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Abstract: Identifying the key genes related to tumors from gene expression data with a large number
of features is important for the accurate classification of tumors and to make special treatment
decisions. In recent years, unsupervised feature selection algorithms have attracted considerable
attention in the field of gene selection as they can find the most discriminating subsets of genes,
namely the potential information in biological data. Recent research also shows that maintaining the
important structure of data is necessary for gene selection. However, most current feature selection
methods merely capture the local structure of the original data while ignoring the importance of the
global structure of the original data. We believe that the global structure and local structure of the
original data are equally important, and so the selected genes should maintain the essential structure
of the original data as far as possible. In this paper, we propose a new, adaptive, unsupervised
feature selection scheme which not only reconstructs high-dimensional data into a low-dimensional
space with the constraint of feature distance invariance but also employs `2,1-norm to enable a matrix
with the ability to perform gene selection embedding into the local manifold structure-learning
framework. Moreover, an effective algorithm is developed to solve the optimization problem based
on the proposed scheme. Comparative experiments with some classical schemes on real tumor
datasets demonstrate the effectiveness of the proposed method.

Keywords: unsupervised feature selection; gene data; tumor classification; structure learning

1. Introduction

Cancers are now responsible for the majority of global deaths and are expected to rank
as the leading cause of death. Thus, cancer may be the most important barrier to increasing
life expectancy in every country in the world in the 21st century [1]. In the treatment of
cancers, the correct diagnosis of the type and nature of tumors at as early a stage as possible
is conducive to increased efficacy [2]. The development of DNA microarray technology
has made it possible to study the causes of cancers from the level of genes, which greatly
improves the accuracy of diagnosis and the curative effect related to cancer. Although DNA
microarray data are usually high-dimensional, with the number of genes in a sample often
running into thousands or even tens of thousands, there are often only a few key genes
that determine specific tumors [3]. Since the original data contain excessive redundant
genes and noise, directly using these data may lead to serious misclassification. Moreover,
high-dimensional data also lead to a series of challenges such as a high storage cost and
huge computation burden [4]. Therefore, selecting the important genes related to cancer
classification from the original huge number of genes is one of the key research areas with
respect to gene data classification.
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Currently, many effective methods of gene selection have been proposed. These
methods can be roughly divided into three categories—i.e., filter, wrapper, and embedded—
depending on their evaluation manner [5]. The filter method employs the “certainty”
metric to assign a score that reflects the ability of a gene to maintain the internal structure of
data to determine the relevance between genes and specific cancers. However, as it neglects
correlations among genes, this method may lose the important structural information
underlying the original data. The wrapper method wraps genes into subsets and uses
learning algorithms or predictive models to evaluate the importance of these subsets.
However, the large number of subsets may induce a huge computational burden. The
embedded method utilizes specific learning algorithm searching in the gene space for gene
selection. In contrast with the other approaches, the embedded algorithm does not need
to evaluate the classification ability of genes but only needs to select genes according to
certain rules, leading to a lighter computational burden than the wrapped algorithm.

Embedded algorithms are divided into supervised feature (gene) selection (SFS) [6,7]
and unsupervised feature selection (UFS) [8,9] approaches depending on whether they use
label information. Typical SFS algorithms include SPFS [10], LLFS [11], mRMR [12], L21RFS
[13], DLSR-FS [14], feature selection through sparse guidance [15,16], and so on. Although
the above methods use the sparsity of the graph structure or regression model to reduce the
misclassification induced by noise, the expensive and laborious label cost limits the wide
application of SFS approaches [17,18]. When attempting to discover characteristic patterns
in data without labels, UFS is more challenging. Representative algorithms of the UFS type
include SPEC [19], FSSL [20], JELSR [21], EVSC [22], Laplacian Score [23], and so on.

