout 30%

Dense layer activation Softmax

Compiler optimizer RMSprop

Compiler loss Categorical crossentropy

Figure 8a presents the classification accuracy at each epoch of the proposed model.
The experiment was carried out for 500 epochs. On the testing subset, the classification
accuracy at the last epoch was 95.11%; however, the best outcome was achieved at the
392nd and 488th epoch, both of which yielded an accuracy of 96.33%. As seen in the figure,
the training accuracy curve ascended towards the top gradually and almost steadily. The
highest training accuracy was 98.91% (493rd epoch), which is very close to the accuracy
of the last epoch (98.87%). The testing accuracy curve was not as steady as the training
accuracy curve, which indicates the occasional decline in performance. However, the result
improved as the training process continued. After the 100th epoch, almost 55% of the
testing subset’s recorded accuracy values were over 95%. The curve fell below 90% only
four times, which assures that the model can provide a good classification outcome even if
it is built with fewer epochs.

The other curves depicted in Figure 8 are the F-measure, precision, and recall curves.
Precision yields the positive predictive value (PPV) of a classification, which is the ratio
of the correctly identified samples to all the samples that have been positively identified
as a particular class. Recall, also known as the sensitivity, indicates the proportion of the
positive instances of a specific class that were accurately identified. And finally, F-measure
is a harmonic mean of precision and recall, which is a more dependable parameter than the
classification accuracy while judging the performance of a classifier. As Figure 8b,d show,
all six curves closely follow their corresponding accuracy curves, which indicates that the
model’s performance is very reliable, and it is not biased towards any particular class.

Figure 9 presents a few more curves to solidify the claimed results. Binary Cross-
entropy (BCE) and Kullback Leibler Divergence (KLL) are two parameters that express
the amount of information loss in each classification attempt. Figure 9a,b indicate that,
as the number of epochs increased, both loss values decreased for the training subset.
Results on the testing subset fluctuate rapidly, and the fluctuation is quite similar to the
testing accuracy curve. Matthews’s Correlation Coefficient (MCC) is another statistical
measure that takes all the four properties of a confusion matrix (i.e., true positives, true
negatives, false positives, and false negatives) into account while judging the classification
performance. It is considered an even better matric than the F-measure [49]. The highest
MCC values acquired in this experiment were 0.9865 and 0.9546 for training and testing
classifications, respectively (Figure 8c). Quadratic Weighted Kappa (QWK) is a chance-
adjusted matric to judge the reliability of categorical measurements [50]. A QWK value
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above 0.8 indicates a good agreement between the algorithm’s predictions and a few
trusted labels of the same objects. Figure 9d presents the QWK values at each epoch of the
classification on the testing subset. It illustrates that almost all the QWK values were above
0.9, which proves the cogency of the proposed method.

Furthermore, in Figure 10, we present the confusion matrix and the Receiver Operating
Characteristic (ROC) curves of the classification on the testing subset at the 488th epoch.
As seen from the confusion matrix, only 285 samples out of 7500 images were misclassified.
The class Lun_Be had the best classification outcome; whereas, the class Lun_Ad has the
highest misclassification rate. These outcomes are also apparent in the ROC curves. The
Col_Ad, Col_Be, and Lun_Be curves are almost touching the top-left corner, as the classifier
was very successful at distinguishing their samples. However, it faced difficulties while
categorizing the samples that belong to the other two classes. Overall, it can be said that the
described ML model is highly accurate at identifying these classes, although there remains
room for improvement.

Figure 8. Classification outcome showing (a) accuracy, (b) F-measure, (c) precision, and (d) recall at each epoch.
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Figure 9. Classification outcome showing (a) BCC, (b) KLL, (c) MCC, and (d) QWK values at each epoch.

Figure 10. Classification outcome showing the (a) confusion matrix and (b) ROC curve of the 488th epoch.

Table 3 provides a comparison (in terms of the proposed method’s obtained results)
with some of the well-known ML-based lung and colon cancer classification methods
discussed in Section 2. However, most of these results are not directly comparable since we
worked with a novel dataset that is quite different from the ones used in the cited studies.
Nonetheless, they have been put into comparison because the objective remains the same.