Most of the above algorithms attempt to select features by uncovering the local manifold
structure of data. More specifically, the above algorithms try to determine the embedding
mapping which may reveal the low-dimensional manifold structure underlying the high-
dimensional original gene data. Thus, the dimensionality reduction of the original gene data
may be realized, and the inherent pattern of the data can even be found [24]. Generally, the
local manifold of the original data may be usually represented in the form of graphs such as
a samples pair similarity graph [10], k-NN graph [23], local linear embedding [25], and so on.
In addition, besides the local structure of the original gene data, the global structure and the
discriminant structure of the original gene data may also be explored to classify cancer [26–28].
However, these methods merely focus on presenting the local structure, while they ignore the
maintenance of the global structure of the original gene data [29]; thus, their performance may
be deteriorated by noise in the original data space.

Another challenge related to gene data classification is the dimension reduction of
the original data. Since the original gene data are high-dimensional and have a complex
topological structure, localizing the key genes related to cancer classification in the huge
amount of original gene data is also challenging. Nie, Xu et al. [30] proposed a unified UFS
framework of dimensionality reduction, which uses a minimization regression residual
criterion to linearize project data into a low-dimensional subspace. However, similar to the
above-mentioned methods, maintaining the global structure of the original gene data is not
included in their work. Inspired by Nie’s work, in this paper, we propose a unified UFS
framework with characteristics including gene selection, global and local structure learning
from original gene data. In the proposed UFS framework, we design a regression function
composed of three parts which satisfies the requirement of embedding mapping including
dimensionality reduction and the maintenance of the global and local structures of the
original gene data. Specifically, the multi-dimensional scaling (MDS) method is first used
to project the original gene data from the high-dimensional space into a low-dimensional
space on the constraint of the Euclidean distance invariant. Then, the sparse regression
method is employed based on the minimized regression residual criterion to learn the
reconstruction coefficient in the low-dimensional space, meaning that the global structure
of the original data can be maintained in the course of the dimensionality reduction of the
original data. Finally, a probabilistic neighborhood graph model based on sample genes is
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used to maintain the local manifold structure of the data. The contributions of this article
are summarized as follows.

1. We combine structure learning and feature selection to propose a new feature selection
framework. Since the MDS method is employed in the proposed framework to
preserve the original space structure, which is reconstructed in a low-dimensional
space, the proposed framework can preserve both the global structure and local
structure underlying the original gene data;

2. The alternating direction method of multipliers (ADMM) is proposed to handle non-
convex optimization related to the proposed framework. In addition, an efficient
strategy related to the inverse of the high-dimensional matrix is also included in the
proposed method;

3. The convergence and computational complexity of the proposed algorithm is dis-
cussed. Extensive experiments on multiple gene data demonstrate the superiority of
our framework and method.

The rest of the paper is organized as follows. Section 2 briefly recalls the existing
unsupervised embedded feature selection algorithms and introduces the MDS algorithm.
Section 3 introduces the proposed approach and the optimization process. In Section 4, we
analyze the convergence and parameter selection of the proposed algorithm. In Section 5,
we conduct extensive experiments on multiple datasets and discuss and analyze several
experimental results. In the last section, we present the conclusion and future prospects.

2. Related Work

In this section, we review several typical UFS algorithms.
In the past few years, UFS based on the spectral analysis technique has shown out-

standing performance. Zhao and Liu [19] proposed the spectrum feature selection (SPEC)
algorithm, which employs spectral analysis based on graph theory to select features with
correlation. Due to the lack of an embedded learning process and the low sparsity of the
graph caused by excessive samples, SPEC may be susceptible to noise and irrelevant fea-
tures. Li, Yang et al. [28] proposed a non-negative discriminant feature selection algorithm
(NDFS), which uses the correlation between discriminant information and features to select
features. Specifically, NDFS first uses the spectral clustering technique to detect the struc-
ture underlying the original gene data and then learns the clustering label to construct the
feature selection matrix, finally selecting features with discriminant information. Although
the influence on the graph structure of noise is reduced by the structure learning and
graph sparsity, NDFS can only work in the situation in which a linear relationship between
the features and the clustering pseudo tags exists; moreover, the clustering tag technique
employed by NDFS cannot fully capture the local structure information underlying the
original data.

As mentioned above, the graph of the original gene data is susceptible to noise
and irrelevant features; thus, it is necessary to reveal the data relationship in the low-
dimensional subspace of the original gene data. Hou, Nie et al. [21] proposed the joint low-
dimensional embedded learning and sparse regression (JELSR) feature selection method.
However, their method merely focuses on low-dimensional manifold embedding, thus
ignoring the maintenance of the global structure of original gene data, leading to some
globally important information being missing. Ye and Zhang et al. [18] incorporated linear
discriminant analysis (LDA), an adaptive structure based on spectral analysis and `2,1-
norm sparse regression into the joint learning framework of UFS. Although, their method
employs the `2,1-norm to enforce the row sparsity of the feature selection matrix, leading
the projection matrix based on the LDA method to have the capability of feature selection,
limitations of the traditional LDA method, such as suboptimal solutions and ignoring local
manifolds, are also inherited. In this paper, we employ the multi-dimensional scaling (MDS)
algorithm to reduce the dimensions of the original gene data and to maintain the global
structure of the original gene data. In contrast to LDA and principal component analysis
(PCA), the goal of MDS is not to preserve the maximum divisibility of the original data
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but to pay more attention to maintaining the internal characteristics of features underlying
high-dimensional data.

3. Method
3.1. Nations

Gene expression data can be described as X = [x1, x2, . . . , xn] ∈ Rd×n, where xi ∈ Rd

is the i-th sample, and n is the number of samples. Denote L = [l1, l2, . . . , ln] ∈ Rn as
the true label vector, where li ∈ {1, . . . , C} represents category of the i-th sample, C is
the class number of the sample set. In ∈ Rn×n is an identity matrix. 1n ∈ Rn is a vector
with all elements equal to 1. Define the nonlinear operator (•)+ = max(•, 0). The trace of
A = (aij) ∈ Rn×n is written as Tr(A), and the `2,1-norm of matrix A is defined as

||A||2,1 =
d

∑
i=1

(
n

∑
j=1

a2
ij)

1
2

(1)

3.2. Proposed Objection Function

Inspired by the adaptive structure [29], we combine global structure learning and
local manifold learning into the unified framework in order to uncover the important
information underlying the original data; thus, the objective function corresponding to the
proposed method can be formulated as

min
W,0≤pij≤1
∑n

i=1 pij=1

||WTX− Y||2F + α||W||2,1 + β
n
∑
i,j
(||WTxi −WTxj||2 pij + λp2

ij) (2)

where α and β are regularization parameters used to balance the adaptive structure learning
and the feature selection coefficient matrix, and is the regularization parameter used to
add a prior uniform distribution and to avoid a trivial solution. Y is the low-dimensional
representation of the original dataset X . P = (pij) ∈ Rn×n is the neighborhood probability
matrix, where pij represents the probability that xi is connected with xj , 0 6 pij 6 1 .
Obviously, the probability of all samples being connected to xi should be satisfied following
∑n

j=1 pij = 1.
It can be found that the first two terms of the objective function utilize the minimum

residuals criterion to learn the reconstruction coefficient of the original data in the low-
dimensional space. As is known, the random mapping of the original data into the
low-dimensional space may change the distances within the original data, leading the
globe structure contained in the original data to twist. To map the original data into a
low-dimensional space while maintaining its global structure, we employ the MDS method
to transform X into Y since MDS has the ability to keep the sample distance of the original
space the same as the sample distance of the transformed low-dimensional space. In the
second term, the `2,1-norm is used to force the row of W to be sparse, since the i-th row of
the W matrix is related to the information of the i-th gene; this penalty term can enable
the matrix W to perform feature selection. The third term of the objective function is the
penalty term with a probability neighborhood matrix, which is employed to maintain the
local structure of the gene-space manifold by using the prior information and to relieve the
influence of uncorrelated genes on the local structure of manifolds.The block diagram of
this work is shown in Figure 1.
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Figure 1. Block diagram of MDS-AUFS.

3.3. Optimized

As it is composed of two constraint regularizations which contain two coupled, opti-
mized variables, it may be difficult to derive the closed solution of the optimization problem
described by Equation (2) directly. Inspired by the optimization methods in [31,32], we
used an alternative iterative method which fixed one variable to update another variable
to transform the optimization problem into multiple subproblems.