Sensors 2021, 21, 748 17 of 20

As seen from the table, our method outperforms most of the other cancer identification
methods in terms of the maximum classification accuracy; the only exceptions are the
studies described in [19,28,29,31,34]. In the case of [19,29], apart from the accuracy values,
only the recall values were presented, and both of them (94% and 93%) are lower than
what our model has achieved (96.37%). Among the other studies, the authors of [28]
worked with a set of colonoscopy images, and [31,34] worked based on CT scan images,
so straightforward comparisons cannot be made. Only the studies cited in [51–53] work
with the LC25000 dataset. Among them, reference [51] involves only the colon samples
of the dataset and reported lower accuracy and F-measure scores than the proposed
method. Although [52,53] reported higher accuracy scores, they performed classifications
either on the lung samples (three-class classifications) or on the colon samples (binary
classifications). As we included all the dataset samples (lung and colon) and performed
a five-class classification, the acquired results are not exactly comparable. We hope more
studies will be conducted involving the images of this dataset. Nevertheless, based on the
discussions provided earlier in this section, it can be concluded that the proposed methods
can fulfill the task of lung and colon cancer tissue classification with convenient accuracy
and high reliability.

Table 3. Comparison of the acquired results with other methods.

Reference Cancer Type Image Type Classifier Accuracy *
(%)

Precision *
(%)

Recall *
(%)

F-Measure *
(%)

[14] Lung Biopsy image mSRC 88.1 84.6 91.3 86.6

[15] Colon Histopathological SVMs – 73.7 68.2 70.8

[16] Lung CT scan ANN 93.3 – 91.4 –

[18] Colon Histopathological SC-CNN – 78.3 82.7 80.2

[19] Colon Histopathological RF 99 – 94 –

[20] Lung CT scan MC-CNN 87.14 – 93 –

[21] Lung CT scan CNN 89.9 – – –

[22] Colon Colonoscopy AlexNet 91.47 91.76

[23] Lung – RNN 98 – 96 –

[24] Lung CT scan CNN 92.63 – 90.7 –

[25] Lung CT scan RestNet50 +
SVM RBF 93.19 73.48 85.38 78.83

[26] Lung CT scan DFCNet 89.52 – 82.54 –

[27] Colon Histopathological RF 85.3 – – 85.2

[28] Colon Colonoscopy Faster R-CNN 98.5 100 98.5 99.24

[29] Colon Colonoscopy CNN 96.4 – 93 –

[30] Colon Colonoscopy CNN 90.28 74.34 68.32 71.2

[31] Lung CT scan DAELGNN 99.65 99.67 99.78 99.73

[33] Lung CT scan CNN 93.9 – 93.4 –

[34] Lung CT scan CNN 97.9 98.06 98.07 98.06

[35] Lung CT scan EM 96.2 97.4 98 98.4

[51] # Colon Histopathological RESNET-50 93.91 95.74 96.77 96.26

[52] # Lung Histopathological CNN 97.89 – – –

[52] # Colon Histopathological CNN 96.61 – – –

[53] # Lung Histopathological CNN 97.2 97.33 97.33 97.33

Proposed Lung & Colon Histopathological CNN 96.33 96.39 96.37 96.38

* best result reported on the study if multiple classifications were performed; — the associated matric was not reported in the corresponding
article; # works with the LC25000 dataset.
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6. Conclusions and Future Works

In this paper, we described a novel DL-based supervised learning method that iden-
tifies five different types of tissues (three cancerous, two non-cancerous) found in lung
and colon tumors by analyzing their corresponding pathological images. We used the
LC25000 dataset to train and validate our method. Four sets of features were extracted
using two types of domain transformations for image classification. The resultant features
were concatenated to build a combined set of features that contains both types of infor-
mation. The acquired results assure that with a 96.33% peak classification accuracy, the
model is highly accurate and reliable (96.38% F-measure score) for lung and colon cancer
identification. However, analysis of the results suggests that there is room for improvement
in the obtained performance in two of the five classes. A comparison with similar cancer di-
agnosis methods reveals that the proposed method shows superior performance than most
of them. Using this computer-based identification method in the medical centers will allow
pathologists to diagnose more lung and colon cancer cases in less effort, cost, and time. In
the future, we plan to work on the architecture of the classification model and engineer
new sets of features from more histopathological images to elevate its performance.
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