3.3.1. Update P by Fixing W

When W is fixed, updating P = [pT
1 ,pT

2 , · · · ,pT
n ]T ∈ Rn×n is equivalent to the follow-

ing problem:
min

06pij61
∑n

j=1 pij=1

∑
i.j

∥∥WTxi −WTxj
∥∥2

2 pij + λp2
ij (3)

Let bij =
1

2λ ||W
Txi −WTxj||2 , define matrix B = [bT

1 , bT
2 , · · · , bT

n ]
T ∈ Rn×n . Problem (3) is

equivalent to
min

06pij61
1npi=1

1
2 ||pi+bi||2 ∀i ∈ {1, 2, · · · , n}

(4)

The Lagrangian function of problem (4) is

Γ(pi, µ, νi) =
1
2
||pi+bi||2 − µ(1npi − 1)− νT

i pi (5)

where µ and νi are Lagrangian multipliers. According to the KKT condition [33], the
optimal solution of problem (5) is

pij = (−bij + µ)+ (6)

By sorting each row of B into B̄ in descending order [29], the following inequality holds:{
B̄ik′ + µ > 0, f or k′=1, . . . ,k
B̄ik′ + µ < 0, f or k′=k+1, . . . ,n

(7)

Considering the probability constraint on pi, we further get

µ =
1
k
(1−

k

∑
d′=1

b̄id′))+ (8)
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Substituting Equation (8) into Equation (6), we obtain the optimal P:

pij = (−bij −
1
k
(1−

k

∑
d′=1

b̄id′))+ (9)

Similar to the method in [29], we set the regularization parameters λ according to k,
which is the number of neighbors.

λ =
1

2n

n

∑
i=1

(kb̄i,k+1 −
k

∑
j=1

b̄ij) (10)

3.3.2. Update W by Fixing P

Once P is fixed, updating W in (2) is equivalent to the following problem:

min
W

||WTX− Y||2F + α||W||2,1 + β
n
∑
i,j
(||WTxi −WTxj||2 pij) (11)

Let Lp=Dp − (P+PT)
2 , where Dp is a degree matrix with the i-th principal diagonal ele-

ment being ∑j (pij + pji)/2. The optimization problem in (11) for updating W is equivalent
to the following problem:

min
W

||WTX− Y||2F + α||W||2,1 + 2βTr(WTXLXTW) (12)

Although the optimization problem is complex, the regularization term α||W||2,1 is
not differentiable. To handle this problem, denote M ∈ Rd×d as a diagonal matrix with the
i-th diagonal element being mii =

1
2
√
||wi||22+ε

, where ε is a small value. The problem (12)

can be rewritten as

min
W

||WTX− Y||2F + αTr(WTMW) + 2βTr(WTXLXTW) (13)

Thus, the analytical solution of problem (13) is

W = (X(In + βL)XT + αM)−1XYT (14)

It can be found that solution of Equation (14) involves the inverse of the d× d matrix.
Since the gene dimensionality d is much larger than the number of samples n in the gene
expression data, the inverse operation of a large matrix can considerably increase the
computational overhead of the proposed algorithm. Similar to the methods in [17], we can
convert a d× d matrix inverse problem into an n× n one, as shown in (15):

W = VX((In + βL)XTVX + In)
−1YT (15)

where V = 1
α M−1 . The procedure of the proposed algorithm is summarized in Algorithm 1.
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Algorithm 1 AUFS-MDS

Input:
Gene expression data matrix X ∈ Rd×n ;
Number of nearest neighbors k; Number of real label C ;
Low dimensional representation q ;
Regularization parameter α and β ;
Number of selected genes s ;

Output:
The top s ranked features as the results of feature selection.

1: To generate a low dimensional representation Y ∈ Rq×n of X by MDS;
2: Initialize W ∈ Rd×q as a random matrix; B ∈ Rn×n by setting bij = ||xi − xj||2 ;
Repeat
3: Calculate λ based on (10);
4: Calculate P based on (9);
5: Calculate L = D− (P+PT)/2 ;
6: Calculate W by solving the problem (15);
7: Update M with the i-th diagonal element as mii =

1
2
√
||wi||22+ε

;

8: until Convergence;
Sort all genes based on ||wi||2 in descending order. The top s ranked genes are selected.

4. Analysis
4.1. Convergence Analysis

We introduce a lemma [13] for discussing the convergence with the variable W of the
proposed AUFS-MDS algorithm.

Lemma 1. For any nonzero vectors a, b ∈ Rm, the following result is obtained:

||a||2 −
||a||22
2‖b‖2

6 ‖b‖2 −
‖b‖2

2
2‖b‖2

(16)

Theorem 1. The objective function value of the AUFS-MDS algorithm can be monotonically
reduced to convergence by updating the variable W .

Proof of Theorem 1. Problem (2) can be written as

F(W) = ||WTX− Y||2F + α||W||2,1 + β
n
∑
i,j
(||WTxi −WTxj||2 pij + λp2

ij) (17)

Let L(W) = ||WTX− Y||2F , J(W) =
n
∑
ij
(||WTxi −WTxj||2 pij + λp2

ij), Equation (17) is

equivalent to following:

F(W) = L(W) + βJ(W) + α||W||2,1 (18)

According to the AUFS-MDS algorithm, the following inequality holds when W is
updated:

F(Wt+1) 6 F(Wt) (19)

Known ‖W‖2,1 =
d
∑

i=1
(

q
∑

j=1
w2

ij)
1/2 , let ‖w̄i‖2 = (

q
∑

j=1
w2

ij)
1/2 , the inequality related to

Equation (18) is as follows:
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L(Wt+1) + J(Wt+1) + α
∥∥∥(Wt+1)

∥∥∥
2,1

+ α
d

∑
i=1

(

∥∥∥w̄t+1
i

∥∥∥2

2
2
∥∥w̄t

i

∥∥ − ∥∥∥w̄t+1
i

∥∥∥
2
)

6 L(Wt) + J(Wt) + α
∥∥(Wt)

∥∥
2,1 + α

d

∑
i=1

(

∥∥w̄t
i

∥∥2
2

2
∥∥w̄t

i

∥∥
2
−

∥∥w̄t
i
∥∥

2) (20)

According to Lemma 1, we obtain∥∥∥w̄t+1
i

∥∥∥2

2
2
∥∥w̄t

i

∥∥
2
−

∥∥∥w̄t+1
i

∥∥∥
2
>

∥∥w̄t
i

∥∥2
2

2
∥∥w̄t

i

∥∥
2
−

∥∥w̄t
i
∥∥

2 (21)

Combining (20) and (21), we get the following result:

L(Wt+1) + J(Wt+1) + α
∥∥∥(Wt+1)

∥∥∥
2,1

6 L(Wt) + J(Wt) + α
∥∥(Wt)

∥∥
2,1 (22)

Inequality (22) indicates that the objective function in problem (2) will decrease mono-
tonically with each iteration.

In addition, as we have presented in Section 2, the objective function in problem (2) is
convex with respect to variable W; thus the above iteration will lead to convergence because
the objective function has a lower bound. Although we have shown the convergence with
the variable of the objective function in problem (2), the convergence of W itself is still
unknown. To show the convergence of W, the variance of W changing with iterations,
which is described in (23), is discussed in the next section.

Err(W) =
d

∑
i=1

∣∣∣∥∥∥w̄t+1
i

∥∥∥
2
−

∥∥w̄t
i
∥∥

2

∣∣∣ (23)

4.2. Parameter Determination

As is known, the determination of parameters related to regular terms is still an
open problem. In proposed framework, the first parameter q denotes the low-dimensional
embedded dimension of the original high-dimensional sample X, which is referred to as
the intrinsic dimension in manifold learning. In [34], two strategies were proposed to
select the value of q based on the uncertainty of entropy. In this paper, to facilitate the
experiment and without losing generality, q is set to be equal to the number of sample
classes in the experiment. The second parameter is s, which denotes the number of genes
selected. We vary s within a certain range as it is difficult to determine without prior
knowledge. Finally, the regularization parameters α and β are determined by a grid search
according to experience.

5. Experiment

In this section, we present extensive experiments that were conducted to evaluate the
performance of our proposed unsupervised gene selection algorithm.

5.1. Datasets

The experiments were conducted on five publicly available cancer gene datasets,
including a lung dataset, a colon dataset, a lymphoma dataset, a glioma dataset and a
leukemia dataset. All data were downloaded from https://jundongl.github.io/scikit-
feature/datasets.html (accessed on 1 May 2021), and details of the data are summarized in
Table 1.

https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
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Table 1. Details of the datasets.

Datasets Instances Genes Classes

Lung 203 3312 5
Colon 62 2000 2

Lymphoma 96 4026 9
Glioma 50 4434 4

Leukemia 72 7070 2

5.2. Contrast Algorithm

To evaluate the effectiveness of the proposed MDS-AUFS algorithm, we compared
it with six classical unsupervised feature selection algorithms, the details of which are
described as follows.

• URAFS [9] embeds the local geometric structure of data into the manifold learning
framework by introducing the graph regularization term based on the principle of
maximum entropy into the GURM model, leading to the irrelevant features of the
original data being filtered out;

• UDFS [25] embeds discriminative analysis and the `2,1-norm into the feature selection
framework to select discriminative features and informative features;

• SPEC [19] is a unified feature selection framework based on graph theory and is used
to select relevant features by combining supervised feature selection and unsupervised
feature selection;

• NDFS [28] utilizes the discriminant information and correlation of features to select
feature subsets. Specifically, the method combines cluster labels learned by the spec-
trum clustering algorithm with the feature selection matrix to finally select the most
discriminant features;

• LLCFS [35] integrates local structure learning and feature selection into a unified
framework. Specifically, LLCFS embeds weighted features into the regularization
term of the local clustering learning algorithm and selects features according to their
weight;

• JELSR [27] is based on an unsupervised learning structure and combines embedding
learning with sparse regression to select features.

5.3. Experimental Settings
5.3.1. Parameter Settings

There are some parameters that needed to be set in advance. We set k = 5 for all the
datasets to specify the size of neighborhoods and make the low-dimensional q equal to the
number of real classes C . For all datasets, the number of genes selected s was set as 5, 10,
15, 20, 25, 30, 35, 40, 45 and 50, respectively. Regularization parameters related to sparse
terms and structure learning are denoted by α and β, respectively, and their values were
set as shown in Table 2 according to different datasets.

Table 2. The regularization parameters of datasets.

α β

Lung 0.1 10−6

Colon 0.1 10−8

Lymphoma 10 10−6

Glioma 10 10−6

Leukemia 0.1 10−6
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5.3.2. Evaluation Metrics

We employed the k-means clustering algorithm to evaluate the accuracy (ACC) of the
proposed method which is described in (24) [36].

Acc = 1/n ∑n
i=1 δ(map(ci), Ii) (24)

where ci represents the cluster label of xi, and Ii represents the real label of xi. δ(•) is the
δ-function. map(•) represents an optimal mapping function, which projects each cluster
label into the real label by using the Kuhn–Munkres algorithm [37]. Apparently, a larger
ACC shows better clustering performance.

5.4. Experiment and Discussion

Four group comparison experiments were implemented to demonstrate the perfor-
mance of the proposed algorithm including its clustering ability, convergence, computation
complexity and sensitivity with regularization parameters. The first group experiment
compared the clustering ability of the proposed algorithm with other algorithms in terms of
the selected number of genes. The second group experiment showed the convergence of the
proposed algorithm. The third group experiment analyzed the computational complexity
of the proposed algorithm in terms of the number of samples and the number of genes.
The last group experiment showed the impact of the regularization parameters on the
performance of the proposed algorithm.

5.4.1. ACC Evaluation Index

We evaluated the performance of our approach regarding feature selection using
comparison experiments with several typical feature selection methods: URAFS, UDFS,
SPEC, NDFS, LLCFS and JELSR. As we employed the k-means method, which is sensitive
to the initialization parameters, to cluster the original data, to reduce the impact of the
initialization parameters on the performance of the k-means method, we repeated the
clustering 20 times with random initialization parameters and then plot the ACC with
changing numbers of selected genes [38]. The optimal results and average results in the 20
experiments are described in Figures 2 and 3, respectively.

To further demonstrate the performance of the proposed algorithm, in Table 3, we
compare the maximum ACC of MDS-AUFS with that of the other algorithms on five
different cancer gene datasets. In this table, the best results are written in bold, and the
second-best results are underlined.

From Figure 2a–d, ACC indicators of other types of cancer except leukemia show an
overall increasing trend in the initial stage of gene selection, while this begins to decline as
the number of selected genes further increases. In addition, MDS-AUFS always achieves the
maximum clustering ACC with fewer genes. It is may be inferred that all algorithms may
achieve good performance when more keys gene are selected, and the proposed algorithm
shows the best performance of all of the approaches; moreover, once all keys gene have been
selected, irrelevant or redundant genes can be introduced into the algorithm as the number
of selected genes further increases, leading to the performance of algorithms declining.
From Figure 2e, we can see that the ACC of almost all algorithms show a decreasing trend,
which implies that there is a small number of key genes related to leukemia. Furthermore,
the maximum number of selected genes with respect to ACC in all methods is different in
different gene datasets. For example, the number of selected genes is 40 when MDS-AUFS
achieves optimal performance on colon data, while it is 10 for leukemia data. We have
reason to believe that the number of key genes in different types of cancer is also different.
Obviously, accurately selecting the key genes or gene subsets that contain the most key
genes is important in cancer classification.

Figure 3 shows the average ACC of all algorithms in five datasets. It is easy to see that
the ACC of the MDS-AUFS algorithm is significantly higher than that of other algorithms
on different cancer gene datasets, which indicates that MDS-AUFS has the best robustness.
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Table 3 shows the optimal performance of all algorithms. As is evident, MDS-AUFS always
achieves the best evaluation performance.

(a) lung (b) colon

(c) lymphoma (d) glioma

(e) leukemia

Figure 2. Clustering accuracy of all the methods on five different datasets.

Figure 3. The average ACC of all the methods for five different datasets.
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Table 3. Maximum clustering accuracy of different methods on five different datasets.

Methods URAFS UDFS SPEC NDFS LLCFS JELSR MDS-AUFS

Lung 0.5862 0.6404 0.5123 0.5813 0.5813 0.5665 0.7192
Colon 0.6129 0.6452 0.6452 0.5484 0.5484 0.6452 0.8065

Lymphoma 0.4792 0.4688 0.4896 0.5417 0.5000 0.4479 0.6563
Glioma 0.5400 0.6200 0.5000 0.5000 0.4800 0.5600 0.6400

Leukemia 0.6111 0.6111 0.7083 0.6389 0.6250 0.6944 0.8611

5.4.2. Convergence of MDS-AUFS

In this section, some experiments are presented that show the convergence of the iter-
ative process of the MDS-AUFS algorithm. To intuitively observe the overall convergence
of the MDS-AUFS algorithm, we normalized the value of the objective function after each
iteration. As shown Figure 4 MDS-AUFS shows good convergence and quickly converged
in all gene datasets, and it could achieve convergence in general in about 10 iterations.

Figure 4. The convergence of MDS-AUFS on five gene datasets.

At the same time, we also show the convergence process of the gene selection matrix
on different gene datasets, as shown in Figure 5.

5.4.3. Computational Complexity Analysis

In this section, we analysis the computational complexity and the running time of the
proposed method and then compare it with several compared algorithms. The procedure
of the proposed MDS-AUFS method is summarized in Algorithm 1. The time complexity
of computing the low-dimensional representation of Y by MDS is O

(
n2q

)
. It will stop when

the objective function of problem (2) tends to a constant or the change is very close to zero.
The most time-consuming operation of Algorithm 1 is solving problem (17) in the sixth
step. We can convert a d× d matrix inverse problem to an n× n problem; in doing so, the
time complexity of Algorithm 1 at each iteration becomes O

(
min {n, d}3

)
. Table 4 exhibits

the complexity of all methods.
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(a) lung (b) colon

(c) lymphoma (d) glioma

(e) leukemia

Figure 5. The convergence of W on five gene datasets.

Table 4. Comparison of the main computational complexity.

Methods Computational Complexity

DUCFS O
(
d3 + n2d

)
JELSR O

(
d3 + n2q

)
LLCFS O

(
n3)

MCFS O
(
d3 + n2q + nd2)

NDFS O
(
d3 + n2c

)
SPEC O

(
n2d

)
UDFS O

(
d3 + n2c

)
URAFS O

(
d3 + n2d + n2)

MDS-AUFS O
(
min

{
n, d3}+ n2q

)
We also selected two representative datasets, lung and leukemia, for the purpose

of demonstrating the influence of the sample number and dimension on the complexity
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of MDS-AUFS. As can be seen from Table 1, the lung dataset had the largest number of
samples of all datasets, while samples in the leukemia dataset had the largest number of
genes. We considered the algorithms’ running time when the number of genes was 10, 30
and 50, respectively. Our calculation was performed using MATLAB2019a on a 3.2 GHz
Windows computer. Tables 5 and 6 list all algorithms’ computing time when choosing
a number of different genes. We can obtain the following conclusion according to the
analysis:

• MDS-AUFS runs faster on all datasets. It is fast because the local structure of SPEC
does not involve a learning process;

• We only consider the computational complexity theoretically. The time consumption
may be different in real applications because we have not considered the influence of
iteration in the above analysis;

• The calculation costs of different methods are determined by different factors. For
example, MDS-AUFS runs in a short time for each iteration and has a significant
speed advantage over other methods when d is large. The approach benefits from the
conversion of the high-dimensional matrix inverse into the low-dimensional matrix
inverse, which was designed in the optimization of MDS-AUFS;

• The computational complexity of all algorithms is not related to the selection of s .

Table 5. The computation time of different methods on the lung dataset (unit: second).

s MDS-AUFS URAFS UDFS SPEC NDFS LLCFS JELSR

10 21.48 47.97 116.96 0.13 94.20 4.55 16.35

30 21.34 49.51 116.43 0.12 94.14 4.25 16.02

50 21.25 48.36 116.54 0.11 93.26 4.35 16.01

Table 6. The computation time of different methods on lung and leukemia datasets (unit: second).

s MDS-AUFS URAFS UDFS SPEC NDFS LLCFS JELSR

10 258.52 367.829 601.926 0.088 363.118 2.002 51.241

30 279.43 367.883 601.162 0.085 356.375 2.065 52.175

50 256.77 366.948 601.628 0.080 354.011 2.075 52.500

5.4.4. Sensitivity of Regularization Parameters α and β

We show the ACC of the MDS-AUFS algorithm under different parameter combina-
tions. Because the question of the determination of parameters is still open, we obtained α
and β from {10−8, 10−6, 10−4, 0.01, 1, 10, 100} by a grid search method according to expe-
rience. From Figure 6, parameters α and β in different combinations can be seen to lead
to different performance levels for ACC using MDS-AUFS. To fairly compare different
unsupervised feature selection algorithms, we used the grid search method to select the
optimal combinations and demonstrated the ACC performance of these combinations.
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(a) lung (b) colon

(c) lymphoma (d) glioma

(e) leukemia

Figure 6. ACC of different parameter combinations on all gene datasets.

6. Conclusions

In this paper, we present an adaptive, unsupervised feature algorithm that combines
gene selection and structure learning into a unified framework of sparse representation.
Specifically, the original high-dimensional data is first sparse-reconstructed into the low-
dimensional space based on the MDS structure invariant constraint. Then, the probabilistic
neighborhood relationship is introduced to learn the local manifold structure of the gene
data. Moreover, the ADMM algorithm is employed to handle the above non-convex
structure learning problem. The effectiveness of the proposed method is demonstrated by
comparative experiments with some classical algorithms on five real cancer gene datasets.
In future work, we will further explore the data structure information capturing method
including key feature location and redundant feature detection. Another open problem
is the parameter selection related to the MDS method; it is empirically determined in this
paper and should be deeply discussed in future work.
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